Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = waste foundry sand

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 516 KiB  
Article
Waste Management in Foundries: The Reuse of Spent Foundry Sand in Compost Production—State of the Art and a Feasibility Study
by Stefano Saetta and Gianluca Fratta
Sustainability 2025, 17(13), 6004; https://doi.org/10.3390/su17136004 - 30 Jun 2025
Viewed by 364
Abstract
The management of spent foundry sand (SFS) presents environmental and operational challenges for foundries. According to the European Union, European foundries generate approximately 9 million tonnes of SFS annually, mainly from the production of ferrous castings (iron and steel). Nowadays, around 25% of [...] Read more.
The management of spent foundry sand (SFS) presents environmental and operational challenges for foundries. According to the European Union, European foundries generate approximately 9 million tonnes of SFS annually, mainly from the production of ferrous castings (iron and steel). Nowadays, around 25% of the spent foundry sand in Europe is recycled for specific applications, primarily in the cement industry. However, the presence of chemical residues limits the application of this solution. A possible alternative for reusing the spent foundry sand is its employment as a raw material in the production of compost. Studies in the literature indicate that the amount of chemical residue present in the sand can be reduced through the composting process, making the final product suitable for different purposes. However, information about the implementation of this technology in industrial contexts is lacking. To address this issue, this paper proposes a techno-economic analysis to assess the feasibility of composting SFS on a large scale, using information gathered during the testing phase of the Green Foundry LIFE project. This project explored the reuse of sand from organic and inorganic binder processes to create compost for construction purposes, which allowed for the final product. Since the new BREF (Best Available Techniques Reference Document) introduced by the European Union at the start of 2025 recommends composting SFS as a way to reduce solid waste from foundries, this initial study can represent practical guidance for both researchers and companies evaluating the adoption of this technology. Full article
Show Figures

Figure 1

26 pages, 5414 KiB  
Article
Microstructure and Mechanical Properties of Sustainable Concrete Incorporating Used Foundry Sand and Coal Bottom Ash
by Piotr Smarzewski
Sustainability 2025, 17(13), 5983; https://doi.org/10.3390/su17135983 - 29 Jun 2025
Viewed by 437
Abstract
This study investigates the potential for sustainable concrete production using industrial by-products: used foundry sand (UFS) and coal bottom ash (CBA). These materials were partially substituted for natural aggregates to reduce environmental impact and promote circular economy practices. UFS was used as a [...] Read more.
This study investigates the potential for sustainable concrete production using industrial by-products: used foundry sand (UFS) and coal bottom ash (CBA). These materials were partially substituted for natural aggregates to reduce environmental impact and promote circular economy practices. UFS was used as a replacement for fine aggregate, while both fine and coarse CBA were tested as substitutes for sand and gravel, respectively. The materials were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) to evaluate their mineralogical and microstructural properties. Six concrete mixtures were prepared with varying replacement levels (up to 70% total aggregate substitution) at a constant water-to-cement ratio of 0.50. Compressive strength tests were conducted at 28 days, supported by microstructural observations. Results showed that high levels of UFS and CBA led to reduced strength, mainly due to weak interfacial bonding and porous ash particles. However, moderate replacement levels (e.g., 20% fine CBA) maintained high strength with good structural integrity. The study concludes that both UFS and CBA can be used effectively in concrete when carefully dosed. The findings support the use of industrial waste in construction, provided that material properties are well understood and replacement levels are optimized. Full article
Show Figures

