Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (175)

Search Parameters:
Keywords = waste clay bricks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2308 KB  
Article
Refractory Geopolymer Bricks from Clays and Seashells: Effect of Sodium Lignosulfonate and Polycarboxylate Plasticizers on Workability and Compressive Strength
by Andrea Yesenia Ramírez-Yáñez, Nadia Renata Osornio-Rubio, Hugo Jiménez-Islas, Fernando Iván Molina-Herrera, Jorge Alejandro Torres-Ochoa and Gloria María Martínez-González
Eng 2026, 7(1), 39; https://doi.org/10.3390/eng7010039 - 11 Jan 2026
Viewed by 179
Abstract
Refractory geopolymers derived from aluminosilicate sources and alkaline activation are a promising alternative to traditional fired bricks, particularly when low-cost, waste-derived raw materials are used. This study improves the workability of a refractory brick formulated with clays (Kaolin and Tepozan–Bauwer), seashell waste, sodium [...] Read more.
Refractory geopolymers derived from aluminosilicate sources and alkaline activation are a promising alternative to traditional fired bricks, particularly when low-cost, waste-derived raw materials are used. This study improves the workability of a refractory brick formulated with clays (Kaolin and Tepozan–Bauwer), seashell waste, sodium silicate, potassium hydroxide, and water by incorporating sodium lignosulfonate (LS) and polycarboxylate (PC) plasticizers. Clays from Comonfort, Guanajuato, Mexico, and seashells were ground and sieved to pass a 100 Tyler mesh. A base mixture was prepared and evaluated using the Mini Slump Test, varying plasticizer content from 0 to 2% relative to the solid fraction. Based on workability, 0.5% LS and 1% PC (by solids) increased the slump, and a blended plasticizer formulation (1.5% by solids, 80%PC+20%LS) produced the highest workability. These additives act through different mechanisms, with LS primarily promoting electrostatic repulsion and PC steric repulsion. Bricks with and without plasticizers exhibited thermal resistance up to 1200 °C. After four calcination cycles, compressive strength values were 354.74 kgf/cm2 for the brick without plasticizer, 597.25 kgf/cm2 for 1% PC, 433.63 kgf/cm2 for 0.5% LS, and 519.05 kgf/cm2 for 1.5% of the 80%PC+20%LS blend. Strength was consistent with changes in porosity and apparent density, and 1% PC provided a favorable combination of high workability and high compressive strength after cycling. Because the cost of clays and seashells is negligible, formulation selection was based on plasticizer cost per brick. Although 1% PC and the 1.5% of 80%PC+20%LS blend showed statistically comparable strength after cycling, 1% PC was selected as the preferred option due to its lower additive cost ($0.0449 per brick) compared with the blend ($0.0633 per brick). Stereoscopic microscopy indicated pore closure after calcination with no visible cracking, and SEM–EDS identified O, Si, and Al as the significant elements, with traces of S and K. Overall, the study provides an integrated assessment of workability, multi-cycle calcination, microstructure, and performance for refractory bricks produced from readily available clays and seashell waste. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

19 pages, 3427 KB  
Article
Experimental Investigations of One-Part Geopolymer Mortar: Fresh, Hardened, and Durability Properties Using Locally Available Industrial Waste
by Muhammad Tariq Bashir, Muhammad Jamal Shinwari, Ratan Lal, Md. Alhaz Uddin, Muhammad Ali Sikandar, Md. Habibur Rahman Sobuz, Ahmed Almutairi, Jie Wen and Md. Munir Hayet Khan
Buildings 2026, 16(1), 37; https://doi.org/10.3390/buildings16010037 - 22 Dec 2025
Viewed by 393
Abstract
The disposal of industrial waste poses a significant environmental challenge, often leading to pollution and degradation of surrounding and terrestrial ecosystems. This study investigates the sustainable valorization of such wastes through the development of one-part geopolymer mortars. Solid sodium silicate was employed as [...] Read more.
The disposal of industrial waste poses a significant environmental challenge, often leading to pollution and degradation of surrounding and terrestrial ecosystems. This study investigates the sustainable valorization of such wastes through the development of one-part geopolymer mortars. Solid sodium silicate was employed as a dry alkali activator for binary blends comprising ground granulated blast-furnace slag (GGBS), clay brick powder (CBP), steel slag (SS), and fly ash (FA), with all mixtures cured under ambient conditions. The mortars were evaluated in terms of fresh properties (flow and setting time) and hardened characteristics, including compressive strength, density, water absorption, and porosity. Durability performance was assessed through mass loss, visual degradation, and compressive strength retention following exposure to acidic (H2SO4, HCl) and sulfate environments. Microstructural characterization using XRD, SEM, and FTIR provided insight into the mechanisms of gel formation and degradation in aggressive media. The results revealed that incorporating 5% FA into GGBS-based mortars enhanced 28-day compressive strength by 21.7% compared with the control mix. The inclusion of industrial by-products promoted the formation of C–S–H and C–(A)–S–H gels, contributing to a denser and more refined microstructure. Overall, the findings demonstrate that one-part geopolymer mortars offer a promising, eco-efficient, and durable alternative to traditional cementitious systems, while also addressing safety and handling concerns associated with liquid alkaline activators used in conventional two-part geopolymer formulations. Full article
Show Figures

