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Abstract: The gas turbine is a crucial piece of equipment in the energy and power industry. The
exhaust gas has a sufficiently high temperature to be recovered for energy cascade use. The supercrit-
ical carbon dioxide (S-CO2) Brayton cycle is an advanced power system that offers benefits in terms
of efficiency, volume, and flexibility. It may be utilized for waste heat recovery (WHR) in gas turbines.
This study involved the design of a 5 MW S-CO2 recompression cycle specifically for the purpose of
operational control. The dynamic models for the printed circuit heat exchangers, compressors, and
turbines were developed. The stability and dynamic behavior of the components were validated. The
suggested control strategies entail utilizing the cooling water controller to maintain the compressor
inlet temperature above the critical temperature of CO2 (304.13 K). Additionally, the circulating mass
flow rate is regulated to modify the output power, while the exhaust gas flow rate is controlled
to ensure that the turbine inlet temperature remains within safe limits. The simulations compare
the performance of PI controllers tuned using the SIMC rule and ADRC controllers tuned using
the bandwidth method. The findings demonstrated that both controllers are capable of adjusting
operating conditions and effectively suppressing fluctuations in the exhaust gas. The ADRC con-
trollers exhibit a superior control performance, resulting in a 55% reduction in settling time under the
load-tracking scenario.

Keywords: supercritical carbon dioxide Brayton cycle; gas turbine waste heat recovery; active
disturbance rejection control; dynamic characteristics; control strategies

1. Introduction

Novel thermoelectric power cycle systems that utilize substitute fluid have demon-
strated notable benefits concerning thermodynamic and economic efficiency. The primary
substitute fluids in the industrial domain include organics, ammonia, helium, carbon diox-
ide, and their mixtures [1]. The thermal cycle utilizing supercritical carbon dioxide (S-CO2)
demonstrates remarkable adaptability, allowing for operation in situations with quickly
fluctuating load circumstances. This feature is especially beneficial for maintaining equilib-
rium in varied renewable energy systems. Sandia National Laboratories [2] in the United
States were the pioneers in identifying the potential of S-CO2 for power conversion systems.
They found that these systems have significantly greater thermal efficiency compared to
the steam Rankine cycle and the helium Brayton cycle, namely in the temperature range of
500–700 ◦C. Tokyo Institute of Technology [3], Korea Advanced Institute of Science and
Technology (KAIST), Korea Atomic Energy Research Institute (KAERI) [4], and Becker
Ship Propulsion (BSP) have individually undertaken an array of experimental setups and
tests. In contrast, a limited number of research institutions have accomplished the intricate
processes of designing and experimenting with experimental systems at the megawatt
scale. The supercritical v power system has higher efficiency, compactness, and adaptability
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benefits in comparison to conventional coal-fired power generation. Its primary applica-
tions include waste heat recovery [5], geothermal energy utilization, marine propulsion,
concentrated solar power (CSP) generation, and advanced nuclear reactors.

Significant amounts of waste heat are produced in various industrial sectors, including
iron and steel, chemical, power plant, cement, and textile industries. The utilization of
these waste heat sources, enabled by heat transfer and other advanced technologies, can
generate electricity, provide heating for various applications, or support other industrial
procedures. The strategic utilization of waste heat in industrial production not only has
economic benefits but also conforms with the principles of sustainable development, mak-
ing a substantial contribution to the reduction of greenhouse gas emissions. Olumide [6]
formulated a dynamic model for the S-CO2 recompression cycle with the intention of in-
vestigating the dynamic performance and control strategies for waste heat recovery within
the cement industry. The dynamic performance of the system was then analyzed while
subject to varying heat source mass flow rates and temperatures, assuming the system was
operating stably. Ty Neises and Craig Turchi [7] investigated the design, performance, and
cost of different setups—simple cycle, recompression Brayton cycle, and partially cooled
cycle—within an S-CO2 power cycle integrated into a molten-salt/solar-power system. The
results indicated that the recompression Brayton cycle configuration was the most efficient,
while the partially cooled cycle configuration had a minor economic advantage over the re-
compression cycle. Khan [8] et al. conducted a comparative analysis of two S-CO2 Brayton
cycle multiproduction configurations: regenerative and recompression. The study exam-
ined these configurations from both thermodynamic and energy-economic perspectives.
The findings demonstrated the superiority of the recompression type over the regener-
ative type in terms of net power output, thermal efficiency, and economic performance.
Song et al. [9] introduced a hybrid system that combines S-CO2 and Organic Rankine Cycle
(ORC) to recover the waste heat generated by internal combustion engines. The study
implemented the S-CO2 cycle system as the primary method for directly recovering waste
heat, while the bottom ORC system transformed the recovered heat into extra energy. The
study also examined the highest achievable power output of the independent S-CO2 cycle
in comparison to the combined S-CO2 and ORC cycle. The results showed a significant
18% improvement in thermal efficiency when the bottom cycle was included, although
it was accompanied by a 4% increase in marginal cost. Li et al. [10] utilized a preheated
system based on an S-CO2 cycle to capture and utilize the waste heat generated by diesel
and engine exhaust gases. A regeneration branch was added to the preheated cycle, and a
heat exchanger was integrated into the branch. The introduction of this novel arrangement
resulted in a significant enhancement of 7.3% in the maximum net power when compared
to the old system.