Figure 1

19 pages, 5048 KiB  
Article
Stabilization of Clay Subgrade Soil by Using Waste Foundry Sand with a Geogrid
by Qais Sahib Banyhussan, Jaafar Abdulrazzaq, Ahmed A. Hussein, Anmar Dulaimi, Jorge Miguel de Almeida Andrade and Luís Filipe Almeida Bernardo
CivilEng 2025, 6(2), 26; https://doi.org/10.3390/civileng6020026 - 10 May 2025
Viewed by 1121
Abstract
Various stabilizers, such as jute, gypsum, rice-husk ash, fly ash, cement, lime, and discarded rubber tires, are commonly used to improve the shear strength and overall characteristics of clay subgrade soil. In this study, waste foundry sand (WFS) is utilized as a stabilizing [...] Read more.
Various stabilizers, such as jute, gypsum, rice-husk ash, fly ash, cement, lime, and discarded rubber tires, are commonly used to improve the shear strength and overall characteristics of clay subgrade soil. In this study, waste foundry sand (WFS) is utilized as a stabilizing material to enhance the properties of clay subgrade soil and strengthen the bond between clay subgrade soil and subbase material. The materials employed in this study include Type B subbase granular materials, clay subgrade soil, and 1100 Biaxial Geogrid for reinforcement. The clay subgrade soil was collected from the airport area in the Al-Muthanna region of Baghdad. To evaluate the effectiveness of WFS as a stabilizer, soil specimens were prepared with varying replacement levels of 0%, 5%, 10%, and 15%. This study conducted a Modified Proctor Test, a California Bearing Ratio test, and a large-scale direct shear test to determine key parameters, including the CBR value, maximum dry density, optimum moisture content, and the compressive strength of the soil mixture. A specially designed large-scale direct shear apparatus was manufactured and utilized for testing, which comprised an upper square box measuring 20 cm × 20 cm × 10 cm and a lower rectangular box with dimensions of 200 mm × 250 mm × 100 mm. The findings indicate that the interface shear strength and overall properties of the clay subgrade soil improve as the proportion of WFS increases. Full article
(This article belongs to the Section Geotechnical, Geological and Environmental Engineering)
Show Figures

Figure 1

16 pages, 2118 KiB  
Article
Waste Foundry Sand as an Alternative Material in Road Construction
by Vivian Silveira dos Santos Bardini, Luis Miguel Klinsky, Antonio Albuquerque, Luís Andrade Pais and Fabiana Alves Fiore
Sustainability 2025, 17(6), 2370; https://doi.org/10.3390/su17062370 - 7 Mar 2025
Viewed by 1442
Abstract
The generation of solid waste and the use of non-renewable natural resources in the foundry industry are environmental challenges that require the search for solutions that guarantee the application of circular economy and cleaner production principles. Studies on the reuse of Foundry Sand [...] Read more.
The generation of solid waste and the use of non-renewable natural resources in the foundry industry are environmental challenges that require the search for solutions that guarantee the application of circular economy and cleaner production principles. Studies on the reuse of Foundry Sand Waste (FSW) generated in this process can guarantee the minimization of the current environmental impact and contribute to the achievement of sustainability in the industrial sector. The objective of this study is to assess the feasibility of utilizing WFS in the construction of pavement bases and sub-bases, in combination with sandy soil and hydrated lime. The laboratory experimental program included the evaluation of compaction characteristics, California Bearing Ratio (CBR), compressive strength, and resilient modulus. The results indicate that the addition of 25% and 50% WFS yields predicted performance levels ranging from good to excellent. The inclusion of hydrated lime enables the mixtures to be employed in sub-bases and bases, while the increased WFS content further enhances load-bearing capacity by up to 60% and 75% for 25% and 50% WFS, respectively. Full article
(This article belongs to the Special Issue Sustainable Materials: Recycled Materials Toward Smart Future)
Show Figures

