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Abstract: Improving the thermal efficiency of truck diesel engines requires comprehensive optimiza-
tion of the engine, exhaust aftertreatment (EAT), and possible waste heat recovery (WHR). Lower
exhaust temperature at mid and low working points has caused difficulty in both emission clarifi-
cation and heat recovery, which requires thermal management. Based on the diesel engine bench
test and separate bench tests, this paper focuses on the thermal management strategy optimization,
to increase the exhaust temperature at lower working points and optimize the thermal efficiency of
the whole system. The test and numerical analysis showed that as exhaust temperature increased
from 200~250 ◦C to 300~350 ◦C, soot passive regeneration reactions were enhanced, nitrogen oxide
emission decreased, and energy recovery was improved. Moderate throttle valve adjustment coupled
with early post injection could effectively achieve the required temperature increase. The optimized
thermal management strategy increased the fuel consumption rate by no more than 1%. Meanwhile,
the WHR system output increased significantly, by 62.55% at a certain mid–low working point.
System CO2 emission decreased by an average of 5.4% at selected working points.

Keywords: diesel engine; aftertreatment; waste heat recovery; thermal management

1. Introduction

The three-step approach adopted by the European Union to regulate CO2 emissions
from heavy-duty vehicles [1] has further restricted the thermal efficiency of diesel engines.
The already-strict emission regulations coupled with considerations in system thermal
efficiency, the emission clarification process requires further optimization. The Organic
Rankine cycle (ORC) system is an efficient method for waste heat recovery (WHR) in road
vehicles. For truck diesel engines, more than half of the energy is taken away by engine
exhaust, coolant, and charge air intercooler [2]. The high-temperature exhaust is ideal for
ORC systems to achieve proper recovery. The energy quality of engine exhaust is affected
by both CO2 emission regulation and Particulate Matter (PM) emission regulation [3].

The clarification of PM requires exhaust aftertreatment (EAT), especially a Diesel
Particulate Filter (DPF) for PM filtering and clarification, coupled with a Diesel Oxidation
Catalyst (DOC) for related exhaust thermal management. The PM clarification process
within the DPF regeneration process requires thermal management, as a significantly higher
temperature is required for active regeneration. During active regeneration, diesel fuel is
injected before the DOC through a separate injector [4], or post injection [5], and oxidized
in the DOC to increase the exhaust temperature to above 450 ◦C and even more than 600 ◦C;
the high-temperature exhaust will then rapidly oxidize the PM accumulated in the DPF [6].
Active regeneration achieved PM clarification at the cost of increased CO2 emission, as fuel
oxidized within the DOC will not generate power output. Passive regeneration largely
focused on the reaction between nitrogen oxides (NOx) and PM and activates at a much
lower exhaust temperature, thus requiring no rapid exhaust temperature increase [7].
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The thermal management during the PM clarification process was largely focused on
active regeneration, as a rapid temperature increase is required for activation. Bai et al. [5]
pointed out that decreasing the opening of the intake throttle valve, coupled with proper
post injection, is an effective and efficient way to increase exhaust temperature. Passive
regeneration does not require a high DPF temperature to activate. Jiao et al. [7] studied
the coupling reaction between NOx and soot within DPF and suggested that continuous
oxidization of soot particulates by NO2 activates at approximately 250 ◦C. The oxidization
rate peaked at 450 ◦C. The soot oxidization by oxygen activates at above 450 ◦C, which
is the main reaction process of active regeneration. The rapid oxidization by oxygen
requires a drastic exhaust temperature increase, which decreases engine thermal efficiency
and increases CO2 emission. Furthermore, if coupled with a WHR system, the drastic
exhaust temperature increase will inevitably require the exhaust to bypass the system lest
it affect the heat exchanger’s reliability. Therefore, DPF active regeneration may shut down
the WHR system and hinder its energy recovery. Xie and Yang [8] suggested that rapid
exhaust parameter change during working cycles may significantly reduce the thermal
efficiency of the ORC system. The on-road efficiency of the ORC system was less than
half of the design working point (46.72%), and the main reason for the inefficiency is
operating mode switching. Frequent active regeneration should be avoided for better WHR
system operation.