Figure 1

20 pages, 3421 KB  
Article
Design and Characterization of Ceramic Bricks with Industrial Waste and Silica–Carbon-Based Additives
by Aidar Kengesbekov, Alfira Sabitova, Moldir Bayandinova, Zhanna Sharipkhan, Diana Bexoltanova and Nurlan Mukhamediarov
Buildings 2026, 16(1), 20; https://doi.org/10.3390/buildings16010020 - 19 Dec 2025
Viewed by 370
Abstract
This study investigates ceramic bricks produced by partially replacing clay with Pb–Zn metallurgical residues (lead furnace dust and cyclone dust), fly ash, and carbonaceous additives. The novelty lies in the integrated multi-waste formulation and the combined FTIR–TGA–XRD analytical approach used to elucidate phase-formation [...] Read more.
This study investigates ceramic bricks produced by partially replacing clay with Pb–Zn metallurgical residues (lead furnace dust and cyclone dust), fly ash, and carbonaceous additives. The novelty lies in the integrated multi-waste formulation and the combined FTIR–TGA–XRD analytical approach used to elucidate phase-formation mechanisms. The results show that firing promotes the development of quartz, mullite, iron oxides, and an extensive Fe–Pb–Zn–Si–O amorphous network, while higher residue contents enhance amorphization and suppress mullite crystallization. These microstructural changes correlate with reduced compressive strength (1.6–3.1 MPa) and high water absorption (32–36%), although all samples completed 15 freeze–thaw cycles. Heavy-metal leaching assessed by atomic absorption spectroscopy (AAS) revealed very low Pb (0.08–0.20 mg/L) and Zn (0.25–0.45 mg/L) release, well below international safety limits, demonstrating effective immobilization of hazardous ions within the glassy matrix. Overall, the study provides new insight into multi-waste interactions during sintering and confirms that controlled residue incorporation enables environmentally safe, non-load-bearing ceramic materials with reduced clay consumption. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 2862 KB  
Article
Sustainable Concrete Hollow Blocks Using Composite Waste Replacing Fired Clay Bricks—An Experimental Study
by Mohammad Nadeem Akhtar and Dima A. Husein Malkawi
Sustainability 2025, 17(24), 10963; https://doi.org/10.3390/su172410963 - 8 Dec 2025
Viewed by 478
Abstract
The removal of topsoil from agricultural land and the use of low-quality fuel to produce fired clay bricks affect the environment, disturbing the ecological balance and contributing to climate change. This study has attempted to produce sustainable concrete hollow blocks by replacing OPC [...] Read more.
The removal of topsoil from agricultural land and the use of low-quality fuel to produce fired clay bricks affect the environment, disturbing the ecological balance and contributing to climate change. This study has attempted to produce sustainable concrete hollow blocks by replacing OPC with a combination of supplementary cementitious materials (SCMs) (5–25% fly ash) optimally (10% silica fume and 5% recycled aggregate fine dust). Furthermore, 100% of the developed sustainable sand was added instead of natural sand. Based on the results, the highest compressive strength, 7.6 MPa, was achieved in the mix 15FASFRAHB with the combination SCMs (15% fly ash + 10% silica fume + 5% recycled aggregate fine dust), slightly higher (2.7%) than that of the reference mix NAHB*’s value of 7.4 MPa. All hollow block mixes also satisfied the tensile strength criterion (10–15% of f’c of NAHB*). This showed that they reached the acceptable strength limit for building hollow blocks. In addition, the SCMs effectively reduce the permeability coefficient (k) of sustainable concrete hollow block mixes. However, a direct correlation between the permeability coefficient (k) and compressive strength was not maintained. Finally, the best overall mix from this study, 15FASFRAHB, was with an optimal 30% SCMs and 100% sustainable sand. By using developed sustainable concrete hollow blocks in place of fired clay bricks (6.48 × 107 tons of CO2 emission), 1.2 × 109 tons of natural sand can be saved. Full article
(This article belongs to the Special Issue Application of Sustainable Materials in the Construction Industry)
Show Figures

