A New Generation of Hydrogen-Fueled Hybrid Propulsion Systems for the Urban Mobility of the Future
Abstract
:1. Introduction
2. H2-ICE Project Overview
Case Study
3. Combustion and Fuel Injection System
3.1. Injection
3.2. Mixture Formation
3.3. Full Engine Model with Combustion
- premixed cases, meant to reproduce the behavior of a PFI engine assuming that hydrogen and air are perfectly mixed (limiting case);
- DI cases with side-mounted injector and central spark, at various Start of Injection (SoI) times.
4. Waste Heat Recovery Technologies and Aftertreatment System
4.1. WHR Technologies
4.1.1. ORC-Based Unit
4.1.2. Turbocompound
4.1.3. Engine Side Effects
4.2. SCR System
5. Engine and Hybrid Powertrain Management
5.1. Engine Model Description
- The intake conditions, in terms of air mass and EGR percentage, are estimated from the intake block;
- RPM, Spark Advance (SA), mass of fuel, and the intake conditions are the input parameters for the Crank Angle of 50% Heat Release (CA50) ANN;
- CA50, intake conditions, mass of fuel, RPM, and VGT position are the input for the IMEP ANN.
Control Strategy Description
5.2. Hybrid Powertrain Management
5.2.1. Rule-Based Strategy
5.2.2. Equivalent Consumption Minimization Strategy
6. Conclusions and Future Steps
- further developing the engine combustion system, also exploiting the outcomes of the upcoming experimental campaign on the mentioned single-cylinder optical-access engine, to further decrease the hydrogen consumption,
- assessing the capability of the two WHR systems tested for different operating conditions and considering the possibility of introducing two sections of WHR, combining direct and indirect ways to increase the recovery,
- giving additional insights on the behavior of the H2-SCR reactor with the experimental testing of small-scale prototypes in a wide range of operating conditions,
- optimizing the Energy Management System (EMS) to reach the desired target in terms of fuel consumption, together with the H2-ICE optimization, over the different mission profiles.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Networks |
BEV | Battery Electric Vehicle |
BMEP | Break Mean Effective Pressure |
BSFC | Brake Specific Fuel Consumption |
CA50 | Crank Angle of 50% Heat Release |
CFD | Computational Fluid Dynamics |
DI | Direct Injection |
DP | Dynamic Programming |
EGR | Exhaust Gas Recirculation |
EM | Electric Motor |
EMS | Energy Management System |
EU | European Union |
FCEV | Fuel Cell Electric Vehicle |
GHG | Greenhouse Gas |
HDV | Heavy-Duty Vehicle |
ICE | Internal Combustion Engine |
ICE-EG | Internal Combustion Engine—Range Extender |
IMEP | Indicated Mean Effective Pressure |
IVO | Intake Valve Opening |
LDV | Light-Duty Vehicle |
LES | Large Eddy Simulation |
LFP | Lithium-Ferro-Phosphate |
MAPO | Maximum Amplitude of Pressure Oscillations |
MIL | Model-in-the-Loop |
NMC | Nickel Manganese Cobalt Oxide |
NPR | Nozzle Pressure Ratio |
ORC | Organic Rankine Cycle |
Pcyl, max | Maximum In-Cylinder Pressure |
PFI | Port Fuel Injection |
PM | Permanent Magnet |
PMP | Pontryagin Minimum Principle |
RANS | Reynolds-Averaged Navier–Stokes |
RB | Rule Based |
RMSE | Root Mean Square Error |
RPM | Revolutions Per Minute |
SA | Spark Advance |
SCR | Selective Catalytic Reduction |
SoC | State of Charge |
SoI | Start of Injection |
SOpHy | Sandia’s Optical Hydrogen Engine |
Tcyl, max | Maximum In-Cylinder Temperature |
THR | Throttle Valve |
V2X | Vehicle To Everything |
VGT | Variable Geometry Turbocharger |
WF | Working Fluid |
WHR | Waste Heat Recovery |
References
- UNECE. European Green Deal: Commission Proposes Transformation of EU Economy and Society to Meet Climate Ambitions. 2021. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_21_3541 (accessed on 31 July 2023).
