Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (126)

Search Parameters:
Keywords = waste battery management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1978 KB  
Article
Challenging the Circular Economy: Hidden Hazards of Disposable E-Cigarette Waste
by Iwona Pasiecznik, Kamil Banaszkiewicz, Mateusz Koczkodaj and Aleksandra Ciesielska
Sustainability 2026, 18(2), 961; https://doi.org/10.3390/su18020961 (registering DOI) - 17 Jan 2026
Abstract
Waste electrical and electronic equipment (WEEE) is one of the fastest-growing waste streams globally. Disposable e-cigarettes are among the products that have gained popularity in recent years. Their complex construction and embedded lithium-ion batteries (LIBs) present environmental, safety, and resource recovery challenges. Despite [...] Read more.
Waste electrical and electronic equipment (WEEE) is one of the fastest-growing waste streams globally. Disposable e-cigarettes are among the products that have gained popularity in recent years. Their complex construction and embedded lithium-ion batteries (LIBs) present environmental, safety, and resource recovery challenges. Despite growing research interest, integrated analyses linking material composition with user disposal behavior remain limited. This study is the first to incorporate device-level mass balance, material contamination assessment, battery residual charge measurements, and user behavior to evaluate the waste management challenges of disposable e-cigarettes. A mass balance of twelve types of devices on the Polish market was performed. Plastics dominated in five devices, while non-ferrous metals prevailed in the others, depending on casing design. Materials contaminated with e-liquid residues accounted for 4.4–10.7% of device mass. Battery voltage measurements revealed that 25.6% of recovered LIBs retained a residual charge (greater than 2.5 V), posing a direct fire hazard during waste handling and treatment. Moreover, it was estimated that 7 to 12 tons of lithium are introduced annually into the Polish market via disposable e-cigarettes, highlighting substantial resource potential. Survey results showed that 46% of users disposed of devices in mixed municipal waste, revealing a knowledge–practice gap largely independent of gender or education. Integrating technical and social findings demonstrates that improper handling is a systemic issue. The findings support the relevance of eco-design requirements, such as modular casings for battery removal, alongside the enforcement of Extended Producer Responsibility (EPR) schemes. Current product fees (0.01–0.03 EUR/unit) remain insufficient to establish an effective collection infrastructure, highlighting a key systemic barrier. Full article
(This article belongs to the Special Issue Resource Management and Circular Economy Sustainability)
Show Figures

Figure 1

34 pages, 1919 KB  
Review
Life Cycle Optimization of Circular Industrial Processes: Advances in By-Product Recovery for Renewable Energy Applications
by Kyriaki Kiskira, Sofia Plakantonaki, Nikitas Gerolimos, Konstantinos Kalkanis, Emmanouela Sfyroera, Fernando Coelho and Georgios Priniotakis
Clean Technol. 2026, 8(1), 5; https://doi.org/10.3390/cleantechnol8010005 - 5 Jan 2026
Viewed by 433
Abstract
The global shift toward renewable energy and circular economy models requires industrial systems that minimize waste and recover value across entire life cycles. This review synthesizes recent advances in by-product recovery technologies supporting renewable energy and circular industrial processes. Thermal, biological, chemical/electrochemical, and [...] Read more.
The global shift toward renewable energy and circular economy models requires industrial systems that minimize waste and recover value across entire life cycles. This review synthesizes recent advances in by-product recovery technologies supporting renewable energy and circular industrial processes. Thermal, biological, chemical/electrochemical, and biotechnological routes are analyzed across battery and e-waste recycling, bioenergy, wastewater, and agri-food sectors, with emphasis on integration through Life Cycle Assessment (LCA), techno-economic analysis (TEA), and multi-criteria decision analysis (MCDA) coupled to process simulation, digital twins, and artificial intelligence tools. Policy and economic frameworks, including the European Green Deal and the Critical Raw Materials Act, are examined in relation to technology readiness and environmental performance. Hybrid recovery systems, such as pyro-hydro-bio configurations, enable higher resource efficiency and reduced environmental impact compared with stand-alone routes. Across all technologies, major hotspots include electricity demand, reagent use, gas handling, and concentrate management, while process integration, heat recovery, and realistic substitution credits significantly improve life cycle outcomes. Harmonized LCA-TEA-MCDA frameworks and digitalized optimization emerge as essential tools for scaling sustainable, resource-efficient, and low-impact industrial ecosystems consistent with circular economy and renewable energy objectives. Full article
Show Figures