Figure 1

18 pages, 6620 KiB  
Article
Potential Use of Recycled Foundry Sand as Fine Aggregate in Self-Compacting Concrete: Sustainable Engineering Research
by Ranjitha B. Tangadagi and Panruti T. Ravichandran
Buildings 2025, 15(5), 815; https://doi.org/10.3390/buildings15050815 - 4 Mar 2025
Cited by 1 | Viewed by 872
Abstract
This research aims to identify an eco-friendly and low-mass substitute for fine aggregate (FA) in self-compacting concrete (SCC). The study specifically examines the potential of waste foundry sand (WFS) as an FA replacement. The primary objective is to explore the impact of processed [...] Read more.
This research aims to identify an eco-friendly and low-mass substitute for fine aggregate (FA) in self-compacting concrete (SCC). The study specifically examines the potential of waste foundry sand (WFS) as an FA replacement. The primary objective is to explore the impact of processed WFS in SCC, addressing both the WFS disposal issues and enhancing the environmental performance of SCC. After collecting the WFS, it was sieved, segregated, washed thoroughly with water, and then oven dried to remove all clay, carbon, and hazardous content. Treated foundry sand (TFS) is utilized as a substitute for FA in SCC. This study examines the effects of TFS on SCC’s strength, flowability, durability, and microstructural characteristics. Various proportions of TFS are investigated, including replacing 0, 10, 20, 30, 40, and 50% of FA by weight with TFS in the concrete mixture. This research demonstrates that TFS can effectively replace FA in improving the flowability and passing ability of SCC. Furthermore, the findings on SCC’s strength and durability after incorporating TFS suggest that using 30–40% TFS is optimal, as it does not negatively impact the structural performance of SCC. Alternatively, the use of TFS in SCC results in a dense microstructure, improved gel formation, and better bonding of the constituents of ingredients used in SCC. Overall, the results of this study reveal that the use of TFS in SCC can help reduce the amount of waste and improve its sustainability. This also shows that the process can reduce the density of the mix. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 5841 KiB  
Article
Alkali-Activated Permeable Concretes with Agro-Industrial Wastes for a Sustainable Built Environment
by Shriram Marathe, Martyna Nieświec and Barbara Gronostajska
Materials 2025, 18(1), 87; https://doi.org/10.3390/ma18010087 - 28 Dec 2024
Cited by 5 | Viewed by 948
Abstract
This research presents a proposal for alkali-activated permeable concrete composites with the use of industrial by-products, including ground granulated blast-furnace slag (GGBS) and waste-foundry sand, as well as agro-desecrate product, i.e., sugarcane bagasse ash (SBA). GGBS and SBA served as binders, with crushed [...] Read more.
This research presents a proposal for alkali-activated permeable concrete composites with the use of industrial by-products, including ground granulated blast-furnace slag (GGBS) and waste-foundry sand, as well as agro-desecrate product, i.e., sugarcane bagasse ash (SBA). GGBS and SBA served as binders, with crushed granite as coarse aggregate and waste-foundry sand as fine aggregate. The novelty of this proposal is in examining the influence of SBA, in combination with slag, on the fresh- and hardened-state properties of the proposed permeable concretes. Experiments were conducted to optimize the SBA percentage based on hydraulic conductivity and compressive and tensile strength after 28 days of air curing. The hardened density, compaction factor (workability), and saturated water absorption were also measured for all the mixes. Furthermore, the control and optimal mixes were subjected to evaluate the microstructure analysis (EDX, XRD, and FESEM) after 28 days of air curing. The mix containing 100% GGBS and 0% SBA served as the reference, with the optimal 10% SBA mix (with 90% GGBS) used for comparative analysis to understand its effect on the properties of permeable composites. The results showed positive or acceptable mechanical performance at a mix ratio of 10% SBA to 90% GGBS as binders. This study aims to enhance the understanding of the engineering behavior of alkali-activated permeable composites, facilitating the rational design of permeable pavement systems through the effective use of agro-industrial waste products, thereby conserving ecosystems while meeting engineering requirements. Full article
Show Figures

Figure 1

35 pages, 4420 KiB  
Review
Application of Foundry Wastes in Eco-Efficient Construction Materials: A Review
by Ingried Aguiar, Sandra Cunha and José Aguiar
Appl. Sci. 2025, 15(1), 10; https://doi.org/10.3390/app15010010 - 24 Dec 2024
Cited by 7 | Viewed by 2349
Abstract
Foundries generate millions of tons of waste annually, posing a challenge to companies that generate it and to the environment due to landfill disposal. Meanwhile, the construction sector contributes heavily to global resource consumption. Adopting a circular economy approach by integrating foundry wastes [...] Read more.
Foundries generate millions of tons of waste annually, posing a challenge to companies that generate it and to the environment due to landfill disposal. Meanwhile, the construction sector contributes heavily to global resource consumption. Adopting a circular economy approach by integrating foundry wastes into construction materials offers two main benefits: reducing landfill accumulation and preserving natural reserves of raw materials while also supporting the UN’s Sustainable Development Goals. This paper presents a review of recent studies on the use of foundry wastes in construction materials and provides an overview of the foundry industry, including its background, waste management, and statistics. Furthermore, a bibliometric analysis highlights the evolution of research in this area, showing a 182% increase in publications over the last 10 years. Key findings include that waste foundry sand is the most widely utilized foundry waste in construction materials, while ceramic mold shells and paraffin waxes remain underexplored. Concrete is the primary material incorporating foundry waste. The incorporation of foundry waste into construction materials improves durability and mechanical strength when used in appropriate proportions. The replacement content can reach up to 100%. These results underscore the feasibility of foundry waste as a sustainable alternative in construction, building circularity, and reducing environmental impact. Full article
(This article belongs to the Special Issue Recent Progress and Future Directions in Building Materials)
Show Figures