Figure 1

15 pages, 2279 KB  
Article
A Comparative Study of Waste Red-Clay Brick Powder (WRCBP) and Fly Ash (FA) as Precursors for Geopolymer Production
by Yifang He, Wei Tang, Chunran Wu, Baojun Zhao and Shicong Kou
Buildings 2025, 15(24), 4409; https://doi.org/10.3390/buildings15244409 - 5 Dec 2025
Viewed by 283
Abstract
Utilizing waste red-clay brick powder (WRCBP) as a precursor for manufacturing geopolymers is increasingly popular due to its environmental and economic benefits. However, the geopolymerization of this waste remains insufficiently explored. This study evaluates the differences in physical–mechanical properties and microstructural evolution of [...] Read more.
Utilizing waste red-clay brick powder (WRCBP) as a precursor for manufacturing geopolymers is increasingly popular due to its environmental and economic benefits. However, the geopolymerization of this waste remains insufficiently explored. This study evaluates the differences in physical–mechanical properties and microstructural evolution of WRCBP- and fly ash (FA)-based geopolymers to determine the reactivity of WRCBP. Mineral admixtures, including granulated blast furnace slag (GF) and metakaolin (MT), were incorporated with WRCBP to fabricate geopolymer pastes, while FA was used in parallel for comparison. The effects of activator modulus (1.2 and 1.4 for Na2SiO3) and curing conditions (65 °C and 90 °C) on the mechanical and microstructural performance of the prepared pastes were investigated through water demand analysis, compressive strength testing, mercury intrusion porosimetry (MIP), and scanning electron microscopy (SEM). The results indicate that WRCBP-based pastes achieved a comparable compressive strength (39.8 MPa) under appropriate alkali-activated and curing conditions relative to FA-based pastes (42.5 MPa). The modulus of the alkaline activator exerted a greater influence on strength development than the raw material composition. For both WRCBP- and FA-based pastes, 65 °C was identified as a more suitable curing temperature. Moreover, compared with FA-based pastes, pastes produced using WRCBP provide enhanced social and economic benefits. Overall, this study confirms that high-performance binders can be engineered by incorporating WRCBP, thereby supporting the development of sustainable low-carbon construction materials. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