Figure 1

31 pages, 1342 KB  
Systematic Review
Strategic Approach of Reverse Logistics Management for Recyclable Waste and Transportation: A Systematic Review
by Pornarit Chounchaisit, Phattranis Suphavarophas, Suphat Bunyarittikit, Piyarat Nanta, Poon Khwansuwan, Panayu Chairatananonda, Wirayut Kuisorn and Chumporn Moorapun
Sustainability 2026, 18(1), 283; https://doi.org/10.3390/su18010283 - 26 Dec 2025
Viewed by 362
Abstract
Strategic reverse logistics management is a key driver of sustainability in supply chains, where challenges in recyclable waste must be aligned with transportation systems to achieve optimal outcomes. A systematic review using the PRISMA methodology was conducted in December 2024 by searching Scopus, [...] Read more.
Strategic reverse logistics management is a key driver of sustainability in supply chains, where challenges in recyclable waste must be aligned with transportation systems to achieve optimal outcomes. A systematic review using the PRISMA methodology was conducted in December 2024 by searching Scopus, Google Scholar, and Thai Journals Online to examine the global research landscape and the strategic approaches applied in reverse logistics for recyclable waste and transportation. Analysis of 32 publications shows a steady rise in research, with most studies in Asia and dispersed across multiple journals, reflecting the field’s multidisciplinary nature. Four strategic approaches were identified. Model-driven approaches demonstrate strong capability through mathematical, computational, conceptual, and hybrid models, achieving reductions of 44% in climate impacts and 34% in costs. Technology-driven approaches contribute innovations to enhance battery transport safety. Exploratory approaches reveal contextual policy gaps and financial limitations. Hybrid approaches can improve efficiency and reduce CO2 emissions. The future development of hybrid approaches still offers substantial room for broader application and deeper integration. This review supports the development of more effective systems, policies, and future research. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

15 pages, 6547 KB  
Article
Electrowinning of Nickel from Lithium-Ion Batteries
by Katarzyna Łacinnik, Szymon Wojciechowski, Wojciech Mikołajczak, Artur Maciej and Wojciech Simka
Materials 2025, 18(24), 5653; https://doi.org/10.3390/ma18245653 - 16 Dec 2025
Viewed by 435
Abstract
The growing demand for lithium-ion batteries (LIBs) is driving a rapid increase in the volume of spent cells which—as hazardous waste—must be managed effectively in accordance with circular-economy principles. Hydrometallurgical recycling allows the recovery of critical metals at far lower environmental cost than [...] Read more.
The growing demand for lithium-ion batteries (LIBs) is driving a rapid increase in the volume of spent cells which—as hazardous waste—must be managed effectively in accordance with circular-economy principles. Hydrometallurgical recycling allows the recovery of critical metals at far lower environmental cost than primary mining. This paper presents a method for obtaining metallic nickel from sulfate leach solutions produced by leaching the so-called “black mass” derived from shredded LIBs. Nickel electrodeposition was performed on a stainless-steel cathode with Ti/Ru-Ir anodes at 60 °C and pH 3.0–4.5. Two process variants were examined. Variant A—with a decreasing Ni2+ concentration (49 → 25 g L−1)—achieved a current efficiency of 60–88%, but the deposits were non-uniform and prone to flaking. Variant B—in which the bath was stabilized by the continuous dissolution of Ni(OH)2 (maintaining Ni2+ at 35–40 g L−1) and amended with PEG-4000, H3BO3 and Na2SO4—reached higher efficiency (78–93%) and produced uniform, bright deposits up to 0.5 mm thick with a purity >90%. The results confirm that keeping the nickel concentration constant and appropriately modifying the electrolyte significantly improve both the qualitative and economic aspects of recovery, highlighting electrolysis as an efficient way to process LIB waste and close the nickel stream within the material cycle. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Graphical abstract