Figure 1

26 pages, 10649 KiB  
Article
Investigation of Spent Moulding Sand Using Thermal Treatment with Regard to the Possibility of Recovering Quartz Matrix
by Mariusz Łucarz, Aldona Garbacz-Klempka, Marcin Brzeziński, Alena Pribulová and Patrik Fedorko
Materials 2024, 17(23), 5991; https://doi.org/10.3390/ma17235991 - 6 Dec 2024
Viewed by 877
Abstract
The ongoing sustainable reduction in natural resources is prompting companies to look for materials to reuse that were previously classified as waste. Uses are sought for them either in their existing area of use or in other areas of the economy. In many [...] Read more.
The ongoing sustainable reduction in natural resources is prompting companies to look for materials to reuse that were previously classified as waste. Uses are sought for them either in their existing area of use or in other areas of the economy. In many cases, this is difficult. The aim of this research is to see if there is a possibility of reusing the grain matrix, a major component of spent moulding sand that was perhaps diverted too early as waste to landfill. This study included three samples of spent moulding sand of unknown origin from landfills. A study of the collected materials was carried out to identify and characterise the impurities accumulated on the surface of the matrix grains. Sieve analyses, scanning photographs, and chemical analysis with a scanning microscope were performed. The surface morphology of the samples was assessed using a confocal microscope, and chemical composition analyses were performed using LIBS laser-induced emission spectroscopy LIBS. The thermogravimetric analysis, ignition loss, and gas formability of the tested materials were performed. The tested samples were subjected to high temperatures as the most efficient method of organic waste disposal. The analyses carried out earlier were repeated on the resulting material. It was found that only one of the tested samples, in the case of the application of thermal reclamation of spent moulding sand, allowed for obtaining a grain matrix (quartz sand) of high purity scale for reuse in the foundry industry or after further treatments in other industries. The other wastes analysed require intensive mechanical treatment, which does not guarantee, due to the shape of the grain matrix, the expected purity of the quartz sand or, in the case of intensive mechanical abrasive influences, a satisfactory grain matrix yield. Full article
(This article belongs to the Special Issue Advances in Natural Building and Construction Materials)
Show Figures

Figure 1

18 pages, 14762 KiB  
Article
The Usability of Metallurgical Production Waste as a Siliceous Component in Autoclaved Aerated Concrete Technology
by Lenka Mészárosová, Vít Černý, Jindřich Melichar, Pavlína Ondříčková and Rostislav Drochytka
Buildings 2024, 14(10), 3155; https://doi.org/10.3390/buildings14103155 - 3 Oct 2024
Cited by 1 | Viewed by 1056
Abstract
The reconstruction of buildings is a complex process that often requires the consideration of the construction load when selecting correct building materials. Autoclaved aerated concrete (AAC)—which has a lower bulk density (compared to traditional masonry materials)—is very beneficial in such applications. A current [...] Read more.
The reconstruction of buildings is a complex process that often requires the consideration of the construction load when selecting correct building materials. Autoclaved aerated concrete (AAC)—which has a lower bulk density (compared to traditional masonry materials)—is very beneficial in such applications. A current trend in AAC development is the utilization of secondary raw materials in high-performance AAC, characterized by higher bulk density and compressive strength than regular AAC. The increase in bulk density is achieved by increasing the content of quartz sand in the mixing water. In this study, part of the siliceous component was replaced by ladle slag, foundry sand, furnace lining, and chamotte block powder. These materials are generated as by-products in metallurgy. The substitution rates were 10% and 30%. The samples were autoclaved in a laboratory autoclave for 8 h of isothermal duration at 190 °C with a saturated water vapor pressure of 1.4 MPa. The physical–mechanical parameters were determined, and the microstructure was described by XRD and SEM analyses. The results were compared with traditional AAC, with silica sand being used as the siliceous component. The measurement results show that sand substitution by the secondary raw material is possible, and it does not have a significant impact on the properties of AAC, and in a proper dosage, it can be beneficial for AAC production. Full article
(This article belongs to the Special Issue Actual Trends in Rehabilitation and Reconstruction of Buildings)
Show Figures