- IEA. Largest End Uses of Energy by Sector in Selected IEA Countries. Available online: https://www.iea.org/data-and-statistics/charts/largest-end-uses-of-energy-by-sector-in-selected-iea-countries-2019 (accessed on 31 July 2023).
- EEA. Greenhouse Gas Emissions from Transport in Europe. 2023. Available online: https://www.eea.europa.eu/ims/greenhouse-gas-emissions-from-transport (accessed on 31 July 2023).
- ACEA. Fact Sheet: CO2 Standards for Heavy-Duty Vehicles. 2023. Available online: https://www.acea.auto/fact/fact-sheet-co2-standards-for-heavy-duty-vehicles/ (accessed on 31 July 2023).
- European Commission. Proposal for a Regulation of the European Parliament and of the Council Amending Regulation (EU) 2019/1242 as Regards Strengthening the CO2 Emission Performance Standards for New Heavyduty Vehicles and Integrating Reporting Obligations, and Repealing Regulation (EU) 2018/956; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- Zhang, C.; Zhao, X.; Sacchi, R.; You, F. Trade-off between critical metal requirement and transportation decarbonization in automotive electrification. Nat. Commun. 2023, 14, 1616. [Google Scholar] [CrossRef] [PubMed]
- Mareev, I.; Becker, J.; Sauer, D.U. Battery dimensioning and life cycle costs analysis for a heavy-duty truck considering the requirements of long-haul transportation. Energies 2018, 11, 55. [Google Scholar] [CrossRef]
- Çabukoglu, E.; Georges, G.; Küng, L.; Pareschi, G.; Boulouchos, K. Battery electric propulsion: An option for heavy-duty vehicles? Results from a Swiss case-study. Transp. Res. Part C Emerg. Technol. 2018, 88, 107–123. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Prospects for hydrogen as a transport fuel. Int. J. Hydrogen Energy 2019, 44, 16029–16037. [Google Scholar] [CrossRef]
- Sharma, S.; Ghoshal, S.K. Hydrogen the future transportation fuel: From production to applications. Renew. Sustain. Energy Rev. 2015, 43, 1151–1158. [Google Scholar] [CrossRef]
- Kim, H.; Hartmann, N.; Zeller, M.; Luise, R.; Soylu, T. Comparative tco analysis of battery electric and hydrogen fuel cell buses for public transport system in small to midsize cities. Energies 2021, 14, 4384. [Google Scholar] [CrossRef]
- Vodovozov, V.; Raud, Z.; Petlenkov, E. Review of Energy Challenges and Horizons of Hydrogen City Buses. Energies 2022, 15, 6945. [Google Scholar] [CrossRef]
- Heid, B.; Martens, C.; Orthofer, A. How Hydrogen Combustion Engines Can Contribute to Zero Emissions; McKinsey & Company: Chicago, IL, USA, 2021. [Google Scholar]
- Verhelst, S. Recent progress in the use of hydrogen as a fuel for internal combustion engines. Int. J. Hydrogen Energy 2014, 39, 1071–1085. [Google Scholar] [CrossRef]
- Verhelst, S.; Wallner, T. Hydrogen-fueled internal combustion engines. Prog. Energy Combust. Sci. 2009, 35, 490–527. [Google Scholar] [CrossRef]
- HyFLEET:CUTE, Hydrogen Transport, Bus Technology & Fuel for Today and for a Sustainable Future. 2023. Available online: https://cordis.europa.eu/project/id/19991 (accessed on 31 July 2023).
- SunLine Transit Agency Hydrogen-Powered Transit Buses: Third Evaluation Report. Available online: https://www.nrel.gov/docs/fy08osti/43741-1.pdf (accessed on 31 July 2023).