Gas turbines are widely used in power generation systems and have the advantages
of low pollutant emissions from the combustion process, fast start–stop response, and
high overall efficiency. To ensure high energy utilization efficiency, it is necessary to
consider the cascaded utilization of energy, so many scholars have studied gas turbine
waste heat recovery (GTWHR). Zare et al. [11] constructed a model for an ammonia–water
power/cooling cogeneration system aimed at the recuperation of waste heat generated by
a gas turbine. The study systematically assessed the performance of the gas turbine within
the context of combined heat and power generation. Different optimization strategies were
employed to discern the optimal parameters for the decision variables. The outcomes
demonstrated a 5.94% enhancement in thermal efficiency and a 5.38% reduction in the
overall operating costs when subjected to optimization by the principles of the second law
of thermodynamics. Yoon et al. [12] conducted a study where they employed ORC and
transcritical CO2 (t-CO2) cycles to recover flue gas heat from gas turbines. They compared
the two systems and found that ORC produces approximately 5.5% more power than t-CO2.
Additionally, they concluded that t-CO2 is better suited as a bottoming cycle when the gas
turbine operates for extended durations at low loads. Najjar et al. [13] coupled a propane
Organic Rankine Cycle (ORC) as the top cycle with a bottoming refrigeration cycle for
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the recovery of waste heat from a gas turbine. The cascaded utilization of waste heat was
implemented to enhance the system’s electricity generation capacity and efficiency. The
study included calculations of the system’s output power and energetic efficiency under
different ambient temperatures. Nami et al. [14] designed both a cascade system and a
series system to recuperate waste heat from the exhaust of an offshore gas turbine. They
examined the influence of four distinct circulating agents on power generation efficiency.
Additionally, the energetic effects of heat load and heat source temperature were analyzed.
Cao et al. [15] presented a biomass gas turbine system where waste heat is employed for
either power generation via an organic Rankine cycle or for cooling the compressor inlet
through an absorption cooling cycle. This study utilized a genetic algorithm to optimize
the objective function of both systems from a thermo-economic standpoint. The findings
indicated that employing waste heat for compressor inlet cooling exhibits higher exergy
efficiency compared to its use in electricity generation for thermal purposes.