32 pages, 18102 KB  
Article
Sustainable Concrete Using Porcelain and Clay Brick Waste as Partial Sand Replacement: Evaluation of Mechanical and Durability Properties
by Mustafa Thaer Hasan, Alaa A. Abdul-Hamead and Farhad M. Othman
Constr. Mater. 2025, 5(4), 78; https://doi.org/10.3390/constrmater5040078 - 29 Oct 2025
Viewed by 728
Abstract
The increasing demand for sustainable construction materials has prompted the recycling of construction and demolition waste in concrete manufacturing. This study investigates the feasibility of utilizing porcelain and brick waste as partial substitutes for natural sand in concrete with the objective of improving [...] Read more.
The increasing demand for sustainable construction materials has prompted the recycling of construction and demolition waste in concrete manufacturing. This study investigates the feasibility of utilizing porcelain and brick waste as partial substitutes for natural sand in concrete with the objective of improving sustainability and preserving mechanical and durability characteristics. The experimental program was conducted in three consecutive phases. During the initial phase, natural sand was partially substituted with porcelain waste powder (PWP) and brick waste powder (BWP) in proportions of 25%, 50%, and 75% of the weight of the fine aggregate. During the second phase, polypropylene fibers were mixed at a dosage of 0.5% by volume fraction to enhance tensile and flexural properties. During the third phase, zinc oxide nanoparticles (ZnO-NPs) were utilized as a partial substitute for cement at concentrations of 0.5% and 1% to improve microstructure and strength progression. Concrete samples were tested at curing durations of 7, 28, and 91 days. The assessed qualities encompassed workability, density, water absorption, porosity, compressive strength, flexural strength, and splitting tensile strength. Microstructural characterization was conducted utilizing X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The findings indicated that porcelain waste powder markedly surpassed brick waste powder in all mechanical and durability-related characteristics, particularly at 25% and 50% sand replacement ratios. The integration of polypropylene fibers enhanced fracture resistance and ductility. Moreover, the incorporation of zinc oxide nanoparticles improved hydration, optimized the pore structure, and resulted in significant enhancements in compressive and tensile strength throughout prolonged curing durations. The best results were obtained with a mix of 50% porcelain sand aggregate, 1% zinc oxide nanoparticles as cement replacement, and 0.5% polypropylene fibers, for which the improvements in compressive strength, flexural strength, and splitting tensile strength were 39.5%, 46.2%, and 60%, respectively, at 28 days. The results confirm the feasibility of using porcelain and brick waste as sand replacements in concrete, as well as polypropylene fiber-reinforced concrete and polypropylene fiber-reinforced concrete mixed with zinc oxide nanoparticles as a sustainable option for construction purposes. Full article
Show Figures

Figure 1

21 pages, 3880 KB  
Article
Utilizing Recycled PET and Mining Waste to Produce Non-Traditional Bricks for Sustainable Construction
by Gonzalo Díaz-García, Piero Diaz-Miranda and Christian Tineo-Villón
Sustainability 2025, 17(19), 8841; https://doi.org/10.3390/su17198841 - 2 Oct 2025
Viewed by 2660
Abstract
Plastic waste, particularly polyethylene terephthalate (PET), poses a growing environmental challenge. This study investigates the feasibility of incorporating recycled PET into clay bricks as a sustainable alternative in construction. Bricks were fabricated with 0%, 5%, 10%, and 15% PET content. Clay characterization included [...] Read more.
Plastic waste, particularly polyethylene terephthalate (PET), poses a growing environmental challenge. This study investigates the feasibility of incorporating recycled PET into clay bricks as a sustainable alternative in construction. Bricks were fabricated with 0%, 5%, 10%, and 15% PET content. Clay characterization included particle size distribution, Atterberg limits, and moisture content. Physical and mechanical tests evaluated dimensional variability, void percentage, warping, water absorption, suction, unit compressive strength (fb), and prism compressive strength (fm). Statistical analysis (Shapiro–Wilk, p < 0.05) validated the results. PET addition improved physical properties—reducing water absorption, suction, and voids—while slightly compromising mechanical strength. The 15% PET mix showed the best overall performance (fb = 24.00 kg/cm2; fm = 20.40 kg/cm2), with uniform deformation and lower absorption (18.7%). Recycled PET enhances key physical attributes of clay bricks, supporting its use in eco-friendly construction. However, reduced compressive strength limits its structural applications. Optimizing PET particle size, clay type, and firing conditions is essential to improve load-bearing capacity. Current formulations are promising for non-structural uses, contributing to circular material strategies. Full article
(This article belongs to the Topic Sustainable Building Materials)
Show Figures