The application of the WHR system is likely to couple with other methods to decrease
CO2 emission, such as the Miller cycle and two-stage turbocharging. The thermal efficiency
increase will inevitably decrease the proportion of waste heat and reduce its quantity and
especially quality. Li et al. [9] built a numerical model of a Miller cycle diesel engine focusing
on engine emission. The turbocharged Miller cycle engine has produced slightly less NOx
and PM emission compared to the diesel cycle. A hybrid powertrain with a diesel engine
is another possible application to couple with the WHR system; the kinetic power output
of the WHR system can generate electric power for storage. The working condition of the
hybrid diesel engine is significantly less variable than a conventional engine [10]. However,
the possible DPF active regeneration may still cause a drastic exhaust temperature increase
and hinder the output of the ORC system. For EAT systems, this means a significant
decrease in the exhaust temperature, which further requires optimization of the thermal
management strategy. For the WHR system, this means an inevitable decrease in the waste
heat quantity and a likely decrease in its quality. The quality decrease, especially exhaust
temperature decrease, will also affect the WHR system downstream. Former research
by Preißinger et al. [11] ranked ethanol as the best ORC working fluid for conventional
heavy-duty trucks, yet at lower exhaust temperatures, the selection of working fluid
needs further consideration. The confluent cascade expansion ORC system proposed
by Chen et al. [12] suggested that cyclopentane is a promising working fluid for a WHR
system with a lower operating temperature. Zhu et al. [13] also analyzed cyclohexane. As
for even lower-quality energy recovery, Yang et al. [14] and Talluri et al. [15] suggested that
R1233zd(E) has higher efficiency than the more common R245(fa). Li et al. [16] analyzed
the five working fluids mentioned above for diesel engine exhaust WHR systems. At lower
exhaust temperatures, the cyclopentane WHR system has the best performance in terms
of exergy efficiency. It is possible to apply CO2 as the working fluid of WHR systems [17],
though the extremely high cycle pressure can be difficult for practical application.

The optimization of the EAT system emission control and the WHR system efficiency
have both been profoundly investigated. However, comprehensive optimization of both
systems still requires further investigation. The application of the WHR system, on one
hand, requires coupling with the EAT thermal management; on the other hand, it benefits
from possible exhaust heat quality increase at related mid to low working points. Accord-
ingly, the thermal management strategy of the diesel engine requires reconsideration. The
active regeneration process shall be avoided to keep a relatively higher system thermal
efficiency. Meanwhile, the passive regeneration reaction within the DPF shall remain at a
higher rate.
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Therefore, this paper proposes a comprehensive optimization of the engine, EAT
system, and WHR system, both improving the EAT system clarification process and in-
creasing the system power output. The objective is to decrease the total CO2 emission via
an increase in the total system thermal efficiency, especially during mid to low exhaust
temperatures, which are more common during driving cycles [18]. First, the EAT thermal
management strategy at mid to low working points is analyzed through the engine and
EAT system bench test. Clarification performance and fuel consumption are both taken
into consideration. Second, the WHR system model suitable for the engine is constructed
based on an ORC system model. Finally, the thermal management strategy is optimized
with the operation of both the EAT system and the WHR system taken into consideration.

2. Methods
2.1. Engine-EAT Experiments

Unburn HC and a proportion of PM will oxidize within DOC, which partially clarifies
the exhaust and increase its temperature. Therefore, DOC is critical for EAT thermal
management. Throttle valve adjusting and post injection are effective methods to increase
exhaust temperature at mid to low loads [19]. Post-injection can be further divided into
early post-injection (EPI) and late post injection (LPI). The combustion of the EPI fuel
occurred mainly within cylinders during the later period of the combustion process, which
increases the exhaust temperature before DOC. LPI is an effective method to replace the
separate HC injector before DOC. The LPI fuel largely oxidizes in DOC, thus drastically
increasing exhaust temperature before DPF, yet as the fuel energy barely converts into
power output, the fuel consumption rate will inevitably increase.

At middle load, the engine performance in terms of thermal efficiency is relatively
high, yet the high efficiency in the cylinder will inevitably decrease the heat quantity and
even quality of the exhaust, causing difficulties in the clarification process of EAT devices,
and decreasing the output of the WHR system. Therefore, multiple working points at
middle to low loads were selected for investigation. The exhaust temperature before CDPF
ranges from 221 ◦C to 330 ◦C, which was comparatively low for proper and sufficient
passive regeneration. Thermal management is required to support the passive clarification
of PM emission, instead of drastic temperature increase and active regeneration. Besides,
the total system thermal efficiency after the management also requires further analysis. The
test bench is shown in Figure 1, with measurement equipment listed in Table 1.
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Table 1. Related measurement equipment.