22 pages, 1858 KB  
Article
A Blockchain-Based Framework to Sustainable EV Battery Recycling and Tracking
by Semih Yılmaz and İrfan Kösesoy
Electronics 2025, 14(24), 4854; https://doi.org/10.3390/electronics14244854 - 10 Dec 2025
Viewed by 350
Abstract
The transition to electric vehicles (EVs) plays a critical role in reducing global carbon emissions. However, the end-of-life management of electric vehicle batteries (EVBs) presents significant sustainability and operational challenges. This study proposes a blockchain-based framework that enables full lifecycle tracking of EVBs, [...] Read more.
The transition to electric vehicles (EVs) plays a critical role in reducing global carbon emissions. However, the end-of-life management of electric vehicle batteries (EVBs) presents significant sustainability and operational challenges. This study proposes a blockchain-based framework that enables full lifecycle tracking of EVBs, from production to disposal or reuse, while addressing issues of transparency, efficiency, and regulatory compliance. The framework incorporates a multi-criteria decision model to guide data-driven end-of-life routing—whether for second-life reuse or direct recycling—based on technical, environmental, and economic indicators. By integrating smart contracts with a hybrid web/mobile platform, the system ensures tamper-proof documentation, stakeholder accountability, and compliance with the EU battery passport regulation. A detailed cost analysis of deploying the framework on Ethereum is also presented. The proposed solution aims to enhance the sustainability of EVB management, reduce environmental impact, and promote circular economy practices within the EV industry. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

15 pages, 1808 KB  
Article
Recovery of Lithium and Cobalt from Spent Lithium-Ion Batteries Using a Deep Eutectic Solvent Based on Choline Chloride and Oxalic Acid (Oxaline)
by Jessica M. Guamán-Gualancañay, Carlos F. Aragón-Tobar, Katherine Moreno, José-Luis Palacios and Diana Endara
Molecules 2025, 30(24), 4690; https://doi.org/10.3390/molecules30244690 - 7 Dec 2025
Viewed by 429
Abstract
The growing consumption of lithium-ion batteries (LIBs) in electronic devices and electric vehicles has led to a significant increase in waste containing valuable metals such as lithium and cobalt. Recovering these metals is essential to reducing dependence on primary sources and minimizing environmental [...] Read more.
The growing consumption of lithium-ion batteries (LIBs) in electronic devices and electric vehicles has led to a significant increase in waste containing valuable metals such as lithium and cobalt. Recovering these metals is essential to reducing dependence on primary sources and minimizing environmental impact. In this study, the leaching of the cathode active material from discarded LIBs was evaluated using oxaline, a deep eutectic solvent (DES) composed of oxalic acid and choline chloride in a 1:1 molar ratio. The process began with the collection, discharge, washing, drying, and dismantling of the LIBs, followed by the separation of their components. Subsequently, the cathode active material was characterized, revealing a primary composition of cobalt (54.5%) and lithium (6.5%), with the presence of LiCoO2 confirmed by XRD analysis. Leaching experiments were conducted to evaluate the effects of temperature, time, and solid percentage, demonstrating that oxaline is effective for the selective leaching of lithium and cobalt. Under optimal conditions (90 °C, 1–2 wt.% cathode active material, 400 rpm), lithium underwent complete dissolution within the first hour, while cobalt achieved complete leaching by 4 h. Both metals were recovered as oxalates and separated based on differences in solubility. Oxaline proves to be an efficient and environmentally friendly alternative for the selective recovery of lithium and cobalt from LIB waste, supporting a circular economy in the management of critical metals. Full article
Show Figures