Figure 1

29 pages, 7735 KB  
Article
Preparation of Ecological Refractory Bricks from Phosphate Washing By-Products
by Mariem Hassen, Raja Zmemla, Mouhamadou Amar, Abdalla Gaboussa, Nordine Abriak and Ali Sdiri
Appl. Sci. 2025, 15(19), 10647; https://doi.org/10.3390/app151910647 - 1 Oct 2025
Viewed by 720
Abstract
This research is to assess the potential use of phosphate sludge from the Gafsa (Tunisia) phosphate laundries as an alternative raw material for the manufacture of ecological refractory bricks. Feasibility was evaluated through comprehensive physico-chemical and mineralogical characterizations of the raw materials using [...] Read more.
This research is to assess the potential use of phosphate sludge from the Gafsa (Tunisia) phosphate laundries as an alternative raw material for the manufacture of ecological refractory bricks. Feasibility was evaluated through comprehensive physico-chemical and mineralogical characterizations of the raw materials using X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier-transform infrared spectroscopy (FTIR), and thermal analysis (TGA-DTA). Bricks were formulated by substituting phosphate sludge with clay and diatomite, then activated with potassium silicate solution to produce geopolymeric materials. Specific formulations exhibited mechanical performance ranging from 7 MPa to 26 MPa, highlighting the importance of composition and minimal water absorption values of approximately 17.8% and 7.7%. The thermal conductivity of the bricks was found to be dependent on the proportions of diatomite and clay, reflecting their insulating potential. XRD analysis indicated the formation of an amorphous aluminosilicate matrix, while FTIR spectra confirmed the development of new chemical bonds characteristic of geopolymerization. Thermal analysis revealed good stability of the materials, with mass losses mainly related to dehydration and dehydroxylation processes. Environmental assessments showed that most samples are inert or non-hazardous, though attention is required for those with elevated chromium content. Overall, these findings highlight the viability of incorporating phosphate sludge into fired brick production, offering a sustainable solution for waste valorization in accordance with the circular economy. Full article
Show Figures

Figure 1

27 pages, 12942 KB  
Article
Recycled Materials and Lightweight Insulating Additions to Mixtures for 3D Concrete Printing
by Marcin Maroszek, Magdalena Rudziewicz, Karina Rusin-Żurek, Izabela Hager and Marek Hebda
Materials 2025, 18(18), 4387; https://doi.org/10.3390/ma18184387 - 19 Sep 2025
Cited by 1 | Viewed by 796
Abstract
Three-dimensional concrete printing (3DCP) is advancing rapidly, yet its sustainable adoption requires alignment with circular-economy principles. This study evaluates the substitution of natural aggregates with recycled constituents, 3DCP waste, brick debris, glass cullet, mixed rubble, fly ash, and slag, and the use of [...] Read more.
Three-dimensional concrete printing (3DCP) is advancing rapidly, yet its sustainable adoption requires alignment with circular-economy principles. This study evaluates the substitution of natural aggregates with recycled constituents, 3DCP waste, brick debris, glass cullet, mixed rubble, fly ash, and slag, and the use of lightweight fillers (expanded perlite, lightweight expanded clay aggregate (LECA), and expanded polystyrene (EPS)) to reduce density and improve insulation. Key properties, such as particle-size distribution, printability, mechanical performance, thermal conductivity, and water absorption, were determined. Results indicate that grading strongly affected mixture behavior. Narrow distributions (fly ash, milled 3DCP waste) enhanced extrudability, while broader gradings (glass, rubble, slag) increased water demand and extrusion risks. Despite these differences, all systems remained within the printable window: flow spread decreased with most recycled additions (lowest for brick) and increased with glass. Mechanical responses were composition-dependent. Flexural strength typically decreased. Compressive strength benefited from broader gradings, with replacement levels up to ~6% enhancing strength due to improved packing. Loading anisotropy typical of 3DCP was observed, with perpendicular compressive strength reaching up to 13% higher values than parallel loading. Lightweight fillers significantly reduced thermal conductivity. LECA provided the best compromise between strength and insulation, perlite showed intermediate behavior, and EPS achieved the lowest thermal conductivity but induced significant strength penalties due to weak matrix-EPS interfaces. Water absorption decreased in recycled-aggregate mixes, whereas lightweight systems, particularly with perlite, retained higher uptake. The results demonstrate that non-reactive recycled aggregates and lightweight insulating fillers can be successfully integrated into extrusion-based 3DCP without compromising printability. Full article
Show Figures