Figure 1

16 pages, 3884 KiB  
Article
A Novel Technosol Formulation for Sustainable Landfill Top Covers Using Non-Hazardous Wastes
by Juan Carlos Fernández-Caliani, Julia Álvarez-Lozano, Encarnación García-Navarro, Sandra Fernández-Landero, Cristóbal Cantero and María Inmaculada Giráldez
Appl. Sci. 2024, 14(14), 6166; https://doi.org/10.3390/app14146166 - 15 Jul 2024
Cited by 1 | Viewed by 1459
Abstract
This study explores the potential of non-hazardous wastes for crafting an engineered soil-like material (Technosol) suitable for landfill capping applications. Three distinct materials—waste foundry sand (WFS), washing aggregate sludge (WAS), and composted biosolids (CBS)—were strategically combined to develop this innovative Technosol. The formulation [...] Read more.
This study explores the potential of non-hazardous wastes for crafting an engineered soil-like material (Technosol) suitable for landfill capping applications. Three distinct materials—waste foundry sand (WFS), washing aggregate sludge (WAS), and composted biosolids (CBS)—were strategically combined to develop this innovative Technosol. The formulation process involved a comprehensive analysis of their physical–chemical properties, mineral composition, leachate quality, and a series of geotechnical assessments to ensure compliance with landfill top cover construction standards. The blend 90WFS/10WAS showed optimal geotechnical properties for constructing a protective layer, including maximum dry density (1.77 g cm−3), void ratio (0.4), CBR index (23.2), cohesive strength (40 kPa), internal friction (ϕ = 30°), and permeability coefficient (k = 1.48 × 10−6 cm s−1). Further enhancement was achieved by adding 10% CBS, resulting in the development of a functional organo-mineral topsoil horizon (81WFS/9WAS/10CBS). Importantly, leachate analysis confirmed the negligible environmental footprint of this Technosol. Moreover, a pot-based experiment with Brassica juncea planting validated its capacity to support plant growth and establish a vegetative cover on the landfill surface. Full article
(This article belongs to the Special Issue Research Progress in Waste Resource Utilization)
Show Figures

Figure 1

15 pages, 3628 KiB  
Article
Enhancement of Sustainable Recycling Systems for Industrial Waste in South Korea via Hazardous Characteristics Analysis
by Su-Han Jang, Na-Hyeon Cho, Tae-Woo Kim, Young-Yeul Kang, Young-Sam Yoon and Heung-Min Yoo
Environments 2024, 11(7), 143; https://doi.org/10.3390/environments11070143 - 8 Jul 2024
Viewed by 3059
Abstract
The South Korean government has implemented an acceptance system to promote the high-quality recycling of waste. Industrial waste generators must provide “hazardous characteristics data” to recycling operators. Nonetheless, ~80% of industrial safety accidents in South Korea occur during recycling, most involving fire or [...] Read more.
The South Korean government has implemented an acceptance system to promote the high-quality recycling of waste. Industrial waste generators must provide “hazardous characteristics data” to recycling operators. Nonetheless, ~80% of industrial safety accidents in South Korea occur during recycling, most involving fire or explosions. Moreover, a gap in safety management exists during ‘Circular Resource’ acceptance if the target substance is not regarded as waste. In this study collected data on hazardous waste characteristics. From 62 waste generators, 72 waste samples were collected, accounting for most of the resources accepted for recycling, including waste synthetic polymers, slag, dust, waste sand, and waste foundry sand. Then, the hazardous characteristics, as stated in the Ministry of Environment notifications, were assessed. Leaching toxicity was detected in one slag sample and six dust samples. The Cd, Cu, As, Pb, Zn, Ni, Hg, F, and CN levels dissatisfied the Soil Contamination Warning Standard in 31 samples. Explosivity was not detected in any sample, whereas flammability was detected in one waste synthetic polymer sample. The results revealed 15 cases of potential flammability. Flammability is legally defined as below the criteria if the combustion speed criterion is not met. However, in the case of flame ignition, which could cause large fires and safety accidents, the relevant notification should be revised. In this study, we aimed to improve the gap between the hazardous waste management systems and industrial fields through actual measurements of hazardous characteristics. By doing so, we seek to contribute to the prevention of environmental and safety accidents. By continuously accumulating data and utilizing actual measurements, we aim to revise and enhance relevant regulations, ultimately improving the hazardous characteristics of waste management systems. Full article
Show Figures