Figure 1

30 pages, 1386 KB  
Review
AI-Enhanced Circular Economy and Sustainability in the Indian Electric Two-Wheeler Industry: A Review
by Dilip K. Achal and Gangoor S. Vijaya
World Electr. Veh. J. 2025, 16(11), 638; https://doi.org/10.3390/wevj16110638 - 20 Nov 2025
Viewed by 1359
Abstract
Drastically cutting carbon footprints to reduce global warming is now a universal norm, in keeping with the United Nations’ Convention on Climate Change 2015. The global proliferation of electric vehicles (EVs) is, hence, appropriate. India (Niti Aayog) has given a determined call for [...] Read more.
Drastically cutting carbon footprints to reduce global warming is now a universal norm, in keeping with the United Nations’ Convention on Climate Change 2015. The global proliferation of electric vehicles (EVs) is, hence, appropriate. India (Niti Aayog) has given a determined call for ‘only EV’ on road by 2030, a transition which will be led by electric two-wheelers (E2Ws) with 80% of the market. The Indian E2W (IE2W) industry needs to adopt green manufacturing and sustainable supply chain management (SSCM), addressing environmental, economic, and social issues. The battery supply chain (an environmental gray area) must also follow circularity and sustainability principles. With artificial intelligence (AI) having come into play in industry and manufacturing, it will undoubtedly influence the circular economy (CE) and sustainability concerns in the IE2W space. This review aims to critically study the available literature on AI’s contribution to CE and sustainability in the IE2W sector. The study has revealed a lack of sufficient research, specifically in the IE2W sector, including AI’s effect on waste management, government policies, etc. For the government, the study recommends a higher outlay for R&D, bridging skill gaps, and strengthening regulatory frameworks and ethics; and, for the IE2W industry, this study recommends increased focus on CE, public awareness, compliance with ethical norms for AI deployment, and prioritizing a fleet-first model. The study is expected to enhance value for the IE2W sector, the government, the public, and the environment. Full article
Show Figures

Graphical abstract

56 pages, 8707 KB  
Article
An Integrated Methodology for Novel Algorithmic Modeling of Non-Spherical Particle Terminal Settling Velocities and Comprehensive Digital Image Analysis
by Kaan Yetilmezsoy, Fatih Ilhan and Emel Kıyan
Water 2025, 17(22), 3268; https://doi.org/10.3390/w17223268 - 15 Nov 2025
Viewed by 726
Abstract
Accurate prediction of settling velocities for irregular particles offers significant advantages in various fields, including more efficient water/wastewater treatment, environmental pollution control, industrial productivity, and sustainable resource utilization. These predictions are essential for advancing sustainable hydraulic engineering and environmental management. In this study, [...] Read more.
Accurate prediction of settling velocities for irregular particles offers significant advantages in various fields, including more efficient water/wastewater treatment, environmental pollution control, industrial productivity, and sustainable resource utilization. These predictions are essential for advancing sustainable hydraulic engineering and environmental management. In this study, a new algorithmic modeling framework was proposed to estimate the terminal settling velocity of irregularly shaped particles/materials. The framework integrates advanced non-linear regression techniques with robust optimization methods. The model successfully incorporated seven key input parameters to construct a comprehensive mathematical representation of the settling process. The proposed explicit model demonstrates superior prediction accuracy compared to existing empirical and drag correlation models. The model’s validity was confirmed using a large and morphologically diverse dataset of 86 irregular materials and rigorously evaluated using an extensive battery of statistical goodness-of-fit parameters. The developed model is a robust and highly accurate tool for predicting the settling behavior of non-spherical particles in the transition flow regime. Beyond its technical merits, the model could offer significant sustainability benefits by enhancing the design and optimization of wastewater treatment systems. More precise predictions of non-spherical particle settling behavior could improve sedimentation or particle removal efficiency, potentially reducing energy consumption and mitigating adverse environmental impacts on industrial waste management and aquatic ecosystem preservation. Full article
(This article belongs to the Special Issue Mathematical Models of Fluid Dynamics)
Show Figures

Figure 1

19 pages, 1737 KB  
Article
Recovery of Valuable Raw Materials Using KOMAG Jig Beneficiation Laboratory Studies and Industrial Implementations
by Daniel Kowol, Piotr Matusiak, Dariusz Prostański, Rafał Baron, Paweł Friebe, Marcin Lutyński and Konrad Kołodziej
Minerals 2025, 15(9), 943; https://doi.org/10.3390/min15090943 - 4 Sep 2025
Cited by 1 | Viewed by 852
Abstract
Gravity beneficiation is a key operation in mineral processing and waste recycling, enabling the production of concentrates with required quality. Among gravity separators, pulsating jigs remain widely applied due to their robustness and adaptability. This study evaluates the KOMAG laboratory jig for upgrading [...] Read more.
Gravity beneficiation is a key operation in mineral processing and waste recycling, enabling the production of concentrates with required quality. Among gravity separators, pulsating jigs remain widely applied due to their robustness and adaptability. This study evaluates the KOMAG laboratory jig for upgrading diverse feedstocks: hard coal with variable ash content, gravel aggregates with organic impurities, post-mining waste, and battery scrap. Tests were performed on a two-chamber jig with an air-pulsation system and advanced control. The results confirmed the feasibility of obtaining coal concentrates with 8%–10% ash at 59%–71% yield, complete removal of organic contaminants from aggregates with minimal losses, and recovery of combustible fractions from post-mining waste with favourable separation parameters (d50 = 1.569 g/cm3, imperfection = 0.191). Beneficiation of shredded battery scrap achieved 74%–88% plastic removal and over 99% metallic recovery. Industrial implementations of KOMAG pulsating jigs validated these findings, showing high efficiency in coal, aggregate, and waste processing. This study demonstrates the versatility of pulsating jigging and its relevance in sustainable resource management, confirming that laboratory results can be effectively scaled to industrial practice. Full article
(This article belongs to the Special Issue Recycling of Mining and Solid Wastes)
Show Figures