- Matthias, N.S.; Wallner, T.; Scarcelli, R. A Hydrogen Direct Injection Engine Concept that Exceeds U.S. DOE Light-Duty Efficiency Targets. SAE Int. J. Engines 2012, 5, 838–849. [Google Scholar] [CrossRef]
- Golisano, R.; Scalabrini, S.; Arpaia, A.; Pesce, F.; Vassallo, A.; Borgia, F.; Cubito, C.; Biasin, V.; Knichel, T.; Millo, F.; et al. Hydrogen Internal Combustion Engine & KERS: An Appealing Value-Proposition for Green Power Pack. In Proceedings of the 42nd International Vienna Motor Symposium, Online, 29–30 April 2021. [Google Scholar]
- Koch, T.D.; Sousa, A.; Bertram, D. H2-Engine Operation with EGR Achieving High Power and High Efficiency Emission-Free Combustion; SAE Technical Papers 2019-01-2178; SAE: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Millo, F.; Rolando, L.; Fuso, R.; Zhao, J. Development of a new hybrid bus for urban public transportation. Appl. Energy 2015, 157, 583–594. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Z.; Huang, Y.; Liu, D.; Duan, J.; Guo, S.; Qin, Z. The effect of hydrogen injection parameters on the quality of hydrogen–air mixture formation for a PFI hydrogen internal combustion engine. Int. J. Hydrogen Energy 2017, 42, 23832–23845. [Google Scholar] [CrossRef]
- Li, Y.; Gao, W.; Zhang, P.; Ye, Y.; Wei, Z. Effects study of injection strategies on hydrogen-air formation and performance of hydrogen direct injection internal combustion engine. Int. J. Hydrogen Energy 2019, 44, 26000–26011. [Google Scholar] [CrossRef]
- Dhyani, V.; Subramanian, K.A. Fundamental characterization of backfire in a hydrogen fuelled spark ignition engine using CFD and experiments. Int. J. Hydrogen Energy 2019, 44, 32254–32270. [Google Scholar] [CrossRef]
- Keck, M.; Bessey, D.; Buehler, F.; Manuel, D.; Faiß, E. Hydrogen Storage Technologies. In International MTZ Conference on Heavy-Duty Engines; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2022; pp. 123–130. [Google Scholar]
- Ringler, J.; Gerbig, F.; Eichlseder, H.; Wallner, T. Insights into the development of a hydrogen combustion process with internal mixture formation. In Proceedings of the Sixth International Symposium on Internal Combustion Engine Diagnostics, Baden Baden, Germany, 15–16 June 2004; pp. 290–304. [Google Scholar]
- Scarcelli, R.; Kastengren, A.L.; Powell, C.F.; Wallner, T.; Matthias, N.S. High-pressure gaseous injection: A comprehensive analysis of gas dynamics and mixing effects. In Proceedings of the ASME 2012 Internal Combustion Engine Division Fall Technical Conference, ICEF 2012, Vancouver, BC, Canada, 23–26 September 2012; pp. 793–801. [Google Scholar] [CrossRef]
- Scarcelli, R.; Wallner, T.; Matthias, N.; Salazar, V.; Kaiser, S. Mixture Formation in Direct Injection Hydrogen Engines: CFD and Optical Analysis of Single-and Multi-Hole Nozzles. SAE Int. J. Engines 2011, 4, 2361–2375. [Google Scholar] [CrossRef]
- Di Battista, D.; Di Bartolomeo, M.; Villante, C.; Cipollone, R. On the limiting factors of the waste heat recovery via ORC-based power units for on-the-road transportation sector. Energy Convers. Manag. 2018, 155, 68–77. [Google Scholar] [CrossRef]
- Väliheikki, A.; Petallidou, K.C.; Kalamaras, C.M.; Kolli, T.; Huuhtanen, M.; Maunula, T.; Keiski, R.L.; Efstathiou, A.M. Selective catalytic reduction of NOx by hydrogen (H2-SCR) on WOx-promoted CezZr1−zO2 solids. Appl. Catal. B 2014, 156–157, 72–83. [Google Scholar] [CrossRef]
- Hegde, B.; Ahmed, Q.; Rizzoni, G. Velocity and energy trajectory prediction of electrified powertrain for look ahead control. Appl. Energy 2020, 279, 115903. [Google Scholar] [CrossRef]
- Kivekäs, K.; Lajunen, A.; Vepsäläinen, J.; Tammi, K. City bus powertrain comparison: Driving cycle variation and passenger load sensitivity analysis. Energies 2018, 11, 1755. [Google Scholar] [CrossRef]
- Transport for London: London Exhaust Emissions Study: A summary of the Drive Cycle Development, Test Programme and Comparison of Test Data Compared with Type Approval Data. Available online: https://content.tfl.gov.uk/london-exhaust-emissions-study-drive-cycle-development.pdf (accessed on 31 July 2023).