Figure 1

28 pages, 32642 KiB  
Article
Performance Evaluation of Self-Compacting Concrete Prepared Using Waste Foundry Sand on Engineering Properties and Life Cycle Assessment
by Ranjitha B. Tangadagi and P. T. Ravichandran
Recycling 2024, 9(3), 47; https://doi.org/10.3390/recycling9030047 - 1 Jun 2024
Cited by 6 | Viewed by 2327
Abstract
The primary objective of this research is to utilize an industrial waste byproduct such as waste foundry sand (WFS) as an alternative for fine aggregate in self-compacting concrete (SCC). This research focuses on the use of WFS in SCC to enhance durability and [...] Read more.
The primary objective of this research is to utilize an industrial waste byproduct such as waste foundry sand (WFS) as an alternative for fine aggregate in self-compacting concrete (SCC). This research focuses on the use of WFS in SCC to enhance durability and mechanical properties, to find an alternative for fine aggregate in SCC, to reduce the disposal challenges of WFS, and to make SCC lightweight and environmentally friendly. Initially, WFS was treated with chemical (H2SO4), segregating, and sieving to remove the foreign matter and clay content. For this study, WFS is considered in varying percentages such as 0, 10, 20, 30, 40, and 50. For this investigation, M60 grade SCC is considered as per Indian standards and EFNARC guidelines. After that, this research focuses on tests on various fresh properties of SCC in each batch to find the flowability and passing ability of various mixes prepared using WFS. Similarly, the mechanical properties of SCC such as compressive, flexural, and split tensile strength tests were performed at 7, 28, and 90 days curing periods, respectively. Likewise, durability properties of SCC were found in all the mixes prepared using WFS such as water absorption, sorptivity, resistance to chemical attack, and chloride ion penetration; tests of these properties were performed at 28 and 90 days curing periods, respectively. Based on the experimental investigation of SCC, it was found that WFS can be used in M60 grade SCC as an alternative for fine aggregate up to 30% without compromising much on its properties. Finally, this establishes that using treated WFS in SCC helps in reducing the generation of waste and prevails as a meaningful utilization method. This research will also establish that the use of treated WFS will reduce the density and make SCC a lightweight, green, and sustainable material. Full article
Show Figures

Figure 1

12 pages, 2908 KiB  
Article
Use of Foundry Sands in the Production of Ceramic and Geopolymers for Sustainable Construction Materials
by Caterina Sgarlata, Maria Camila Ariza-Tarazona, Enrico Paradisi, Cristina Siligardi and Isabella Lancellotti
Appl. Sci. 2023, 13(8), 5166; https://doi.org/10.3390/app13085166 - 21 Apr 2023
Cited by 9 | Viewed by 3094
Abstract
The aim of this research was to evaluate the possibility of reusing waste foundry sands derived from the production of cast iron as a secondary raw material for the production of building materials obtained both by high-temperature (ceramic tiles and bricks) and room-temperature [...] Read more.
The aim of this research was to evaluate the possibility of reusing waste foundry sands derived from the production of cast iron as a secondary raw material for the production of building materials obtained both by high-temperature (ceramic tiles and bricks) and room-temperature (binders such as geopolymers) consolidation. This approach can reduce the current demand for quarry sand and/or aluminosilicate precursors from the construction materials industries. Samples for porcelain stoneware and bricks were produced, replacing the standard sand contained in the mixtures with waste foundry sand in percentages of 10%, 50%, and 100% by weight. For geopolymers, the sand was used as a substitution for metakaolin (30, 50, 70 wt%) as an aluminosilicate precursor rather than as an aggregate to obtain geopolymer pastes. Ceramic samples obtained using waste foundry sand were characterized by tests for linear shrinkage, water absorption, and colorimetry. Geopolymers formulations, produced with a Si/Al ratio of 1.8 and Na/Al = 1, were characterized to evaluate their chemical stability through measurements of pH and ionic conductivity, integrity in water, compressive strength, and microstructural analysis. The results show that the addition of foundry sand up to 50% did not significantly affect the chemical-physical properties of the ceramic materials. However, for geopolymers, acceptable levels of chemical stability and mechanical strength were only achieved when using samples made with 30% foundry sand as a replacement for metakaolin. Full article
Show Figures