Measurement Model Measuring Principle Accuracy of Measurement

Power INDYS66JD 0–250 kW Speed: ±1 r/min
Torque: ±0.1%FS

Fuel consumption FC2212L 0.1–70 kg/h ±0.2%
Temperature RTD100 −100 ◦C–500 ◦C ±0.5%

Exhaust gas analyzer I60 NOx: CLD 1 ppm
Opacimeter 483 Photoacoustic ±5 µg

Pressure Electronic 0–2000 kPa ±0.5%
Mass flow Coriolis 0–0.4 kg/s ±0.5%

Five working points are selected for optimization, namely two middle working points,
(1) and (2); two mid-low working points, (3) and (4); and a low working point, point (5).
Data of each working point are given in Table 2.

Table 2. Exhaust Waste Heat at Selected Working Points.

Working Point 1 2 3 4 5

Temperature (◦C) 324.42 309.88 296.60 278.43 229.00
Mass Flow (kg/h) 1152.4 1081.7 965.6 712.7 544.1

Coupled with throttle valve adjustments, different post injection strategies were
selected for comparison. For cases without LPI (E1-E3), the difference was only EPI
quantity; for cases with LPI (L0-L2), the post injection quantity was fixed, the difference
was LPI in proportion. Detailed cases are given in Table 3.

Table 3. Post injection strategies during the bench test.

Case E1 E2 E3/L0 L1 L2

EPI Quantity (mg) 4 6 8 6 4
LPI Quantity (mg) 0 0 0 2 4

2.2. WHR System Modeling and Validation

This WHR system is basically an exhaust ORC system. The ORC system applied a
recuperator, as high-temperature working fluid after expansion has enough heat quality
for recovery. The temperature of exhaust varies in different working conditions, which can
be further complicated by EAT thermal management. The WHR system structure is given
in Figure 2.
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2.2.1. System Modeling

The power output of a WHR system can be defined as Equation (1):

E = Qs·η = Wexp − Wpump = ηeva·ms·∆hs·
∆hexp

∆heva
·ηexp − mw f ·

∆hpump

ηpump
(1)

where ms stands for heat source (exhaust) mass flow, mwf stands for working fluid mass flow,
∆h stands for the enthalpy difference between the inlet and the outlet of each compartment,
and η stands for the thermal efficiency of each compartment.

The WHR system power output is determined by the waste heat energy flow and
thermal efficiency of the system. The thermal management at mid to low working points
will increase the exhaust temperature to achieve better EAT system clarification. The WHR
system downstream will inevitably be affected by this temperature increase, and heat
exchangers are affected more than other system compartments. Therefore, the system
model constructed in this paper applied a more detailed heat exchanger model, while other
system compartments were simplified.

2.2.2. Heat Exchanger Modeling

Tube-fin heat exchanger models were used in the evaporator and recuperator of
WHR system. All others were plate-fin heat exchangers for compactness and efficiency. [20]
Equations of the heat exchanger model are given in Table 4. The hot side (exhaust side) of the
tube-fin heat exchanger model is calculated through Equation (2), taken from Li et al. [21].
The evaporating process is calculated through Equation (5) [22], while the single phase flow
of the cold side (fluid side) is calculated through the renowned Gnielinski equation [23].

Table 4. Equations of Heat Exchanger Model.

Heat Exchanger Equations

Tube-fin Hot Side Nu = 0.982·Re0.424·
(

s
d3

)−0.0887
·
(

N·s2
d3

)−0.159 (2)

Other Single Phase Nu =
(

f
8

)
·(Re − 1000)·Pr/

[
12.7·

(
f
8

)0.5
·
(

Pr2/3 − 1
)
+ 1.07

]
(3)

f = (1.82·lgRe − 1.5)−2 (4)
Evaporation/Two Phase htp = 30·Relo

0.857·Bo0.714·(1 − x)−0.143· kl
d (5)

After the heat transfer coefficient of the heat exchanger calculation, the heat transfer
area will be calculated via log-mean temperature difference (LMTD) method:

Q = k·A·LMTD (6)

where k stands for the total heat transfer coefficient, A stands for the equivalent collecting
area of the heat exchanger. The efficiency of the evaporator is the proportion of waste heat
absorbed by working fluid, or working fluid enthalpy increase divided by heat source
enthalpy decrease:

ηeva =
Qeva

Qs
=

∆heva

∆hs
(7)

As the exhaust heat quality increase, the evaporation pressure at evaporator should
increase accordingly to properly increase WHR system thermal efficiency, namely, increase
∆hexp of Equation (1). In this heat exchanger model, the optimal evaporation pressure
is evaluated by restrictions of the evaporator. Namely, the evaporation pressure cannot
surpass 3 MPa, and the pinch point temperature difference (PPTD) of the evaporator cannot
surpass 20 K. Both restrictions are due to practical manufacturing difficulties.

The WHR system also applied a recuperator for better thermal efficiency. The recuper-
ator model is largely identical to the evaporator model, with recuperate rate fixed at 50%.
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The condenser model was simplified. Working fluid condensing did not consume extra
power. Working fluid condensed at the set temperature.

2.2.3. Expander and Pump Modeling

The models of other system components, namely expanders and pumps, are simplified.
The power output of an expander is determined by the expansion ratio and the isentropic
efficiency:

Wexp = Qeva·
∆hexp

∆heva
·ηexp (8)

ηexp =
∆hexp

∆hiso
(9)

where ∆hiso is the working fluid enthalpy decrease of an isentropic expansion. To achieve
proper expansion at higher evaporation temperature, expanders of the WHR systems
are piston expanders. The expansion ratio is determined by evaporator and condenser
parameters, while the isentropic efficiency is taken from Bao et al. [24].

Models of pumps are similar to expanders:

Wpump = mr·
∆hpump

ηpump
(10)

ηpump =
∆hiso

∆hpump
(11)

The related WHR system parameters are given in Table 5.

Table 5. WHR System Parameter.

Section Parameter

Heat Exchanger Efficiency % 95
Superheat Degree K 10

Undercooling Degree K 10
Evaporator PTD K 20
Condenser PTD K 10

Expander Efficiency % 60
Pump Efficiency % 40

Environment Temperature ◦C 25

2.2.4. Assumptions

The actual operating conditions of on-road diesel engines are complicated. The high
exhaust temperature at higher working points required no thermal management. As
suggested by Xie and Yang [8], the efficiency of the WHR system at a higher working point
may vary significantly from the on-road efficiency. The following assumptions are made
for the WHR system model to better optimize the thermal management strategy.

1. The WHR system has constant exhaust inlet temperature and flow rate at all working points.
2. The evaporation pressures may alter at different exhaust temperatures to achieve the

highest WHR system output, which is capped at 3 MPa.
3. The parameters of the WHR systems in Table 5 remain constant.
4. Pressure drop and heat transfer loss of condenser and pipelines are ignored.

2.2.5. Model Validation

The attached heat exchanger model was validated with a heat exchanger bench test, as
shown in Figure 3. Electric heated or water cooled exhaust served as a substitute for actual
engine exhaust at each working point.
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Table 6 lists the measurement devices and the accordingly measurement range and
the accuracy of the sensors. The dependent variable uncertainty is calculated based on
Equation (12):

ηR =

[(
∂R
∂x1

·w1

)2
+

(
∂R
∂x2

·w2

)2
+ . . . +

(
∂R
∂xn

·wn

)2
]1/2

(12)

where R represents the function of independent variables and w is referred to their uncer-
tainties. The verification of the detailed heat exchanger model is given in Figure 4. The
exhaust during verification has fixed inlet temperatures. The heat exchanger model was
evaluated through the heat exchanging quantity, which is determined by exhaust outlet
temperature at different flow rates. The error of the simulation model is well below 5%.

Table 6. Measurement Devices Accuracy.