- Vassallo, A.; Pesce, F.; Arpaia, A.; Millo, F.; Rolando, L.; Piano, A.; Bianco, A. Ultra-lean Combustion System Optimization for H2-fuelled ICEs via Synergistic Application of 1D- and 3D-CFD. In Proceedings of the SIA International Conference and Exhibition on Powertrain & Power Electronics, Paris, France, 9–10 June 2021; pp. 1–9. [Google Scholar]
- ZeEUS eBus Report #2 An Updated Overview of Electric Buses in Europe. Available online: https://zeeus.eu/uploads/publications/documents/zeeus-ebus-report-2.pdf (accessed on 31 July 2023).
- EL-Refaie, A.M. Electrical Machines for Traction and Propulsion Applications. In Transportation Electrification: Breakthroughs in Electrified Vehicles, Aircraft, Rolling Stock, and Watercraft; John Wiley & Sons: Hoboken, NJ, USA, 2023; pp. 1–26. [Google Scholar]
- Shaobo, X.; Qiankun, Z.; Xiaosong, H.; Yonggang, L.; Xianke, L. Battery sizing for plug-in hybrid electric buses considering variable route lengths. Energy 2021, 226, 120368. [Google Scholar] [CrossRef]
- Carlsson, L.O.; Larsson, D.; Sauer, A.; Speckens, F.W. High-performance Battery for Premium Class Hybrid Vehicles. MTZ Worldw. 2021, 82, 28–35. [Google Scholar] [CrossRef]
- Ellingsen, L.A.W.; Thorne, R.J.; Wind, J.; Figenbaum, E.; Romare, M.; Nordelöf, A. Life cycle assessment of battery electric buses. Transp. Res. D Transp. Environ. 2022, 112, 103498. [Google Scholar] [CrossRef]
- A123 Systems Nanophosphate® High Power Lithium-Ion Cell. Available online: https://www.batteryspace.com/prod-specs/6610.pdf (accessed on 31 July 2023).
- Rahantamialisoa, F.N.Z.; Zembi, J.; Miliozzi, A.; Sahranavardfard, N.; Battistoni, M. CFD simulations of under-expanded hydrogen jets under high-pressure injection conditions. J. Phys. Conf. Ser. 2022, 2385, 012051. [Google Scholar] [CrossRef]
- Duronio, F.; Ranieri, S.; Di Mascio, A.; Vita, A. De Simulation of high pressure, direct injection processes of gaseous fuels by a density-based OpenFOAM solver. Phys. Fluids 2021, 33, 066104. [Google Scholar] [CrossRef]
- Rahantamialisoa, F.; Battistoni, M.; Miliozzi, A.; Sahranavardfard, N.; Zembi, J. Investigations on Hydrogen Injections Using a Real-Fluid Approach; SAE Technical Papers 2023-01-0312; SAE: Warrendale, PA, USA, 2023. [Google Scholar] [CrossRef]
- Panda, J.; Seasholtz, R.G. Measurement of shock structure and shock-vortex interaction in underexpanded jets using Rayleigh scattering. Phys. Fluids 1999, 11, 3761–3777. [Google Scholar] [CrossRef]
- Hamzehloo, A.; Aleiferis, P.G. LES and RANS modelling of under-expanded jets with application to gaseous fuel direct injection for advanced propulsion systems. Int. J. Heat Fluid Flow 2019, 76, 309–334. [Google Scholar] [CrossRef]
- Engine Combustion Network (ECN). Available online: https://ecn.sandia.gov/ (accessed on 31 July 2023).