The temperature of the exhaust gas from the gas turbine for power generation is
within the range of 300–750 K, which can be effectively integrated with S-CO2 cycle sys-
tems. In pursuit of enhancing the waste heat efficiency of gas turbines, researchers have
undertaken studies focusing on the GT-SCO2 combined cycle. Wang et al. [16] intro-
duced a tri-generation system that integrates a gas turbine cycle, a regenerative S-CO2
cycle, an ORC cycle, and a bottom absorption refrigeration cycle (ARC) to generate hot
water, cooling, and electricity. The system underwent a thorough analysis from exergoeco-
nomic and thermodynamic perspectives, and the optimization of the system’s performance
objective function was accomplished using the particle swarm optimization algorithm.
Du et al. [17] introduced a novel three-stage series WHR system for effectively harnessing
the high-temperature exhaust gas waste heat produced by the gas turbine. The system’s
performance was evaluated using thermodynamic and economic models. Additionally,
parameter sensitivity analysis and multi-objective optimization techniques were employed
to attain the optimal performance of the system. Chen et al. [18] presented a technique to
examine the performance of S-CO2 cycles under off-design conditions caused by variations
in the heat source. The impact of the heat source fluctuations on the cycle was studied,
and the thermodynamic efficiency and economic objective were optimized for four S-CO2
layouts. Bonalumi et al. [19] explored the performance of a partial heating supercritical
CO2 cycle as the bottoming cycle for a small gas turbine and conducted a techno-economic
optimization. Antonio et al. [20] enhanced waste heat recovery efficiency in the bottoming
cycle of gas turbines in the 5–10 MW power range by analyzing the application of partial
heating supercritical CO2 cycles. While maintaining the compactness of the gas turbine,
they further increased the efficiency of waste heat recovery. The relationship between
turbine outlet temperature and the efficiency of high-temperature and low-temperature
heaters was investigated. Sicali et al. [21] explored a 5 MW gas turbine with the single
heated cascade S-CO2 cycle through a parametric analysis. The findings revealed the poten-
tial recovery of approximately 1500 kW of net electrical power. Cao et al. [22] assessed the
feasibility and economics of a cascaded S-CO2 combined cycle for typical gas turbine waste
heat recovery through a techno-economic analysis. The study involved a comparison and
optimization of eight types of gas turbines, revealing that the cascaded S-CO2 combined
cycle demonstrated thermodynamic advantages in small gas turbines with high exhaust
gas temperatures. Jin et al. [23] developed a model for a recompression S-CO2 Brayton
cycle, taking into account finite temperature-difference heat transfer, irreversible expansion,
and irreversible compression. The objective was to attain an optimal equilibrium point for
net power output, isentropic efficiency, thermal efficiency, and ecological function through
multi-objective optimization. Bian et al. [24] comprehensively reviewed four configurations
and corresponding control strategies for the S-CO2 Brayton cycle (SCBC). This inclusive
investigation encompassed a dynamic simulation of the system model, evaluation of the
open-loop dynamic performance of SCBC, exploration of control methodologies for critical
state parameters, and analysis of load tracking.
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Hu et al. [25] devised a one-dimensional dynamic simulation model for the PCHE
within the S-CO2 Brayton cycle. The model was utilized to compute the dynamic response
of the PCHE under varying conditions. To enhance the precision in depicting the heat
transfer characteristics of the Printed-Circuit Heat Exchanger (PCHE), this study develops
a one-dimensional heat transfer model. Deng et al. [26] developed models for the main
components of the S-CO2 recompression Brayton cycle, wherein the compressor and tur-
bine were designed based on isentropic processes with fixed pressure ratios and efficiencies.
Additionally, a mathematical model for the PCHE was established based on continuity and
energy equations for heat transfer processes. Ma et al. [27] established a three-dimensional
computational solid model for a straight-channel PCHE. They utilized the finite volume
method to solve the flow and heat transfer equations of S-CO2. Under specified operating
conditions, particular emphasis was placed on studying the dynamic response charac-
teristics of the heat exchanger. Furthermore, the computed results were compared with
reference values to validate the accuracy of the model. Felipe et al. [28] utilized working
fluid storage system control in the re-compression Brayton cycle, conducting simulation
experiments by adjusting the input flow rate and temperature of the entire system working
fluid. Minh Tri Luu et al. [29] introduced control strategies for working fluid mass flow and
re-compressor inlet throttling, incorporating two additional control combination methods
based on Anton’s work. Zhang et al. [30] developed a novel waste heat-recovery power
generation system based on a new type of supercritical carbon dioxide power cycle by
independently controlling the outlet parameters of the recompression compressor and the
main compressor obtaining superior off-design performance. Additionally, the study inves-
tigated the influence of exhaust gas temperature within a specific range on the performance
of the main compressor. Dai [31] analyzed the dynamic performance of a 20 MW S-CO2
recompression cycle using Simulink software 2019a. A stable operating control scheme was
proposed, and the effectiveness of the control was verified by reducing disturbances in the
bypass ratio. Ding et al. [32] developed a transient model of the S-CO2 Brayton cycle using
the Modelica language and compared the transient simulation results of different control
methods, including single control methods and combined control methods. By studying
the adjustment characteristics under different control strategies, the aim was to address
issues such as low or excessive pressure fluctuations at the inlet of the main compressor
and improve the performance and efficiency of the Brayton cycle.

Previous investigations have demonstrated the efficacy of the S-CO2 cycle in effi-
ciently utilizing gas turbine exhaust gas. In this study, the dynamic model of the S-CO2
recompression cycle for GTWHR was established using MATLAB/Simulink 2020a. This
model is used to assess the practicability of GTWHR and the corresponding control strategy.
The mathematical models for the PCHE, turbine, compressor, and valves are systemati-
cally formulated. Steady-state simulations for each component are conducted to ascertain
the cycle parameters under grid-connected operating conditions. Subsequently, dynamic
simulations of the system cycle are carried out to investigate the transient characteristics,
including variations in turbine inlet temperature, turbomachinery outlet pressure, and
system output power concerning the fluctuations in the temperature and mass flow rate
of gas turbine exhaust gas. To regulate the output power of the cycle and keep some key
parameters stable and safe, different system control strategies were investigated, as well
as the controller designs, namely the PI controller and the Active Disturbance Rejection
Controller (ADRC). The simulations under different scenarios indicate that the proposed
method can potentially enhance the power cycle’s operational flexibility.

2. System Configuration and Description

The configuration of the recompression cycle, as established in this study, is depicted
in Figure 1. The low-temperature S-CO2 mass undergoes pressurization by the main
compressor before entering the regenerator. Within the regenerator, it undergoes heating
facilitated by the high-temperature S-CO2 from the turbine outlet. Subsequently, this
preheated S-CO2 enters the high-temperature heater, where it undergoes further heating
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through exposure to the exhaust gas from the gas turbine. This heated stream then propels
the turbine to perform work. The S-CO2 emerging from the turbine outlet has an exothermic
process upon entering the return heater, subsequently dividing into two streams. One
segment is entered into the re-compressor for pressurization and subsequently mixed with
the S-CO2 from the outlet of the cold side of the return heater, entering the heater. The
remaining portion undergoes cooling in the pre-cooler before entering the main compressor,
thereby completing the closed cycle.
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2.1. Printed Circuit Heat Exchanger

The heat exchanger, as an integral component within the closed S-CO2 Brayton cycle,
holds the highest proportion and occupies the largest volume among the thermal devices.
Within the heat exchanger, the working fluid undergoes processes of reheating, absorption,
and cooling, with key components, including the heat source heater, recuperator, and
cooler. Due to the unique physical properties of supercritical carbon dioxide, the most
prevalent heat exchanger utilized in practical applications is the PCHE. To formulate the
dynamic model of the heat exchanger, it is commonly regarded as a counterflow heat
exchanger comprising hot flow, cold flow, and metallic walls. The modeling approach
involves applying conservation equations for energy, mass, and momentum to characterize
the regions of hot and cold fluid flows. Furthermore, the energy conservation equation is
employed to model the heat exchange within the metallic walls.