Figure 1

23 pages, 2424 KB  
Article
Designing a Reverse Logistics Network for Electric Vehicle Battery Collection, Remanufacturing, and Recycling
by Aristotelis Lygizos, Eleni Kastanaki and Apostolos Giannis
Sustainability 2025, 17(17), 7643; https://doi.org/10.3390/su17177643 - 25 Aug 2025
Cited by 2 | Viewed by 2497
Abstract
The growing concern about climate change and increased carbon emissions has promoted the electric vehicle market. Lithium-Ion Batteries (LIBs) are now the prevailing technology in electromobility, and large amounts will soon reach their end-of-life (EoL). Most counties have not designed sustainable reverse logistics [...] Read more.
The growing concern about climate change and increased carbon emissions has promoted the electric vehicle market. Lithium-Ion Batteries (LIBs) are now the prevailing technology in electromobility, and large amounts will soon reach their end-of-life (EoL). Most counties have not designed sustainable reverse logistics networks to collect, remanufacture and recycle EoL electric vehicle batteries (EVBs). This study is focused on estimating the future EoL LIBs generation through dynamic material flow analysis using a three parameter Weibull distribution function under two scenarios for battery lifetime and then designing a reverse logistics network for the region of Attica (Greece), based on a generalizable modeling framework, to handle the discarded batteries up to 2040. The methodology considers three different battery handling strategies such as recycling, remanufacturing, and disposal. According to the estimated LIB waste generation in Attica, the designed network would annually manage between 5300 and 9600 tons of EoL EVBs by 2040. The optimal location for the collection and recycling centers considers fixed costs, processing costs, transportation costs, carbon emission tax and the number of EoL EVBs. The economic feasibility of the network is also examined through projected revenues from the sale of remanufactured batteries and recovered materials. The resulting discounted payback period ranges from 6.7 to 8.6 years, indicating strong financial viability. This research underscores the importance of circular economy principles and the management of EoL LIBs, which is a prerequisite for the sustainable promotion of the electric vehicle industry. Full article
Show Figures

Figure 1

31 pages, 1880 KB  
Article
A Proposed Reverse Logistics Network for End-of-Life Electric Vehicle Battery Management in the Jakarta Greater Area: A MILP Approach
by Ibrahim Zaki Bafadal, Romadhani Ardi and Nabila Yuraisyah Salsabila
World Electr. Veh. J. 2025, 16(8), 476; https://doi.org/10.3390/wevj16080476 - 20 Aug 2025
Viewed by 1956
Abstract
The rapid growth of electric vehicles (EVs) in the Jakarta Greater Area is expected to significantly increase the volume of end-of-life (EoL) batteries, necessitating an efficient and sustainable waste management system. This study designs a reverse logistics network that includes Collection Centers ( [...] Read more.
The rapid growth of electric vehicles (EVs) in the Jakarta Greater Area is expected to significantly increase the volume of end-of-life (EoL) batteries, necessitating an efficient and sustainable waste management system. This study designs a reverse logistics network that includes Collection Centers (CCs), a combined Remanufacturing and Recycling Center (RMC), and a Waste Disposal Center (WDC). Dealer clusters are identified using K-means clustering to determine the optimal CC locations. A deterministic mixed-integer linear programming (MILP) model is developed to minimize total costs. It comprises acquisition, transportation, processing, facility, and carbon tax components. The model yields a minimum total cost of IDR 1,236,435,000,187, with processing costs contributing the largest share (56.68%), followed by transportation (29.30%). The selected facilities include five CCs (CCA-1, CCE-2, CCK-3, CCM-4, and CCR-5), one RMC (RMC-1), and one WDC (WDC-1). Based on battery health, the batteries are classified into three categories: L1 (>80% health, suitable for remanufacturing), L2 (60–80%, suitable for recycling), and L3 (<60%, directed to disposal). L1 and L2 batteries are directed to RMC-1, while L3 batteries and solid waste are routed to WDC-1, totaling 1.029 tons. The results emphasize the need for improving processing efficiency and strategic facility placement to enhance the sustainability and cost-effectiveness of EoL battery management in urban EV ecosystems. Full article
Show Figures

Figure 1

40 pages, 4775 KB  
Article
Optimal Sizing of Battery Energy Storage System for Implicit Flexibility in Multi-Energy Microgrids
by Andrea Scrocca, Maurizio Delfanti and Filippo Bovera
Appl. Sci. 2025, 15(15), 8529; https://doi.org/10.3390/app15158529 - 31 Jul 2025
Viewed by 1585
Abstract
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular [...] Read more.
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular focus on accurately modeling the structure of electricity and natural gas bills. The objective is to assess the added economic value of integrating a battery energy storage system (BESS) under the assumption it is employed to provide implicit flexibility—namely, bill management, energy arbitrage, and peak shaving. Results show that under assumed market conditions, tariff schemes, and BESS costs, none of the analyzed BESS configurations achieve a positive net present value. However, a 2 MW/4 MWh BESS yields a 3.8% reduction in annual operating costs compared to the base case without storage, driven by increased self-consumption (+2.8%), reduced thermal energy waste (–6.4%), and a substantial decrease in power-based electricity charges (–77.9%). The performed sensitivity analyses indicate that even with a significantly higher day-ahead market price spread, the BESS is not sufficiently incentivized to perform pure energy arbitrage and that the effectiveness of a time-of-use power-based tariff depends not only on the level of price differentiation but also on the BESS size. Overall, this study provides insights into the role of BESS in MEMGs and highlights the need for electricity bill designs that better reward the provision of implicit flexibility by storage systems. Full article
(This article belongs to the Special Issue Innovative Approaches to Optimize Future Multi-Energy Systems)
Show Figures

Figure 1

20 pages, 1509 KB  
Article
Using Community-Based Social Marketing to Promote Pro-Environmental Behavior in Municipal Solid Waste Management: Evidence from Norte de Santander, Colombia
by Myriam Carmenza Sierra Puentes, Elkin Manuel Puerto-Rojas, Sharon Naomi Correa-Galindo and Jose Alejandro Aristizábal Cuellar
Environments 2025, 12(8), 262; https://doi.org/10.3390/environments12080262 - 30 Jul 2025
Viewed by 2256
Abstract
The sustainable management of Municipal Solid Waste (MSW) relies heavily on community participation in separating it at the source and delivering it to collection systems. These practices are crucial for reducing pollution, protecting ecosystems, and maximizing resource recovery. However, in the Global South [...] Read more.
The sustainable management of Municipal Solid Waste (MSW) relies heavily on community participation in separating it at the source and delivering it to collection systems. These practices are crucial for reducing pollution, protecting ecosystems, and maximizing resource recovery. However, in the Global South context, with conditions of socioeconomic vulnerability, community participation in the sustainable management of MSW remains limited, highlighting the need to generate context-specific interventions. MSW includes items such as household appliances, batteries, and electronic devices, which require specialized handling due to their size, hazardous components, or material complexity. This study implemented a Community-Based Social Marketing approach during the research and design phases of an intervention focused on promoting source separation and management of hard-to-manage MSW in five municipalities within the administrative region of Norte de Santander (Colombia), which borders Venezuela. Using a mixed-methods approach, we collected data from 1775 individuals (63.83% women; M age = 33.48 years; SD = 17.25), employing social mapping, focus groups, semi-structured interviews, participant observation, and a survey questionnaire. The results show that the source separation and delivery of hard-to-manage MSW to collection systems are limited by a set of psychosocial, structural, and institutional barriers that interact with each other, affecting communities’ willingness and capacity for action. Furthermore, a prediction model of willingness to engage in separation and delivery behaviors showed a good fit (R2 = 0.83). The strongest predictors were awareness of the negative consequences of non-participation and perceived environmental benefits, with subjective norms contributing to a lesser extent. Based on these results, we designed a context-specific intervention focused on reducing these barriers and promoting community engagement in the sustainable management of hard-to-manage MSW. Full article
Show Figures