- Zembi, J.; Cruccolini, V.; Mariani, F.; Scarcelli, R.; Battistoni, M. Modeling of thermal and kinetic processes in non-equilibrium plasma ignition applied to a lean combustion engine. Appl. Therm. Eng. 2021, 197, 117377. [Google Scholar] [CrossRef]
- Zembi, J.; Battistoni, M.; Mariani, F.; Irimescu, A.; Vaglieco, B.M.; Merola, S.S. Investigations on the impact of port water injection on soot formation in a DISI engine through CFD simulations and optical methods. Fuel 2023, 337, 127170. [Google Scholar] [CrossRef]
- Salazar, V.; Kaiser, S. Interaction of Intake-Induced Flow and Injection Jet in a Direct-Injection Hydrogen-Fueled Engine Measured by PIV; SAE 2011 World Congress and Exhibition; Technical Paper 2011-01-0673; SAE: Warrendale, PA, USA, 2011. [Google Scholar] [CrossRef]
- Ó Conaire, M.; Curran, H.J.; Simmie, J.M.; Pitz, W.J.; Westbrook, C.K. A comprehensive modeling study of hydrogen oxidation. Int. J. Chem. Kinet. 2004, 36, 603–622. [Google Scholar] [CrossRef]
- Zembi, J.; Battistoni, M.; Mariani, F.; Irimescu, A.; Merola, S.S. Pressure and Flow Field Effects on Arc Channel Characteristics for a J-Type Spark Plug; SAE Technical Papers 2022-01-0436; SAE: Warrendale, PA, USA, 2022. [Google Scholar] [CrossRef]
- Di Battista, D.; Di Bartolomeo, M.; Cipollone, R. Flow and thermal management of engine intake air for fuel and emissions saving. Energy Convers. Manag. 2018, 173, 46–55. [Google Scholar] [CrossRef]
- Dickes, R.; Dumont, O.; Legros, A.; Quoilin, S.; Lemort, V. Analysis and comparison of different modeling approaches for the simulation of a micro-scale organic Rankine cycle power plant. In Proceedings of the ASME-ORC 2015, Brussels, Belgium, 12–14 October 2015. [Google Scholar]
- Legros, A.; Guillaume, L.; Diny, M.; Lemort, V. Modelling, sizing and testing a scroll expander for a waste heat recovery application on a gasoline engine. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2015; Volume 90. [Google Scholar] [CrossRef]
- Fatigati, F.; Vittorini, D.; Coletta, A.; Cipollone, R. Assessment of the differential impact of scroll and sliding vane rotary expander permeability on the energy performance of a small-scale solar-ORC unit. Energy Convers. Manag. 2022, 269, 116169. [Google Scholar] [CrossRef]
- Marchionni, M.; Fatigati, F.; Di Bartolomeo, M.; Di Battista, D.; Petrollese, M. Experimental and Numerical Dynamic Investigation of an ORC System for Waste Heat Recovery Applications in Transportation Sector. Energies 2022, 15, 9339. [Google Scholar] [CrossRef]
- Di Battista, D.; Cipollone, R. Waste Energy Recovery and Valorization in Internal Combustion Engines for Transportation. Energies 2023, 16, 3503. [Google Scholar] [CrossRef]
- Di Battista, D.; Carapellucci, R.; Cipollone, R. Integrated evaluation of Inverted Brayton cycle recovery unit bottomed to a turbocharged diesel engine. Appl. Therm. Eng. 2020, 175, 115353. [Google Scholar] [CrossRef]
- Shi, M.; Wang, H.; Yang, C.; Wang, Y.; Niu, X. Experimental Research on the Matching Characteristics of the Compound VGT-STC System with a V-Type Diesel Engine. Machines 2022, 10, 788. [Google Scholar] [CrossRef]
- Di Battista, D.; Di Bartolomeo, M.; Cipollone, R. Full energy recovery from exhaust gases in a turbocharged diesel engine. Energy Convers. Manag. 2022, 271, 116280. [Google Scholar] [CrossRef]