The general mass conservation equation for the control volume of hot and cold fluid
flows is as follows:

V
dρ

dt
=

.
min −

.
mout (1)

The energy conservation equation for the hot flow side is as follows:

V
d(ρh)

dt
=

.
minhin −

.
mouthout −Qhw (2)

The energy conservation equation for the cold flow side is as follows:

V
d(ρh)

dt
=

.
minhin −

.
mouthout −Qwc (3)

The energy conservation equation for the metallic wall is as follows:

MwCw
dTw

dt
= Qhw −Qwc (4)

The equation usually employed to evaluate transitory convection heat is the transient
heat conduction equation. Within one dimension, the equation can be articulated as follows:

Qhw = kh Ah(th − tw) (5)
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Qwc = kc Ac(tw − tc) (6)

The variations in thermophysical properties impact the heat transfer characteristics
and flow structure of S-CO2. Parameters such as fluid density, specific heat, thermal
conductivity, and viscosity change, thereby indirectly influencing the fluid flow field and
turbulent structures. To enhance the precision in depicting the heat transfer characteristics
of the PCHE, this study developed a one-dimensional heat transfer model. The model takes
into consideration the change in temperature and pressure along the length of the pipe. The
density within each section of the heat exchanger varies with the fluid’s physical properties.
In the multi-segment model, fluid density is calculated in two ways: using the average set
and the outlet set. In this context, the outlet set is employed, implying that the density and
temperature in each heat exchanger section prevail on the outlet. The assumption is made
that the density of the working fluid in each pipe section remains constant.

Re =
ρuDh

µ
=

.
mDh
Aµ

(7)

The calculation formula for pressure drop in the heat exchanger on the hot and cold
sides of the fluid is as follows:

∆p = f
L
d

ρ
u2

2
(8)

According to the principles of fluid dynamics, this pressure drop formula can also be
applied to calculate the pressure drop in connecting pipelines. Table 1 presents equations of
heat transfer correlations and pressure drop correlations summarized by some researchers.

Table 1. PCHE design parameters.

Parameter HRHX Regenerator Cooler

A (m2) 173.01 269.12 153.78
M (kg) 2808.60 3184.02 2729.16
V (m3) 0.15 0.17 0.15

Number of modules 9 14 8

When constructing a heat exchanger, different empirical formulas are applied to
calculate Nusselt numbers (Nu) and friction factors (f ) due to variations in structural
design, as well as differences in the fluid properties and flow conditions on the hot and
cold sides. In the establishment of heater and reheater models, empirical relationships
proposed by researchers such as Ferrero [33] and Jiang [34] are employed. In the modeling
process of the preheater, heat transfer correlations, and pressure drop correlations from the
literature [25] are consulted. This methodology contributes to a thorough understanding
of the intricate thermodynamic and fluidic characteristics associated with PCHE, thereby
enhancing the accuracy of dynamic models.

The formulas for calculating the friction factor and Nusselt number for the heater and
regenerator are as follows:

Nu =
( f

8 )× (Re− 1000)× Pr

1 + 12.7×
√

f
8 × (Pr

2
3 − 1)

(9)

f = 64
Re Re < 2300

f = 0.06539e(−(
Re−3516

1248 )
2
) 2300 ≤ Re ≤ 3400

1√
f
= −2.34 · log

(
ε

1.72d −
9.26
Re · log

((
ε

29.36Dhyd

)0.95
+
(

18.35
Re

)1.108
))

Re > 3400
(10)
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As the preheater involves heat exchange between water and CO2, the dimensionless
parameter calculations are expressed by the following formula:

Nu =
f
8 (Re− 1000)Pr

(1.07 + 12.7
√

f /8(Pr
2
3 − 1))

(11)

f = [1.82lg(Re)− 1.64]−2 (12)

The Nusselt number is typically defined as the ratio of convective heat transfer to con-
ductive heat transfer, and it can be employed in heat exchangers to evaluate the convective
heat transfer performance therein. By measuring parameters such as fluid velocity, density,
viscosity, etc., the Nusselt number can be calculated; thus, the computation of convective
heat transfer coefficients can be performed.

k =
Nuλ

d
(13)

where Nu is the Nusselt number, and λ is the thermal conductivity of the fluid.

2.2. Turbomachinery

Turbomachinery refers to mechanical equipment that utilizes the principles of turbines
for energy conversion, including turbines and compressors.