Measurement Type Range Accuracy

Temperature RTD100 −100 ◦C–+400 ◦C ±0.5%

Pressure Electronic pressure
transducer (gauge) 0–2000 kPa ±0.5%

Mass flow rate Coriolis effect 0–0.4 kg/s ±0.5%
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3. Results and Analysis
3.1. Effect of Thermal Management on EAT System Clarification Process

The reaction between PM and NOx is given in Figure 5, as suggested by Jiao et al. [7].
For CDPF passive regeneration, the reaction between soot and NOx activates at exhaust
temperatures above 250 ◦C, though the heat transfer is hindered by the limited temperature
difference, which in turn limited the reaction rate between NOx and PM. Exhaust tempera-
ture above 300 ◦C is possible to heat the catalyst to a higher reaction rate, and an even higher
temperature can achieve a more rapid catalyst temperature increase. The reaction rate from
400 s to 450 s has increased significantly, especially with exhaust temperature at 400 ◦C. At
higher exhaust temperatures, a significant proportion of soot is oxidized by oxygen, which
increased the possibility of active regeneration and rapid exhaust temperature increase.
At 900 s, the difference in the reaction rate of NOx at different exhaust temperatures is
less significant. Therefore, the exhaust temperature before DPF is better kept at between
300–400 ◦C, to keep a higher CDPF passive reaction rate.
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A conventional EAT system of a diesel engine requires NOx clarification devices,
especially Selective Catalytic Reduction (SCR), besides fore mentioned PM clarification
devices. Exhaust thermal management at mid to low working points is also beneficial to
SCR. On one hand, exhaust temperature at mid to low working points (200–300 ◦C) is
relatively low for the SCR, the reaction benefits from exhaust temperature increase; on
the other hand, the NO oxidization within DOC also benefits from this increase, a larger
proportion of NO2 will further increase the total reaction rate within SCR. The possible
benefit of the SCR reaction rate is shown in Figure 6. After thermal management, the NOx
emission decreased by an average of 36%.
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3.2. Effect of Thermal Management on EAT System Waste Heat Flow

To achieve better passive regeneration within the CDPF without starting an active
regeneration, the exhaust temperature upstream shall be raised to above 250 ◦C, without
reaching 450 ◦C. With power output remaining constant, a decrease in engine intake
quantity will decrease exhaust quantity accordingly, and the waste heat quality within the
exhaust will proportionally increase. Meanwhile, if the combustion process is delayed, a
higher proportion of the combustion energy will remain in the exhaust rather than generate
power output. Therefore, engine intake air flow and post injection affect combustion
efficiency and exhaust temperature, the test result at working point (1) is shown in Figure 7.
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Adjusting intake quantity through adjusting the throttle valve has a more significant
effect on exhaust temperature. Moderate valve opening decrease did not significantly affect
the combustion process, as shown by only a limited fuel consumption rate increase. The
exhaust temperature increase was mainly the result of the air flow quantity decrease. At
35% and 40% valve opening, the exhaust temperature increased by an average of 18.43 ◦C
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and 30.25 ◦C respectively, with the fuel consumption rate increased by no more than 1%. As
for cases with significant throttle valve opening decrease, the reduction of intake quantity
deteriorated the combustion process, which sharply increased the exhaust temperature
at the cost of system thermal efficiency. At 20% valve opening, the average exhaust
temperature increase was 164.06 ◦C, with the average fuel consumption rate increased
by 7.72%.

The exhaust temperature and the fuel consumption rate at different post injection
strategies are shown in Figure 8. Experiment results at working point (1) were selected
as a comparison to analyze the effect of EPI and LPI on engine emission and thermal
efficiency. The total post injection quantity remained constant at 8 g/cycle, as well as other
boundary conditions. Coupled with throttle valve opening adjustments, post injection
further increased the temperature of the exhaust, and the difference between the two cases
is significant. The combustion of the EPI fuel occurred mainly within the cylinder during
the later period of the combustion process, the combustion energy of the post injection
fuel was partly converted to the power output; while the LPI fuel was largely oxidized
in the DOC, which increased exhaust temperature at the cost of fuel consumption rate.
With EPI only, the average temperature increase was merely 1.4 ◦C at 30% to 40% valve
opening; the maximum increase at 20% valve opening was 4.4 ◦C. However, the fuel
consumption rate after the application of EPI was slightly improved. The main reason for
this increase is the excess air factor of the main combustion was relatively improved and
partly compensated for the loss. The application of LPI significantly increased the exhaust
temperature, at the cost of thermal efficiency. At the same power output, valve opening
and post injection quantity, 50% LPI increased the exhaust temperature by 41.2–72.8 ◦C,
with the fuel consumption rate increased by 8.1–8.8%.
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3.3. Effect of the EAT Thermal Management on the WHR System

Exhaust heat quality improved by thermal management strategies at fore mentioned
working points is also beneficial for WHR systems’ thermal and exergy efficiency. Effects
on the WHR systems require further analysis to comprehensively optimize the EAT thermal
management strategy, in terms of total thermal efficiency.