Graphical abstract

16 pages, 5284 KB  
Article
Hydration, Soundness, and Strength of Low Carbon LC3 Mortar Using Waste Brick Powder as a Source of Calcined Clay
by Saugat Humagain, Gaurab Shrestha, Mini K. Madhavan and Prabir Kumar Sarker
Materials 2025, 18(15), 3697; https://doi.org/10.3390/ma18153697 - 6 Aug 2025
Cited by 1 | Viewed by 1552
Abstract
The construction industry is responsible for 39% of global CO2 emissions related to energy use, with cement responsible for 5–8% of it. Limestone calcined clay cement (LC3), a ternary blended binder system, offers a low-carbon alternative by partially substituting clinker [...] Read more.
The construction industry is responsible for 39% of global CO2 emissions related to energy use, with cement responsible for 5–8% of it. Limestone calcined clay cement (LC3), a ternary blended binder system, offers a low-carbon alternative by partially substituting clinker with calcined clay and limestone. This study investigated the use of waste clay brick powder (WBP), a waste material, as a source of calcined clay in LC3 formulations, addressing both environmental concerns and SCM scarcity. Two LC3 mixtures containing 15% limestone, 5% gypsum, and either 15% or 30% WBP, corresponding to clinker contents of 65% (LC3-65) or 50% (LC3-50), were evaluated against general purpose (GP) cement mortar. Tests included setting time, flowability, soundness, compressive and flexural strengths, drying shrinkage, isothermal calorimetry, and scanning electron microscopy (SEM). Isothermal calorimetry showed peak heat flow reductions of 26% and 49% for LC3-65 and LC3-50, respectively, indicating a slower reactivity of LC3. The initial and final setting times of the LC3 mixtures were 10–30 min and 30–60 min longer, respectively, due to the slower hydration kinetics caused by the reduced clinker content. Flowability increased in LC3-50, which is attributed to the lower clinker content and higher water availability. At 7 days, LC3-65 retained 98% of the control’s compressive strength, while LC3-50 showed a 47% reduction. At 28 days, the compressive strengths of mixtures LC3-65 and LC3-50 were 7% and 46% lower than the control, with flexural strength reductions being 8% and 40%, respectively. The porosity calculated from the SEM images was found to be 7%, 11%, and 15% in the control, LC3-65, and LC3-50, respectively. Thus, the reduction in strength is attributed to the slower reaction rate and increased porosity associated with the reduced clinker content in LC3 mixtures. However, the results indicate that the performance of LC3-65 was close to that of the control mix, supporting the viability of WBP as a low-carbon partial replacement of clinker in LC3. Full article
(This article belongs to the Special Issue Towards Sustainable Low-Carbon Concrete—Second Edition)
Show Figures

Figure 1

16 pages, 1572 KB  
Article
Application of ANN in the Performance Evaluation of Composite Recycled Mortar
by Shichao Zhao, Yaohua Liu, Geng Xu, Hao Zhang, Feng Liu and Binglei Wang
Buildings 2025, 15(15), 2752; https://doi.org/10.3390/buildings15152752 - 4 Aug 2025
Viewed by 570
Abstract
To promote the large-scale utilization of construction and industrial solid waste in engineering, this study focuses on developing accurate prediction and optimization methods for the unconfined compressive strength (UCS) of composite recycled mortar. Innovatively incorporating three types of recycled powder (RP)—recycled clay brick [...] Read more.
To promote the large-scale utilization of construction and industrial solid waste in engineering, this study focuses on developing accurate prediction and optimization methods for the unconfined compressive strength (UCS) of composite recycled mortar. Innovatively incorporating three types of recycled powder (RP)—recycled clay brick powder (RCBS), recycled concrete powder (RCBP), and recycled gypsum powder (RCGP)—we systematically investigated the effects of RP type, replacement rate, and curing period on mortar UCS. The core objective and novelty lie in establishing and comparing three artificial intelligence models for high-precision UCS prediction. Furthermore, leveraging GA-BP’s functional extremum optimization theory, we determined the optimal UCS alongside its corresponding mix proportion and curing scheme, with experimental validation of the solution reliability. Key findings include the following: (1) Increasing total RP content significantly reduces mortar UCS; the maximum UCS is achieved with a 1:1 blend ratio of RCBP:RCGP, while a 20% RCBS replacement rate and extended curing periods markedly enhance strength. (2) Among the prediction models, GA-BP demonstrates superior performance, significantly outperforming BP models with both single and double hidden layer. (3) The functional extremum optimization results exhibit high consistency with experimental validation, showing a relative error below 10%, confirming the method’s effectiveness and engineering applicability. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 3174 KB  
Article
Prospective LCA for 3D-Printed Foamed Geopolymer Composites Using Construction Waste as Additives
by Karina Balina, Rihards Gailitis, Maris Sinka, Pauls Pavils Argalis, Liga Radina and Andina Sprince
Sustainability 2025, 17(14), 6459; https://doi.org/10.3390/su17146459 - 15 Jul 2025
Viewed by 1216
Abstract
Additive manufacturing has recently become popular and more cost-effective for building construction. This study presents a prospective life cycle assessment (LCA) of 3D-printed foamed geopolymer composites (3D-FOAM materials) incorporating construction and demolition waste. The materials were developed using fly ash, slag, sand, and [...] Read more.
Additive manufacturing has recently become popular and more cost-effective for building construction. This study presents a prospective life cycle assessment (LCA) of 3D-printed foamed geopolymer composites (3D-FOAM materials) incorporating construction and demolition waste. The materials were developed using fly ash, slag, sand, and a foaming agent, with recycled clay brick waste (CBW) and autoclaved aerated concrete waste (AACW) added as alternative raw materials. The material formulations were evaluated for their compressive strength and thermal conductivity to define two functional units that reflect structural and thermal performance. A prospective life cycle assessment (LCA) was conducted under laboratory-scale conditions using the ReCiPe 2016 method. Results show that adding CBW and AACW reduces environmental impacts across several categories, including global warming potential and ecotoxicity, without compromising material performance. Compared to conventional wall systems, the 3D-FOAM materials offer a viable low-impact alternative when assessed on a functional basis. These findings highlight the potential of integrating recycled materials into additive manufacturing to support circular economy goals in the construction sector. Full article
(This article belongs to the Special Issue Green Construction Materials and Sustainability)
Show Figures

Graphical abstract

14 pages, 2951 KB  
Article
Utilization of Sewage Sludge in the Sustainable Manufacturing of Ceramic Bricks
by Kairat Ospanov, Dariusz Andraka, Elmira Kuldeeva and Issatay Munussov
Sustainability 2025, 17(14), 6431; https://doi.org/10.3390/su17146431 - 14 Jul 2025
Cited by 1 | Viewed by 1857
Abstract
The storage of sewage sludge in landfills is still the primary method of their disposal in many countries. Therefore, finding sustainable solutions for the reuse of this waste is an important issue to be addressed. This paper presents the results of research on [...] Read more.
The storage of sewage sludge in landfills is still the primary method of their disposal in many countries. Therefore, finding sustainable solutions for the reuse of this waste is an important issue to be addressed. This paper presents the results of research on processing sewage sludge generated at the wastewater treatment plants of Almaty, Kazakhstan, for use in the manufacturing of ceramic bricks. The chemical composition of the sewage sludge was determined, showing the presence of 35.7% silicon dioxide, 7.3% aluminum oxide, 11.2% iron oxide, and 10.6% calcium oxide. Experimental studies established that adding sewage sludge to clay reduces the compressive strength of ceramic bricks while increasing their flexural strength. Furthermore, as the proportion of sewage sludge in the clay mixture increases, the average density of the ceramic bricks decreases, while water absorption increases. It was also found that ceramic bricks made from a mixture of 90% clay and 10% sewage sludge demonstrated the best physico-mechanical properties. This composition showed increased flexural strength and a simultaneous reduction in the average density by 15.4%, indicating the improved structural quality of the manufactured bricks. Full article
(This article belongs to the Special Issue Sustainable Advancements in Construction Materials)
Show Figures