2.2.1. Compressor

The modeling of turbomachinery typically encompasses two methodologies: one
based on fundamental principles, incorporating the dimensions of the turbine rotor and
blade parameters for modeling. The alternative approach relies on the simulation of
characteristic curves derived from turbine experiments. This paper predominantly adopts
the latter modeling method. The compressor is a crucial component of the GT-SCO2
system, as the properties of CO2 undergo a sudden change near the critical point, imposing
higher demands on the compressor’s performance. Therefore, utilizing specific compressor
performance curves in the modeling process can better reflect the characteristics of the
compressor. In the modeling of the compressor, the isentropic process is a commonly
employed approximation method. The isentropic process refers to the condition where the
entropy of the system remains constant during the compression process of the compressor.
Based on this benchmark, the pressure and enthalpy values at the compressor outlet can
be calculated. This paper adopts the performance curves provided in Reference [35], from
which the relationship between compressor flow rate, speed, pressure ratio, and enthalpy
difference can be derived. The efficiency of the compressor can be obtained through
table lookup. Subsequently, using the isentropic enthalpy difference and efficiency, the
actual enthalpy difference of the turbine can be calculated, allowing for the determination
of the compressor outlet temperature and pressure. Following the principle of energy
conservation, the output power of the compressor is ultimately computed. To facilitate
the establishment of a mathematical model in Simulink, the characteristic curves from the
literature are fitted to corresponding characteristic polynomials.

The equations for compressor outlet pressure, outlet enthalpy value, and output power
are as follows:

pout,com = PRcom · pin,com
hout,com = hin,com + (hout0,com − hin,com)/ηin,com

Pcom = Dcom(hout,com − hin,com)
(14)

2.2.2. Turbine

Similar to the compressor, the turbine also calculates outlet pressure and enthalpy
based on the isentropic process. The turbine characteristic curve reflects the expansion
ratio and efficiency to mass flow rate and speed. By fitting polynomial characteristic
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curves, the outlet pressure and enthalpy values of the turbine can be calculated for different
operating conditions.

pout,turb =
pin,turb
PRturb

hout,turb = hin,turb − (hout0,turb − hin,turb)ηturb
Pturb = Dturb(hin,turb − hout,turb)

(15)

Using MATLAB 2020a to fit formulas for pressure ratios in different flow rate ranges,
the efficiency of the compressor and turbine is set to specific values during the simulation
process, as shown in Table 2.

Table 2. Polynomial fitting of characteristic curves and efficiency for turbomachinery.

Component Compression/Expansion Ratio [6,35] Isentropic Efficiency [6]

Turbine
PR =


−7.407e−7 · .

m3
+ 4.921e−5 · .

m2
+ 0.02501 · .

m + 2.507 90 <
.

m < 120
0.005349 · .

m3 − 1.262 · .
m2

+ 99.31 · .
m− 2601 75 ≤ .

m ≤ 90
2.9

.
m < 75

0.9

Main compressor PR = −1.5964e−4 · .
m2

+ 0.01158
.

m + 2.995 45 ≤ .
m ≤ 65 0.89

Re-compressor PR = −3.01−4 .
m + 0.0107

.
m + 3.0768 25 ≤ .

m ≤ 35 0.88

3. Model Simulation and Validation
3.1. Steady-State Numerical Validation

The geometric parameters and operating conditions are set to match those in the
reference literature for steady-state validation in the Table 3. The steady-state simulation
results are compared with the data from the literature for a comparative analysis [6,33,36].
The outlet temperatures on both the hot and cold sides of the heat exchanger serve as
benchmarks to achieve an error margin of less than 3%. The steady-state calculation errors
fall within the acceptable range.

Table 3. Comparison of the PCHE simulation values at steady state with the literature value.

Data Source Reference [36] Reference [33] Literature [6]

Hot-side outlet temperature/K 305.14 388.15 349.15

Relative difference 1.36% 0.76% 0.56%

Cool-side outlet temperature/K 305.87 464.83 633.15

Relative difference 2.01% 1.15% 0.93%

Connect the established component models, as shown in Figure 1. After stabilizing
the operation under the specified operating conditions, obtain the parameters at each point,
specific parameters are shown in Table 4.

Table 4. Results of steady-state simulation of the GT-SCO2 system.

State m (kg/s) Pressure (KPa) T (K)

1 80.40 24,975.33 632.72
2 80.40 8082.63 516.62
3 80.40 7982.91 358.28
4 53.98 7982.91 358.28
5 26.42 7982.91 358.28
6 53.98 7936.48 305.84
7 53.98 25,111.03 340.95
8 53.98 25,095.39 494.88
9 26.42 25,046.36 458.61
10 80.40 25,046.36 482.96
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3.2. Dynamic Response Experiment

The exhaust temperature of a gas turbine is subject to the influence of multiple factors.
The elevated temperatures resulting from combustion play a direct role in determining the
exhaust temperature. Simultaneously, the exhaust temperature is intricately linked to the
intake airflow; higher rates of airflow can lead to increased exhaust temperatures. Other
significant contributors to exhaust temperature variations encompass fuel composition and
ambient environmental conditions. Moreover, the load level of the gas turbine directly
dictates the exhaust flow rate, with elevated loads generally corresponding to larger exhaust
flow rates. Consequently, fluctuations in both exhaust temperature and mass flow rate
are inherent in the waste heat recovery process of gas turbine systems. Figures 2 and 3
illustrate the dynamic response of the GT-SCO2 waste heat recovery system to alterations
in exhaust temperature.
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Figure 3. Open-loop responses of turbomachinery pressure/power and the net power output (step
of exhaust gas temperature).