Figure 1

16 pages, 3383 KB  
Article
Thermal and Electrical Design Considerations for a Flexible Energy Storage System Utilizing Second-Life Electric Vehicle Batteries
by Rouven Christen, Simon Nigsch, Clemens Mathis and Martin Stöck
Batteries 2025, 11(8), 287; https://doi.org/10.3390/batteries11080287 - 26 Jul 2025
Viewed by 1441
Abstract
The transition to electric mobility has significantly increased the demand for lithium-ion batteries, raising concerns about their end-of-life management. Therefore, this study presents the design, development and first implementation steps of a stationary energy storage system utilizing second-life electric vehicle (EV) batteries. These [...] Read more.
The transition to electric mobility has significantly increased the demand for lithium-ion batteries, raising concerns about their end-of-life management. Therefore, this study presents the design, development and first implementation steps of a stationary energy storage system utilizing second-life electric vehicle (EV) batteries. These batteries, no longer suitable for traction applications due to a reduced state of health (SoH) below 80%, retain sufficient capacity for less demanding stationary applications. The proposed system is designed to be flexible and scalable, serving both research and commercial purposes. Key challenges include heterogeneous battery characteristics, safety considerations due to increased internal resistance and battery aging, and the need for flexible power electronics. An optimized dual active bridge (DAB) converter topology is introduced to connect several batteries in parallel and to ensure efficient bidirectional power flow over a wide voltage range. A first prototype, rated at 50 kW, has been built and tested in the laboratory. This study contributes to sustainable energy storage solutions by extending battery life cycles, reducing waste, and promoting economic viability for industrial partners. Full article
Show Figures

Figure 1

27 pages, 7623 KB  
Article
A Ladder-Type Carbon Trading-Based Low-Carbon Economic Dispatch Model for Integrated Energy Systems with Flexible Load and Hybrid Energy Storage Optimization
by Liping Huang, Fanxin Zhong, Chun Sing Lai, Bang Zhong, Qijun Xiao and Weitai Hsu
Energies 2025, 18(14), 3679; https://doi.org/10.3390/en18143679 - 11 Jul 2025
Cited by 3 | Viewed by 784
Abstract
This paper proposes a ladder carbon trading-based low-carbon economic dispatch model for integrated energy systems (IESs), incorporating flexible load optimization and hybrid energy storage systems consisting of battery and thermal energy storage. First, a ladder-type carbon trading mechanism is introduced, in which the [...] Read more.
This paper proposes a ladder carbon trading-based low-carbon economic dispatch model for integrated energy systems (IESs), incorporating flexible load optimization and hybrid energy storage systems consisting of battery and thermal energy storage. First, a ladder-type carbon trading mechanism is introduced, in which the carbon trading cost increases progressively with emission levels, thereby providing stronger incentives for emission reduction. Second, flexible loads are categorized and modeled as shiftable, transferable, and reducible types, each with distinct operational constraints and compensation mechanisms. Third, both battery and thermal energy storage systems are considered to improve system flexibility by storing excess energy and supplying it when needed. Finally, a unified optimization framework is developed to coordinate the dispatch of renewable generation, gas turbines, waste heat recovery units, and multi-energy storage devices while integrating flexible load flexibility. The objective is to minimize the total system cost, which includes energy procurement, carbon trading expenditures, and demand response compensation. Three comparative case studies are conducted to evaluate system performance under different operational configurations: the proposed comprehensive model, a carbon trading-only approach, and a conventional baseline scenario. Results demonstrate that the proposed framework effectively balances economic and environmental objectives through coordinated demand-side management, hybrid storage utilization, and the ladder-type carbon trading market mechanism. It reshapes the system load profile via peak shaving and valley filling, improves renewable energy integration, and enhances overall system efficiency. Full article
(This article belongs to the Special Issue Hybrid Battery Energy Storage System)
Show Figures

Figure 1

Back to TopTop