Figure 1

29 pages, 13314 KB  
Article
Development of Unfired Clay Bricks with Alumina Waste from Liquid Nitrogen Production: A Sustainable Alternative for Construction Materials
by Noppadol Sangiamsak, Nopanom Kaewhanam, Meesakthana Puapitthayathorn, Seksan Numsong, Kowit Suwannahong, Sukanya Hongthong, Torpong Kreetachat, Sompop Sanongraj and Surachai Wongcharee
Sustainability 2025, 17(14), 6424; https://doi.org/10.3390/su17146424 - 14 Jul 2025
Viewed by 2356
Abstract
A major breakthrough in environmentally friendly building materials is the development of sustainable unfired clay bricks including alumina waste produced during liquid nitrogen generation. Though used extensively, conventional fired clay bricks require energy-intensive manufacturing techniques that produce significant amounts of CO2 and [...] Read more.
A major breakthrough in environmentally friendly building materials is the development of sustainable unfired clay bricks including alumina waste produced during liquid nitrogen generation. Though used extensively, conventional fired clay bricks require energy-intensive manufacturing techniques that produce significant amounts of CO2 and aggravate environmental damage. By removing the need for high-temperature firing and allowing for the valorization of industrial byproducts including alumina waste and lateritic soil, unfired clay bricks offer a reasonable low-carbon alternative. High silica and alumina contents define the alumina waste, which shows pozzolanic reactivity, thus improving the physicomechanical performance of the bricks. With alumina waste substituting 0–8.57% of the cement content, seven different formulations showed improvements in compressive strength, reduced water absorption, and optimal thermal conductivity. Especially, the mechanical performance was much enhanced with alumina waste inclusion up to 30%, without sacrificing thermal insulation capacity or moisture resistance. Further supporting the environmental and financial sustainability of the suggested brick compositions is the economic viability of using industrial waste and regionally derived soils. A comparative analysis of the conventional fired bricks shows that the unfired substitutes have a much lower environmental impact and show better mechanical properties, including greater compressive strength and modulus of rupture. These results support the more general goals of circular economy systems and low-carbon urban development by highlighting the feasibility of including alumina waste and lateritic soil into sustainable building materials. Using such waste-derived inputs in building fits world initiatives to lower resource consumption, lower greenhouse gas emissions, and build strong infrastructure systems. Full article
(This article belongs to the Special Issue Solid Waste Management and Sustainable Environmental Remediation)
Show Figures

Figure 1

17 pages, 6242 KB  
Article
Eco-Efficient Mortars with High-Content Construction, Waste-Derived Aggregates Functionalized via Nano-TiO2 for NOx Abatement
by Xiu-Cheng Zhang and Xue-Fei Chen
Processes 2025, 13(6), 1944; https://doi.org/10.3390/pr13061944 - 19 Jun 2025
Cited by 1 | Viewed by 622
Abstract
This study elucidates the photocatalytic NOx abatement efficacy of eco-efficient mortars incorporating construction waste-derived aggregates functionalized with nano-TiO2. The research findings demonstrate a positive correlation between NOx abatement efficiency and nano-TiO2 substitution ratio, with recycled glass sand (RG)-based panels exhibiting [...] Read more.
This study elucidates the photocatalytic NOx abatement efficacy of eco-efficient mortars incorporating construction waste-derived aggregates functionalized with nano-TiO2. The research findings demonstrate a positive correlation between NOx abatement efficiency and nano-TiO2 substitution ratio, with recycled glass sand (RG)-based panels exhibiting superior performance compared to standard sand and recycled clay brick sand (RCBS)-based counterparts. The employment of ultrasonic dispersion as a nano-TiO2 incorporation method yields enhanced abatement efficiency relative to direct mixing, attributable to improved photocatalyst dispersion and surface area accessibility. The loading capacity of nano-TiO2 on recycled aggregates is observed to be positively influenced by the concentration of nano-TiO2 solution, with recycled clay brick sand demonstrating the highest loading capacity. RG-RCBS panels are shown to exhibit higher NOx abatement efficiency than standard sand (SS)-RCBS panels, with an optimal substitution ratio of 40% glass sand identified for maximizing abatement efficacy in RG-RCBS systems. A decline in NOx abatement efficiency is observed with increasing NOx flow rate and concentration, attributable to reduced pollutant residence time and excess pollutant load exceeding the panels’ processing capacity. Prolonged curing time also results in diminished abatement efficiency, due to microstructural alterations within the mortar matrix and the accumulation of photocatalytic reaction byproducts. Collectively, these findings underscore the potential of recycled aggregate-based mortars, in conjunction with nano-TiO2, as a viable eco-efficient strategy for NOx abatement, highlighting the critical influence of material selection, photocatalyst loading, and operational parameters on system performance. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

Back to TopTop