At the selected temperature range, the thermal and exergy efficiencies of the exhaust
WHR system, as shown in Figure 9, are both largely affected by the exhaust temperature.
The effect on thermal efficiency is more significant at a lower temperature, especially
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for working fluids with higher evaporating temperatures, since the limited evaporation
temperature decreased evaporation pressure. Both cyclopentane and ethanol systems’
evaporation pressure falls to below 1 MPa at 200 ◦C, with thermal efficiency decreased
by 37.11% and 43.02% compared to systems with high exhaust temperature. The thermal
efficiency reached its maximum at 320 ◦C as the evaporating temperature was finally
capable to reach the maximum evaporation pressure of 3 MPa. This is further explained
by the exergy efficiency, which is further affected by the WHR system heat flux. Exhaust
with higher temperature has proportionally more exergy for recovery, while higher waste
heat efficiency requires a WHR system with higher evaporate pressure. A WHR system
with evaporate pressure above 3 MPa requires heat exchangers with increased reliability;
evaporate temperature above 250 ◦C also requires special lubrication. Both factors may
increase the system cost. Therefore, an exhaust temperature of around 320 ◦C is optimal for
the WHR system of this paper.
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The fore mentioned EAT thermal management is mainly focused on better CDPF
passive regeneration. Therefore, the exhaust temperature before CDPF shall be between
300~400 ◦C. Also shown in Figure 9, the thermal efficiency of the cyclopentane WHR
system within this temperature range is significantly higher than the second (ethanol) by
26.69% on average. R245fa and R1233zd systems retained considerable thermal efficiency
at low temperatures. However, at below 250 ◦C, the passive regeneration will not activate
in CDPF, thus out of the WHR system operation range considered in this paper.

4. Discussion

Coupled with different exhaust thermal management strategies, the WHR system
power output increase of working point (1) is shown in Figure 10. As the effect of throttle
valve opening on the exhaust temperature is significant, the WHR system efficiency increase
is accordingly significant in cases with small valve opening, while efficiency increase in
cases with moderate valve opening is also moderate. The effect of LPI is similar, where the
WHR system efficiency showed significant increases in cases with LPI, and the maximum
efficiency increase occurred in cases with 20% valve opening and 2 mg LPI (case L1).
However, the drastic efficiency increase was at the cost of fuel consumption. The thermal
efficiency of the organic Rankine cycle of the WHR system is much lower than the Diesel
cycle of the engine. Therefore, the efficiency increase of the WHR system can only partly
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compensate for the efficiency decrease of the engine. Further proof can be seen in Figure 11.
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Coupled with the exhaust WHR system, the thermal efficiency variation of the system
at middle load is given in Figure 11. In cases with small valve openings or with LPI,
the WHR system coupled with thermal management cannot improve the total thermal
efficiency of the system. The efficiency decrease caused by worse combustion cannot be
compensated by the WHR system efficiency increase. Besides, the high exhaust temperature
of these cases may start active regeneration within the CDPF, rapid exhaust temperature
increase requires a temporary shutdown to protect the WHR system, achieved by opening
the bypass valve before the evaporator. Frequent thermal impacts will repeatedly interrupt
the operation of the WHR system, decreasing its power output and affecting its reliability.
Cases with moderate throttle valve opening adjustments and EPI have better thermal
efficiency. The highest total thermal efficiency increase is achieved with an opening above
40% and with EPI only. The highest relative increases are 2.23% and 1.64% at working point
1 and 2; the WHR system increased system output by 5.74% and 5.27% respectively.

The situation of mid-low load working points is largely identical, as shown in Figure 12.
The major difference is the highest total thermal efficiency increase of the two working
points is achieved with an opening of 30%. This is mainly because the exhaust temperature
at mid-low working points is lower than at middle load. Therefore, a more drastic temper-
ature increase is required for a significant WHR system efficiency increase. The highest
relative increases are 1.95% and 1.62% at working point 3 and 4; the WHR system increased
system output by 5.98% and 5.78% respectively. As already shown in Figure 9, the exergy
efficiency of the WHR system has come to a maximum with an exhaust temperature of
around 320 ◦C. The exhaust temperatures of the four optimal cases are between 315~337 ◦C,
which supported the suggestion. Meanwhile, the temperatures before CDPF are between
342~364 ◦C, also optimal for passive regeneration.
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Figure 12. System Thermal Efficiency Variation (Mid-Low Load).