- Di Bartolomeo, M.; Di Battista, D.; Fatigati, F.; Cau, G.; Cipollone, R. Direct and Indirect Exhaust Heat Recovery from Turbocharged Heavy-Duty Engine; SAE Technical Paper 2023-24-0122; SAE: Warrendale, PA, USA, 2023. [Google Scholar] [CrossRef]
- Savva, Z.; Petallidou, K.C.; Damaskinos, C.M.; Olympiou, G.G.; Stathopoulos, V.N.; Efstathiou, A.M. H2-SCR of NOx on low-SSA CeO2-supported Pd: The effect of Pd particle size. Appl. Catal. A Gen. 2021, 615, 118062. [Google Scholar] [CrossRef]
- Nanba, T.; Kohno, C.; Masukawa, S.; Uchisawa, J.; Nakayama, N.; Obuchi, A. Improvements in the N2 selectivity of Pt catalysts in the NO-H2-O2 reaction at low temperatures. Appl. Catal. B 2003, 46, 353–364. [Google Scholar] [CrossRef]
- Granger, P.; Dhainaut, F.; Pietrzik, S.; Malfoy, P.; Mamede, A.S.; Leclercq, L.; Leclercq, G. An overview: Comparative kinetic behaviour of Pt, Rh and Pd in the NO + CO and NO + H2 reactions. Top. Catal. 2006, 39, 65–76. [Google Scholar] [CrossRef]
- Zheng, L.; Casapu, M.; Stehle, M.; Deutschmann, O.; Grunwaldt, J.D. Selective Catalytic Reduction of NOx with Ammonia and Hydrocarbon Oxidation Over V2O5–MoO3/TiO2 and V2O5–WO3/TiO2 SCR Catalysts. Top. Catal. 2019, 62, 129–139. [Google Scholar] [CrossRef]
- Lang, W.; Laing, P.; Cheng, Y.; Hubbard, C.; Harold, M.P. Co-oxidation of CO and propylene on Pd/CeO2-ZrO2 and Pd/Al2O3 monolith catalysts: A light-off, kinetics, and mechanistic study. Appl. Catal. B 2017, 218, 430–442. [Google Scholar] [CrossRef]
- Sheng, L.; Ma, Z.; Chen, S.; Lou, J.; Li, C.; Li, S.; Zhang, Z.; Wang, Y.; Yang, H. Mechanistic insight into N2O formation during NO reduction by NH3 over Pd/CeO2 catalyst in the absence of O2. Chin. J. Catal. 2019, 40, 1070–1077. [Google Scholar] [CrossRef]
- Zhang, Q.; Geng, G.N.; Wang, S.W.; Richter, A.; He, K. Bin Satellite remote sensing of changes in NOx emissions over China during 1996–2010. Chin. Sci. Bull. 2012, 57, 2857–2864. [Google Scholar] [CrossRef]
- Khoder, M.I. Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosphere 2002, 46, 675–684. [Google Scholar] [CrossRef]
- Millo, F.; Piano, A.; Rolando, L.; Accurso, F.; Gullino, F.; Roggio, S.; Bianco, A.; Pesce, F.; Vassallo, A.; Rossi, R. Synergetic Application of Zero-, One-, and Three-Dimensional Computational Fluid Dynamics Approaches for Hydrogen-Fuelled Spark Ignition Engine Simulation. SAE Int. J. Engines 2021, 15, 561–580. [Google Scholar] [CrossRef]
- Liberzon, D. Calculus of Variations and Optimal Control Theory: A Concise Introduction; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Onori, S.; Serrao, L.; Rizzoni, G. Hybrid Electric Vehicles: Energy Management Strategies; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Donatantonio, F.; Ferrara, A.; Polverino, P.; Arsie, I.; Pianese, C. Novel Approaches for Energy Management Strategies of Hybrid Electric Vehicles and Comparison with Conventional Solutions. Energies 2022, 15, 1972. [Google Scholar] [CrossRef]
Vehicle length | 12 m |
Curb weight | 12 ton |
Fully loaded weight | 18 ton |
Passenger capacity | 90 |
Road load at 50 km/h | 16 kW |
Road load at 80 km/h | 43 kW |
Road load at 100 km/h | 74 kW |
Rolling radius | 0.54 m |
Vehicle performance | Max speed | 65 km/h |
Min acceleration | 1.1 m/s2 | |
Max gradeability @ full load | 14% | |
Vehicle and engine efficiency | Specific power | 40 kW/dm3 |
ICE efficiency | 42% peak efficiency | |
35% part load efficiency | ||
Fuel consumption | 0.1 kg/km | |
Emissions | NOx tailpipe | <0.05 g/kWh |
Auxiliaries | WHR system efficiency | >4% |
eTurbo efficiency | >4% |
Braunschweig | Gillingham | MLTB | |
---|---|---|---|
Duration [s] | 1740 | 2875 | 2281 |
Distance [km] | 10.9 | 16.6 | 9.0 |
Average speed [km/h] | 22.5 | 20.8 | 14.2 |
Maximum speed [km/h] | 58.2 | 59.9 | 48.7 |
Average acceleration [m/s2] | 0.2 | 0.2 | 0.2 |
Maximum acceleration [m/s2] | 2.4 | 2.3 | 1.5 |
Specific energy demand [kwh/km] | 0.90 | 1.05 | 0.94 |
ICE | Displacement | 3.0 L |
Bore × stroke | 83 × 90 mm | |
Features | Single stage Turbocharger w/VGT | |
Max. power | 100 kW | |
EM | Max. power | 200 kW |
Max. torque | 1500 Nm | |
Battery | Capacity | 19.8 kWh |
Nominal voltage | 396 V | |
Maximum current | 2400 A | |
Maximum power | 950 kW | |
Cell in series | 120 | |
Cell in parallel | 20 |
Displacement | 500 cc |
Bore × stroke | 85 × 88 mm |
N. of valves | 4 |
Chamber type | Pent roof |
Variable | Range |
---|---|
Speed [rpm] | [1000–4000] |
BMEP [bar] | 2–max BMEP available for given RPM |
CA50 [deg] | [−30–30] |
Lambda [-] | [2–2.7] |
EGR [%] | [0–10] |
Variable | RMSE | RMSE % |
---|---|---|
CA50 [deg] | 0.34 | 0.56 |
IMEP [bar] | 0.033 | 0.33 |
BSFC [g/kWh] | 2.26 | 0.75 |
Pcyl, max [bar] | 0.51 | 0.43 |
Tcyl, max [K] | 6.57 | 0.41 |
NOx (below 2000 ppm) [ppm] | 11 | 0.56 |
P exhaust [bar] | 0 | 0.3 |
T exhaust [K] | 2.3 | 0.57 |
Simulation Results | ||||||
---|---|---|---|---|---|---|
Road Cycle | Braunschweig | Gillingham Uphill | MLTB | |||
EMS | PMP | RB | PMP | RB | PMP | RB |
Fuel consumption (kg/100 km) | 11.578 | 12.694 | 13.604 | 14.882 | 14.803 | 16.342 |
Δ (%) | −8.789 | −8.586 | −9.415 | |||
(%) | 24.208 | 22.039 | 25.915 | 23.715 | 26.259 | 23.766 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arsie, I.; Battistoni, M.; Brancaleoni, P.P.; Cipollone, R.; Corti, E.; Di Battista, D.; Millo, F.; Occhicone, A.; Peiretti Paradisi, B.; Rolando, L.; et al. A New Generation of Hydrogen-Fueled Hybrid Propulsion Systems for the Urban Mobility of the Future. Energies 2024, 17, 34. https://doi.org/10.3390/en17010034
Arsie I, Battistoni M, Brancaleoni PP, Cipollone R, Corti E, Di Battista D, Millo F, Occhicone A, Peiretti Paradisi B, Rolando L, et al. A New Generation of Hydrogen-Fueled Hybrid Propulsion Systems for the Urban Mobility of the Future. Energies. 2024; 17(1):34. https://doi.org/10.3390/en17010034
Chicago/Turabian StyleArsie, Ivan, Michele Battistoni, Pier Paolo Brancaleoni, Roberto Cipollone, Enrico Corti, Davide Di Battista, Federico Millo, Alessio Occhicone, Benedetta Peiretti Paradisi, Luciano Rolando, and et al. 2024. "A New Generation of Hydrogen-Fueled Hybrid Propulsion Systems for the Urban Mobility of the Future" Energies 17, no. 1: 34. https://doi.org/10.3390/en17010034
APA StyleArsie, I., Battistoni, M., Brancaleoni, P. P., Cipollone, R., Corti, E., Di Battista, D., Millo, F., Occhicone, A., Peiretti Paradisi, B., Rolando, L., & Zembi, J. (2024). A New Generation of Hydrogen-Fueled Hybrid Propulsion Systems for the Urban Mobility of the Future. Energies, 17(1), 34. https://doi.org/10.3390/en17010034