The dynamic response simulation results indicate that, when the exhaust temperature
of the gas turbine suddenly increases by 10 K, the turbine inlet temperature (TIT) rises
from 636.7 K to 645.6 K within 143 s and then stabilizes. Simultaneously, the main compres-
sor inlet temperature (MIT) increases by 0.03 K, and the re-compressor inlet temperature
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increases by 1.41 K. The MIT remains relatively constant, primarily due to the cooling
medium in the pre-cooler being water. The turbine outlet pressure, re-compressor outlet
pressure, and main compressor outlet pressure decrease with the rise in exhaust tempera-
ture. The turbine outlet pressure exhibits a relatively small change, with a variation not
exceeding 0.1%. The main compressor and re-compressor outlet pressures decrease by
9 KPa and 11 KPa, respectively. Output power is a critical parameter for the system, and
the results illustrate that even slight changes in exhaust temperature significantly impact
the system’s output power. The turbine output power experiences a notable increase, while
the main compressor exhibits a comparatively smaller increase. This leads to an overall
enhancement in system output power, escalating from 5.42 KW to 5.58 KW.

As shown in Figures 4 and 5, when the exhaust mass flow rate undergoes a step
decrease from 100 kg/s to 80 kg/s, the TIT, main compressor inlet temperature, and re-
compressor inlet temperature all experience a decrease. The turbine inlet temperature
decreases by 21.4 K within 164 s before reaching a new steady-state value. The main
compressor inlet temperature remains essentially unchanged, while the re-compressor inlet
temperature decreases by 2.8 K before stabilizing.
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4. Control Strategy and Controller Design for the System
4.1. Control Strategy

This paper summarizes some control strategies related to S-CO2. Anton Moisseytsev [36,37]
proposed turbine bypass, working fluid mass flow, compressor inlet throttling, and pre-
cooler bypass control in previous experiments. A comparison was made between single
control methods and multi-mode combination controls to assess their impact on various
components’ parameters within the cycle system.

Through investigation, it can be observed that control methods can be broadly catego-
rized into four types: bypass control, throttling control, working fluid mass flow control,
and turbine mechanical speed control. Bypass control includes turbine bypass, pre-cooler
bypass, and recuperator bypass. There are two types of turbine bypass: one involving only
the bypass of the turbine and the other involving the bypass of both the turbine and the
high-temperature heaters. Both bypass control methods effectively regulate the turbine’s
output power, but their impact on other cycle parameters differs. A pre-cooler bypass can
regulate the condensation amount, thereby adjusting the temperature and pressure at the
compressor inlet. Throttling control can regulate the mass flow rates of the compressors
and turbine, thus controlling the split ratio. In this study, an exhaust gas bypass valve is
employed to control the turbine inlet temperature, ensuring a return to a safe temperature
after the system output power reaches the set value. Additionally, a turbine/HAHX bypass
valve control strategy is utilized to stabilize the system output power at a specific value or
enable variable power operation. Furthermore, a cooling water throttle valve is employed
to control the mass flow rate of water, thereby maintaining the CO2 temperature within the
cycle consistently above the critical point.

4.2. Controller Design
4.2.1. The Design of PI Controller

The PI (Proportional–Integral) controllers operate based on feedback from the output
variable of the controlled system. It is a control method that, upon detecting a deviation
between the measured output and the desired output, applies corrective signals to the error
signal. This aims to maintain the controlled variable approach to the desired setpoint.

u(t) = Kpe(t) + Ki

∫ t

0
e(t)dτ (16)

The three gains, Kp, and Ki, represent the tuning parameters of the controller. The
system model is identified as a transfer function using the MATLAB Identification Toolbox.
The PID’s three parameter values are determined through parameter tuning, and in this
study, the tuning method employed is the SIMC method. The tuning formula is as follows:

transfer function form : G(s) = K
(τ1s+1)e−(θs)

Kc =
τ1

K(τc+θ)
= 1

K′
1

τc+θ ,

Ti = min{τ1, 4(τc + θ)} Ki =
Kp
Ti

(17)

where τc is the desired closed-loop time constant and the sole tuning parameter for
the controller.

4.2.2. The Design of the ADRC Controller

In traditional ADRC, each part adopts a nonlinear form, and there are various selec-
tion methods for these forms. They can be flexibly applied based on practical situations.
However, due to the complexity of the nonlinear ADRC structure and the need for tuning
numerous parameters, Gao [38,39] proposed Linear ADRC (LADRC) to address these
issues. The controller structure is illustrated in Figure 6.
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The Extended State Observer (ESO) provides an estimate of the system state by
observing the state variables and external disturbances. The objective of the observer is to
accurately estimate the current state of the system, including the controlled variable and its
derivatives. Moreover, b represents the critical gain, Z is the disturbance estimate output of
the observer, and y denotes the controlled variable of the system.

5. Simulations and Results

In this section, simulations are conducted to control the system, using both PI and
ADRC controllers. The following figures depict the dynamic responses of the system’s
output power and bypass valve under different task objectives. For HRHX bypass controller,
the parameters of SIMC-PI are Kp = −0.0156 and Ki = −6.62 × 10−4, and the parameters of
the ADRC are Kp = 1, b0 = −50, β1 = 8, and β2 = 16. For the Gas-TIT loop, the parameters
of SIMC-PI are Kp = −0.04 and Ki = −0.035, and the parameters of the ADRC are Kp = 1,
b0 = −6, β1 = 1, and β2 = 0.25. For the water-MIT loop, the parameters of SMIC-PI are
Kp = −9 and Ki = −1.15, and the parameters of the ADRC are Kp = 6, b0 = −1, β1 = 2.4,
and β2 = 1.5.

5.1. Case 1

In the application of waste heat recovery in gas turbine systems, achieving variable
load operation is often necessary. To further investigate the performance of power output
variation in the system, experiments are conducted with the gas turbine exhaust tempera-
ture and mass flow rate maintained at stable levels. PI controllers and ADRC controllers are
separately employed to regulate the bypass valve on the heat source turbine side and the
throttling valve on the cooling water side. A comparative analysis is performed to assess
the control effectiveness of the two controllers on the system’s output power. Additionally,
the results are compared with the steady-state response time of adjusting only the opening
of the heat source/turbine bypass valve. The objective is to observe which control design
could more expeditiously stabilize the system’s output power at the setpoint under varying
load conditions.

The simulation results in Figure 7 indicate that both the PI controller and the ADRC
controller are capable of accomplishing the task of variable power in the system, reducing
the set output power from 5000 KW to 4500 KW. However, the performance characteristics
of the two controllers differ. Under the control of the PI controller, the system output power
undergoes a transition from the initial steady state to the new steady state in 103 s, while
with ADRC, it takes only 46 s, reducing the steady-state response time by 55%. The control
rates of cooling water flow are essentially consistent, primarily due to the narrow range of
water flow variations. As can be seen from Figures 8 and 9, the opening of the bypass valve
for the HAHX/turbine increases from 0.068 to 0.134, and the cooling water mass flow rate
finally stabilized at 96.9 kg/s.
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5.2. Case 2

The simulation conditions were configured for a constant exhaust gas temperature and
varying mass flow rate. The heat source/turbine bypass valve and cooling water flow were
sequentially adjusted using the PI and ADRC controllers to maintain the system output at
the target point.
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The conclusion drawn from Figure 10 indicates that, with a constant heat source
temperature and fluctuating mass flow rate, both the PI and ADRC control can maintain
the system output power at the target point. Under PI control, the system output power
reverts to stability approximately 171 s after the onset of fluctuations, whereas, with ADRC
control, this stabilization is achieved in 98.2 s, reducing the steady-state time by 42.6%. As
depicted in Figure 11, the lowest point of the S-CO2 cycle system remains essentially stable
at 305 K, demonstrating the ability to sustain temperatures above the critical point.
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To attain stable power output operation under grid-connected conditions, the system
output power remains steady for the majority of the operational time. In simulation
conditions with a consistent exhaust gas mass flow rate and fluctuating temperature, both
PI and ADRC controllers were utilized, respectively. They were responsible for regulating
the heat source/turbine bypass valve and cooling water flow rate, thereby ensuring that
the system output power stays aligned with the predefined setpoint.
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The simulation results indicate that, in the presence of fluctuations in the exhaust
temperature of the gas turbine, both the PI and ADRC controllers can maintain the system
output power at a stable level of 5 MW (Figure 12). The variation in cooling water mass flow
rate is relatively small, essentially staying around 97 kg/s. When temperature fluctuations
occur, the system output power stabilizes with PI after 118.9 s, whereas ADRC achieves
this in 70.6 s, demonstrating a 40.6% reduction in steady-state response time. This suggests
that the performance of the ADRC controller in stabilizing system output power is superior
to that of the PI controller. In terms of MIT control, the performance of both PI and ADRC
controllers is essentially consistent. As depicted in Figure 13, the trends in the variation in
cooling water mass flow rates are approximately identical, with control errors remaining
within a margin of 0.5%.
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5.3. Case 3

Critical components of a turbine, such as blades and bearings, are highly susceptible to
elevated temperatures. Exceeding the designated safety range for inlet temperatures may
compromise the equipment’s lifespan. Maintaining the turbine inlet temperature within
the established safety parameters serves to safeguard crucial components, enhancing
equipment reliability. Additionally, the performance of turbines is intricately linked to
operating temperatures. Operating within the designated temperature range ensures
optimal utilization of the equipment’s design capabilities, consequently improving energy
conversion efficiency. Elevated inlet temperatures may lead to a decline in thermal efficiency,
reducing overall energy conversion efficiency and, as a result, impacting the overall system
performance. Therefore, ensuring the stability of the turbine inlet temperature within a safe
range is a critical consideration for the cyclic system, under the precondition of maintaining
system output power. Utilizing both PI controllers and ADRC controllers respectively, the
regulation of exhaust flow entering the cyclic system is implemented. The stabilization of
system output power is accomplished through precise control of the mass flow rates of the
working fluid and cooling water. This strategy ensures the maintenance of the turbine inlet
temperature within the specified safe range.

The simulation results in Figures 14–16 reveal that, in the presence of exhaust temper-
ature fluctuations, the utilization of three controllers for system control ensures the stability
of system output power. It also maintains the turbine inlet temperature within a safe range,
while keeping the CO2 temperature above the critical point. From Figure 14, it can be
observed that ADRC, in stabilizing the system output power, achieves a 34.4% reduction in
steady-state response time compared to PI. Additionally, the variation trend is more stable,
which holds significant implications for the normal operation of power systems and the
reliability of electrical energy supply.
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6. Conclusions

This paper, based on the S-CO2 recompression Brayton cycle, establishes mathematical
models for components such as printed circuit heat exchangers, turbines, and compressors.
A mathematical model for the S-CO2 cycle system is developed, and an analysis and
validation of the steady-state and transient characteristics of the system are conducted. At
both the component and system levels, different operating conditions were set to ensure
that the steady-state output values matched the numerical values published in the previous
literature. On this basis, dynamic models were validated, and dynamic response curves
were obtained under fluctuating flue gas temperature and flow conditions. To maintain the
system’s power output at 5 MW and ensure that the turbine inlet temperature is within
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a safe range, PI controllers and ADRC controllers were coupled with the S-CO2 cycle
system, respectively.

Employing precise control measures, the cooling water flow was regulated to prevent
the compressor inlet temperature from dropping below the critical threshold. Simultane-
ously, the flow of the S-CO2 cycle’s working fluid was adjusted to uphold the system output
power at a predetermined target value. Additionally, the flow of the gas turbine exhaust
into the heater was tuned to guarantee the safe inlet temperature of the turbine. The SIMC
method was employed for parameter tuning of the PI controller, while the bandwidth
method was utilized for parameter design of the ADRC controller. A comparative analysis
of the control performance of these two controllers on the system was conducted. The
simulation results indicate that both controllers effectively regulate the dynamic operation
of the power system. Specifically, the ADRC exhibits a superior performance in controlling
the system’s power generation and turbine inlet temperature. In both scenarios of system
load variation and stabilizing system output power, the performance of ADRC surpasses
that of the PI control.

The study developed a dynamic model for a MW-scale supercritical carbon dioxide
recompression Brayton cycle, referencing actual system component parameters, thereby
enhancing the comprehension of the supercritical carbon dioxide recompression Brayton
cycle. The innovation lies in proposing a control method for the S-CO2 system output
parameters using an ADRC controller. The study analyzed the impact of coupling the
turbine heat source bypass valve, flue gas throttle valve, and cooling water throttle valve
on various output parameters of the system. This analysis provides simulation support
and control strategy guidance for the simulation and analysis of waste heat recovery in the
gas turbine–S-CO2 recompression Brayton cycle. The future work encompasses two main
aspects. Firstly, employing Epsilon software13.2 to construct thermodynamic system mod-
els for various cycle configurations. This involves calculating the firing efficiency and
operational costs of different cycle layouts, comparing the advantages and disadvantages
of each, and selecting an appropriate design based on specific circumstances. The sec-
ond aspect involves establishing a dynamic model for the gas turbine, coupling it with the
model developed in this paper, and further investigating the dynamic characteristics of the
GT-SCO2 co-generation system.
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Nomenclature

Abbreviations
GT gas turbine
HRHX Heat Recovery Reat Exchanger
MC main compressor
RC re-compressor
G generator
PCHE printed circuit heat exchanger
S-CO2 supercritical carbon dioxide
ORC organic Rankine cycle
BCV bypass valve controller
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FCV flow control valves
WHR waste heat recovery
PI Proportional–Integral
ADRC Active Disturbance Rejection Control
ESO Extended State Observer
Symbols
A heat transfer area, m2

Dh hydraulic diameter, m
.

m mass flow rate, kg/s
Nu Nusselt number
Pr Prandtl number
f Darcy’s resistance
µ Kinematic viscosity, cm2/s
Re Reynolds number
PR Pressure ratio
η efficiency
k convective heat transfer coefficient, W/(m2, K)
Subscripts
com compressor
turb turbine
in inlet
out outlet
h hot-side fluid
c cold-side fluid
w wall
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