The system thermal efficiency at low load, as shown in Figure 13, has further issues
in system output. At low load, the efficiency increase through thermal management is
less significant, as the exhaust temperature of working point 5 is only 222.26 ◦C, even
after thermal management, the exhaust temperature is still rather low; all cases are below
300 ◦C, except when throttle opening at 20%. The total thermal efficiency increase of the
exhaust WHR system is only 1.05% at the highest case, with WHR system output at 0.67 kW,
insignificant for recovery.
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The average exergy loss of system units are given in Table 7. Major energy loss
appeared in evaporators and expanders. The optimization of thermal management has
improved the performance of largely the whole system. The only exception was pump,
which has only limited proportion in total loss.

Table 7. Exergy Loss of Original and Optimized WHR System Units.

System Unit Evaporator Expander Condenser Pump Recuperator

Original Loss % 24.24 31.82 5.53 2.58 4.21
Optimized Loss % 15.84 22.07 3.92 2.53 3.36

The optimal EAT thermal management strategy increased exhaust temperature to
between 300~330 ◦C, the increase in exhaust energy quality has considerable effect on WHR
system downstream, especially for mid-low working points. The increase, as shown in
Figure 14, is 14.73% and 30.87% at mid working points (1) and (2); at mid-low working
points, the increase is 59.2% and 62.55% at points (3) and (4), which is roughly the twice
of point (2). Also shown in Figure 14, the relative output of exhaust WHR system has
decreased gradually as exhaust temperature decreased, while the optimal strategy increased
system thermal efficiency by an average of 5.71%. At low working point of point (5), the
increase is 43.01%, though the relative power output increase is 3.57%, smaller than at
mid or mid-low working points, and the actual power output increase is merely 1.12 kW.
Activating the WHR system at low working point is less necessary.
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5. Conclusions

In this paper, the thermal management of EAT system is optimized to achieve better
thermal efficiency in both the diesel engine and WHR system. The exhaust temperature
at mid and mid-low working points was increased to improve EAT devices’ performance,
and the WHR system was optimized accordingly.

(1) At mid to low working points, increasing exhaust temperature to 300~350 ◦C benefits
both EAT system and the WHR system. Clarification reactions of PM and NOx both
benefited from this temperature increase. Meanwhile, the WHR system model reached
optimal exergy efficiency with an exhaust temperature of 320 ◦C.

(2) Moderate throttle valve adjustment coupled with EPI could effectively achieve the
required temperature increase, with the fuel consumption rate increased by no more
than 1%. The significant increase of low valve opening or LPI, though increased the
WHR system output by more than 80%, the considerable decrease in engine thermal
efficiency decreased the total system efficiency in all cases.

(3) The optimal strategy increased WHR output by 14.73%, 30.87%, 59.2%, and 62.55%
at selected mid and mid-low working points. Thermal management has increased
system thermal efficiency by an average of 5.71%. Activating the WHR system at a
low working point is less necessary, due to the limited output.
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Nomenclature

Symbol Units Description
A m2 heat exchanging area
d mm diameter
E kW power output
h kJ/kg enthalpy
k W/m2·K heat transfer coefficient
m kg/s mass flow rate
Nu - Nusselt number
Pr - Prandtl number
Q kW heat flux
Re - Reynolds number
s mm distance
α - Low-Reynolds-Number coefficient
η % efficiency
Subscripts
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Symbol Description
eva evaporator
exp expander
in inlet
out outlet
s heat source
re recuperated
wf working fluid
Acronyms
Symbol Description
CO2 Carbon dioxide
DOC Diesel Oxidation Catalyst
DPF Diesel Particulate Filter
EAT Exhaust Aftertreatment
EPI Early Post Injection
LMTD Log-Mean Temperature Difference
LPI Late Post Injection
NO Nitrogen Monoxide
NO2 Nitrogen Dioxide
NOx Nitrogen Oxide
ORC Organic Rankine Cycle
PM Particulate Matter
PPTD pinch point temperature difference
SCR Selective Catalytic Reduction
WHR Waste Heat Recovery
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