Figure 1

29 pages, 25279 KiB  
Article
Mechanical Reclamation of Spent Moulding Sand on Chromite Sand Matrix; Removal of Alkali-Phenolic Binder
by Mariusz Łucarz, Aldona Garbacz-Klempka, Dariusz Drożyński, Mateusz Skrzyński and Krzysztof Kostrzewa
Materials 2023, 16(7), 2919; https://doi.org/10.3390/ma16072919 - 6 Apr 2023
Cited by 1 | Viewed by 2459
Abstract
The foundry industry generates large amounts of waste when casting metal into sand moulds. An important issue is the activities that are related to the re-recovery of the grain matrix (the main component of the moulding sand) for realising subsequent technological cycles. This [...] Read more.
The foundry industry generates large amounts of waste when casting metal into sand moulds. An important issue is the activities that are related to the re-recovery of the grain matrix (the main component of the moulding sand) for realising subsequent technological cycles. This process is particularly important in the case of the expensive chromite matrix that is necessary for use in manganese steel casting. The effects of the reclamation treatments of spent alkali-phenolic binder sand were evaluated by scanning electron microscopy with EDS, analysing the chemical composition in micro areas and proving the loss of binder on the surfaces of the matrix grains. Tests were also performed using the main criteria for evaluating a reclaimed organic binder: sieve analysis and ignition loss. A thermogravimetric analysis study was performed to assess the change in the chromite character of the grain matrix under the influence of temperature. The effects of the reclamation measures were verified by making moulding compounds on a matrix of reclaimed sand and a mixture of reclaimed and fresh sand. The tests and analyses that were carried out indicated the direction of an effective method for reclaiming used alkali-phenolic binder masses and the extent of the proportion of the regenerate in moulding sand in order to maintain the relevant technological parameters of the moulding sand. Full article
(This article belongs to the Special Issue Advanced Materials – Microstructure, Manufacturing and Analysis)
Show Figures

Figure 1

21 pages, 14341 KiB  
Article
Effect of Recycled Foundry Sand on the Workability and Mechanical Properties of Mortar
by Gilberto García Del Angel, Jose A. Sainz-Aja, Pablo Tamayo, Ana Cimentada, René Cabrera, Luis Ruiz Pestana and Carlos Thomas
Appl. Sci. 2023, 13(6), 3436; https://doi.org/10.3390/app13063436 - 8 Mar 2023
Cited by 6 | Viewed by 2473
Abstract
Modern society requires a large number of metal components manufactured by sand casting, which involves the generation of a waste product known as Used Foundry Sand (UFS), of which approximately 100 Mt are generated on an annual basis. Virtually all UFS is currently [...] Read more.
Modern society requires a large number of metal components manufactured by sand casting, which involves the generation of a waste product known as Used Foundry Sand (UFS), of which approximately 100 Mt are generated on an annual basis. Virtually all UFS is currently landfilled, despite the economic and environmental cost overruns that this entails. Here, the recovery of UFS as fine aggregates for the manufacture of concrete is proposed. Since the presence of UFS will mainly affect the mortar that binds the aggregates in the manufacture of concrete, it was decided to isolate this fraction and study only the effect of UFS in mortars. This study evaluated a total of 32 different mixes combining different W/C ratios varying between 0.5 and 0.7 with 5 replacement ratios of natural sand by UFS: 0, 25, 50, 75 and 100%, respectively. The combined effect was evaluated of the W/C ratio and the replacement ratio on the workability, physical properties, mechanical properties, mechanical durability, and microstructure of the mortars. The incorporation of UFS decreases the workability of the mortars due to the absorption of the residue. For the physical properties of the mortars, density decreased and porosity and absorption increased at all replacement percentages. Flexural and compressive strength decreased when the replacement percentage was higher than 25 wt.%. In terms of mechanical durability, the mortars with UFS showed abrasion marks within the limits of the EN-1338 standard. From the results obtained, it is possible to conclude that the mortars with UFS require a higher amount of water. Therefore, while small replacement levels lead to a slight improvement in the mechanical properties, this trend breaks down for high replacement levels due to the negative effect of the high W/C ratios required. The authors recommend that for replacements higher than 25 wt.% of UFS, the W/C ratio has to be taken into consideration to obtain the same workability as the control mortar, although this decreases the mechanical properties. Full article
(This article belongs to the Special Issue Eco-Efficient Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop