Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = warm season legumes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1926 KiB  
Article
Nitrogen Dynamics in Sunn Hemp Intercropped Tall Fescue Pastures
by Harley D. Naumann, José C. B. Dubeux, Joshua A. Tooley, John A. Lory and Igor L. Bretas
Agronomy 2025, 15(5), 1027; https://doi.org/10.3390/agronomy15051027 - 25 Apr 2025
Viewed by 429
Abstract
Incorporating temperate legumes is a strategy for increasing nitrogen (N) in tall fescue (Schedonorus arundinaceus (Schreb.) Dumort, nom. Cons) systems. However, when temperatures are elevated, biological N-fixation (BNF) by temperate legumes is limited. Sunn hemp (Crotalaria juncea L.), a warm-season annual [...] Read more.
Incorporating temperate legumes is a strategy for increasing nitrogen (N) in tall fescue (Schedonorus arundinaceus (Schreb.) Dumort, nom. Cons) systems. However, when temperatures are elevated, biological N-fixation (BNF) by temperate legumes is limited. Sunn hemp (Crotalaria juncea L.), a warm-season annual legume, may provide greater N input during the warm season. This 2-year study aimed to (1) determine BNF in sunn hemp-tall fescue mixed pastures and (2) determine N transfer from sunn hemp to tall fescue. The experiment included four replicates of two treatments: tall fescue (TF) and tall fescue intercropped with sunn hemp (TF+SH), arranged in a randomized complete block design. Response variables included δ15N, N derived from the atmosphere (%NDFA), BNF, N concentration, N transferred (%Ntran), N stock, and herbage accumulation (HA). Herbage accumulation was 16% greater in TF+SH compared to TF (p < 0.05). Root mass was 43% greater for TF compared to both species combined in TF+SH (p < 0.05). Herbage N was 40% greater in sunn hemp shoots than tall fescue shoots in TF or TF+SH (p < 0.05). Sunn hemp root N was 34% greater than tall fescue (p < 0.05). NDFA by sunn hemp was 88% and 100% in 2017 and 2018, respectively. BNF by sunn hemp was greater (p < 0.05) in 2018 than in 2017 (53.8 and 44.3 kg ha−1, respectively). The %Ntran from sunn hemp to tall fescue was 13 and 20% in 2017 and 2018, respectively. Interseeding sunn hemp into tall fescue pastures can provide an alternate N source to tall fescue-based forage-livestock systems, increasing herbage accumulation during the summer grazing season. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

27 pages, 4401 KiB  
Article
Herbage Responses and Grazing Performance of Mature Horses in Warm-Season Perennial Grass–Legume Mixed Pastures
by Ana Caroline Cerqueira de Melo Vasco, Erick R. da Silva Santos, Jose C. Batista Dubeux Junior, Lynn E. Sollenberger, Marcelo O. Wallau, Helio Lauro Soares Vasco Neto, Jill M. Lance, Lori K. Warren and Carissa L. Wickens
Grasses 2025, 4(2), 15; https://doi.org/10.3390/grasses4020015 - 14 Apr 2025
Viewed by 771
Abstract
The pasture–animal interface of warm-season perennial grass–legume mixed pastures has never been investigated in forage-based equine systems. Therefore, this 2-year study investigated the herbage and animal responses under 84-day continuous stocking in mixed pastures of rhizoma peanut (RP, Arachis glabrata Benth) and bahiagrass [...] Read more.
The pasture–animal interface of warm-season perennial grass–legume mixed pastures has never been investigated in forage-based equine systems. Therefore, this 2-year study investigated the herbage and animal responses under 84-day continuous stocking in mixed pastures of rhizoma peanut (RP, Arachis glabrata Benth) and bahiagrass (BG, Paspalum notatum Flüggé) with 30 kg nitrogen (N) ha−1 (BG-RP) compared to BG pastures fertilized with 120 kg N ha−1 (BG-N120) and no N (BG-N0). Measurements were taken every 14 days, except for intake and in vivo digestibility, which were measured every 28 days. BG-N120 had the highest stocking rate (p = 0.01; 3.7 AU ha−1) in 2019, while BG-N0 had the lowest (p = 0.01; 2.6 AU ha−1) in 2020. Crude protein and digestible energy were greatest (p < 0.05) for BG-N120 and BG-RP in some of the evaluation days in 2019 but similar across pastures in 2020. Crude protein digestibility was greatest (p < 0.05) for BG-RP in the late season. Intake was less (p = 0.03) for horses grazing BG-RP (3.2%BW) compared to BG-N0 (5.0%BW). Nonetheless, no differences (p > 0.05) were observed among pastures for body measurements. The results indicate that BG-RP pastures can improve forage nutritive value and maintain horse body condition while maintaining similar stocking rate to monoculture bahiagrass with high N fertilizer rates. Full article
(This article belongs to the Special Issue The Role of Forage in Sustainable Agriculture)
Show Figures

Figure 1

19 pages, 1465 KiB  
Article
Effect of Climate, Crop Protection, and Fertilization on Disease Severity, Growth, and Grain Yield Parameters of Faba Beans (Vicia faba L.) in Northern Britain: Results from the Long-Term NFSC Trials
by Enas Khalid Sufar, Gultekin Hasanaliyeva, Juan Wang, Halima Leifert, Peter Shotton, Paul Bilsborrow, Leonidas Rempelos, Nikolaos Volakakis and Carlo Leifert
Agronomy 2024, 14(3), 422; https://doi.org/10.3390/agronomy14030422 - 22 Feb 2024
Cited by 4 | Viewed by 1833
Abstract
Faba beans are one of the most suitable grain legume crop for colder, maritime climates. However, there is limited information on the effect of changing from conventional to organic production methods and potential impacts of global warming on the health and performance of [...] Read more.
Faba beans are one of the most suitable grain legume crop for colder, maritime climates. However, there is limited information on the effect of changing from conventional to organic production methods and potential impacts of global warming on the health and performance of faba bean crops in Northern Europe. We therefore assessed the performance of faba beans grown with contrasting crop protection (with and without pesticides) and fertilization (with and without P and K fertilizer input) regimes used in organic and conventional production in seven growing seasons. Conventional crop protection and fertilization regimes had no effect on foliar disease severity, but resulted in small, but significant increases in faba bean yields. The overall yield gap between organic and conventional production regimes was relatively small (~10%), but there was substantial variation in yields between growing seasons/years. Redundancy analysis (RDA) showed that climate explanatory variables/drivers explained the largest proportion of the variation in crop performance and identified strong positive associations between (i) temperature and both straw and grain yield and (ii) precipitation and foliar disease severity. However, RDA also identified crop protection and variety as significant explanatory variables for faba bean performance. The relatively small effect of using P and K fertilizers on yields and the lack of a measurable effect of fungicide applications on foliar disease severity indicate that the use of these inputs in conventional faba beans may not be economical. Results also suggest that the yield gap between organic and conventional faba bean production is significant, but smaller than for other field crops. Full article
(This article belongs to the Special Issue Sustainable Circular Agricultural Food Production Systems)
Show Figures

Figure 1

11 pages, 4660 KiB  
Communication
Soil Bacterial Diversity Responds to Long-Term Establishment of Perennial Legumes in Warm-Season Grassland at Two Soil Depths
by Adesuwa Sylvia Erhunmwunse, Victor Alonso Guerra, Jung-Chen Liu, Cheryl L. Mackowiak, Ann Rachel Soffes Blount, José Carlos Batista Dubeux and Hui-Ling Liao
Microorganisms 2023, 11(12), 3002; https://doi.org/10.3390/microorganisms11123002 - 18 Dec 2023
Cited by 2 | Viewed by 1679
Abstract
The introduction of rhizoma peanut (RP Arachis glabrata Benth) into bahiagrass (Paspalum notatum Flüggé) may require time to develop stable plant–soil microbe interactions as the microbial legacy of the previous plant community may be long-lasting. A previous study showed that <2 years of introducing [...] Read more.
The introduction of rhizoma peanut (RP Arachis glabrata Benth) into bahiagrass (Paspalum notatum Flüggé) may require time to develop stable plant–soil microbe interactions as the microbial legacy of the previous plant community may be long-lasting. A previous study showed that <2 years of introducing rhizoma peanut into bahiagrass pastures minimally affected soil bacterial diversity and community composition. In this study, we compared the effects of the long-term inclusion of rhizoma peanut (>8 years) into bahiagrass on soil bacterial diversity and community composition against their monocultures at 0 to 15 and 15 to 30 cm soil depths using next-generation sequencing to target bacterial 16S V3–V4 regions. We observed that a well-established RP–bahiagrass mixed stand led to a 36% increase in bacterial alpha diversity compared to the bahiagrass monoculture. There was a shift from a soil bacterial community dominated by Proteobacteria (~26%) reported in other bahiagrass and rhizoma peanut studies to a soil bacterial community dominated by Firmicutes (39%) in our study. The relative abundance of the bacterial genus Crossiella, known for its antimicrobial traits, was enhanced in the presence of RP. Differences in soil bacterial diversity and community composition were substantial between 0 to 15 and 15 to 30 cm soil layers, with N2-fixing bacteria belonging to the phylum Proteobacteria concentrated in 0 to 15 cm. Introducing RP into bahiagrass pastures is a highly sustainable alternative to mineral N fertilizer inputs. Our results provide evidence that this system also promotes greater soil microbial diversity and is associated with unique taxa that require further study to better understand their contributions to healthy pastures. Full article
(This article belongs to the Special Issue Research on Plant—Bacteria Interactions)
Show Figures

Figure 1

10 pages, 1506 KiB  
Communication
Warm-Season Pasture Species Respond to Subsurface Placement of Phosphorus Fertiliser
by Jonathan W. McLachlan, Benjamin J. Staker, Richard J. Flavel and Chris N. Guppy
Agronomy 2023, 13(10), 2524; https://doi.org/10.3390/agronomy13102524 - 29 Sep 2023
Viewed by 1178
Abstract
The root traits of many warm-season pasture species have not been characterised thoroughly. Depending on the nature of legume root architecture, alternative phosphorus (P) application strategies may improve the success of legume establishment and persistence, particularly if legumes exhibit a spatially responsive root [...] Read more.
The root traits of many warm-season pasture species have not been characterised thoroughly. Depending on the nature of legume root architecture, alternative phosphorus (P) application strategies may improve the success of legume establishment and persistence, particularly if legumes exhibit a spatially responsive root system. The purpose of the present experiment was to investigate the root morphology of several warm-season pasture species and to determine the response of these species to a subsurface application of P fertiliser. Monocultures of two grasses (Panicum coloratum and Digitaria eriantha) and two legumes (Medicago sativa and Desmanthus spp.) were established in pots to investigate root morphology and P acquisition in response to three soil-P distribution treatments. The P fertiliser that was applied to the subsurface ‘band’ layer was labelled with 32P-radioisotope to determine P recovery. There were significant differences in shoot yield and root morphology among the species. The largest shoot yields were usually produced by plants grown in the uniform high-P treatment, while the grasses generally produced longer roots more efficiently than the legumes across the three soil-P distribution treatments. Nevertheless, each species responded to the banded high-P treatment by acquiring more P from the zone of P enrichment (banded high-P = 31% cf., uniform low-P = 3%, and uniform high-P = 9%). This result suggests that a subsurface application of P fertiliser at the planting stage will benefit warm-season pasture species, particularly grasses that are highly responsive to fertiliser placement. Nevertheless, preferential placement of fertiliser below legumes may improve the productivity of this component if their root systems have more time to respond spatially. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

19 pages, 9565 KiB  
Article
Effects of Photoperiod and Drought on Flowering and Growth Development of Protein-Rich Legumes under Atlantic Environments
by Ana M. González, Ana M. Pesqueira, Lucio García and Marta Santalla
Agronomy 2023, 13(4), 1025; https://doi.org/10.3390/agronomy13041025 - 30 Mar 2023
Cited by 4 | Viewed by 2998
Abstract
Legumes have an important role in European agriculture. They assimilate N2 to sustainably support maximum crop growth, in turn providing high-protein food for human consumption and livestock feed. However, the extent of the area for legume cultivation in Europe has declined due [...] Read more.
Legumes have an important role in European agriculture. They assimilate N2 to sustainably support maximum crop growth, in turn providing high-protein food for human consumption and livestock feed. However, the extent of the area for legume cultivation in Europe has declined due to the lower economic competitiveness of legumes in relation to other crops, particularly of cereals and oilseed. To increase yields, there is a need to increase the genetic diversity of legumes in terms of adaptation to environmental stresses. We attempted to address this by conducting field and controlled experiments under drought vs. nondrought and different photoperiod conditions. The current study identified the physiological and agronomic traits correlated with productivity and quality performance in five economically important grain legume species (Pisum sativum, Phaseolus vulgaris, Cicer arietinum, Lupinus spp., and Vicia faba). In all species, the days to flowering and seed yield were affected by temperature and photoperiod. For cool-season legume species, long-day photoperiods were favorable and days to flowering was negatively correlated with the average air temperature. For the warm-season legumes, short-day photoperiods and warm temperatures were favorable. Under drought stress, the C/N balance, leaf nutrient (Ca, Fe, and K) concentrations, and yield were significantly reduced, contrary to Zn accumulation, and this information may contribute to improving our understanding and ability to develop sustainable growth. Based on our results, we conclude that the drought-tolerant and photoperiod-insensitive legume genotypes identified in this study constitute valuable starting materials for future programs aimed at improvement of legume productivity at a global/regional scale, which helps to strengthen the competitiveness and economic growth of legumes for European farmers. Full article
Show Figures

Figure 1

17 pages, 1799 KiB  
Article
Re-Assembly of the Longleaf Pine Ecosystem: Effects of Groundcover Seeding on Understory Community, Fire Behavior and Soil Properties
by Benju Baniya, Seth W. Bigelow, Ajay Sharma, Scott Taylor, Jason G. Vogel and Steven T. Brantley
Forests 2022, 13(4), 519; https://doi.org/10.3390/f13040519 - 28 Mar 2022
Cited by 1 | Viewed by 3854
Abstract
Planting native groundcover is often recommended to restore the understory of longleaf pine stands in the southeastern United States, but the effectiveness of such restoration activities remains poorly evaluated. We conducted a study in 25-year-old longleaf pine plantation stands in Georgia, USA, to [...] Read more.
Planting native groundcover is often recommended to restore the understory of longleaf pine stands in the southeastern United States, but the effectiveness of such restoration activities remains poorly evaluated. We conducted a study in 25-year-old longleaf pine plantation stands in Georgia, USA, to examine the effects of seeding native groundcover on understory characteristics, fire behavior and soil properties. In 2015, four stands were seeded with five warm-season C4 grasses and a legume and four served as controls. In Fall 2020, we sampled the understory and analyzed soils collected from these stands, and in Spring 2021, fire behavior was evaluated. A total of 120 species were recorded in the understory across the stands, with the seeded species average foliar cover of 15%. There were no significant differences in species richness and Shannon diversity index of the seeded and control stands but understory species composition changed significantly. Soil properties and fire behavior during the prescribed fire also did not differ significantly between treatments, however, mean flame residence time was higher in seeded stands (108 s). Agricultural legacies of elevated soil P and old-field indicator species were prominent across stands. Overall, seeding had a minor effect on longleaf pine ecological characteristics in five years. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

12 pages, 606 KiB  
Article
Effects of Different Organic Soil Amendments on Nitrogen Nutrition and Yield of Organic Greenhouse Tomato Crop
by Anastasios Gatsios, Georgia Ntatsi, Dionisios Yfantopoulos, Penelope Baltzoi, Ioannis C. Karapanos, Ioannis Tsirogiannis, Georgios Patakioutas and Dimitrios Savvas
Nitrogen 2021, 2(3), 347-358; https://doi.org/10.3390/nitrogen2030024 - 26 Aug 2021
Cited by 4 | Viewed by 3220
Abstract
Manure is a common source of nitrogen (N) in organic farming. However, manure is not always easily available, while the maximum N amount added as animal manure in organic agriculture is restricted by EU regulations. The present study was designed to test whether [...] Read more.
Manure is a common source of nitrogen (N) in organic farming. However, manure is not always easily available, while the maximum N amount added as animal manure in organic agriculture is restricted by EU regulations. The present study was designed to test whether green manuring with a warm-season legume and intercropping with a cold-season legume can substitute farm-yard manure or compost as N sources in organic greenhouse tomato crops. To test this hypothesis, a winter-spring (WS) tomato crop was installed in February following the incorporation of crop residues of an autumn-winter (AW) tomato crop intercropped with faba bean, which had been fertilized with cowpea residues as green manure. This treatment, henceforth termed legume treatment (LT), was compared with the use of compost or manure as an N fertilization source in both tomato crops. In addition, a combination of compost and LT was also used as a fourth treatment. The results showed that green manuring with legumes and particularly cowpea can contribute a significant amount of N to the following organic tomato crop, through the biological fixation process. Nevertheless, legumes as green manure, or compost, or their combination cannot efficiently replace farmyard manure as an N fertilization source. Compost exhibited a slow mineralization course. Full article
Show Figures

Figure 1

17 pages, 336 KiB  
Review
An Annotated List of Legume-Infecting Viruses in the Light of Metagenomics
by Elisavet K. Chatzivassiliou
Plants 2021, 10(7), 1413; https://doi.org/10.3390/plants10071413 - 10 Jul 2021
Cited by 28 | Viewed by 4826
Abstract
Legumes, one of the most important sources of human food and animal feed, are known to be susceptible to a plethora of plant viruses. Many of these viruses cause diseases which severely impact legume production worldwide. The causal agents of some important virus-like [...] Read more.
Legumes, one of the most important sources of human food and animal feed, are known to be susceptible to a plethora of plant viruses. Many of these viruses cause diseases which severely impact legume production worldwide. The causal agents of some important virus-like diseases remain unknown. In recent years, high-throughput sequencing technologies have enabled us to identify many new viruses in various crops, including legumes. This review aims to present an updated list of legume-infecting viruses. Until 2020, a total of 168 plant viruses belonging to 39 genera and 16 families, officially recognized by the International Committee on Taxonomy of Viruses (ICTV), were reported to naturally infect common bean, cowpea, chickpea, faba-bean, groundnut, lentil, peas, alfalfa, clovers, and/or annual medics. Several novel legume viruses are still pending approval by ICTV. The epidemiology of many of the legume viruses are of specific interest due to their seed-transmission and their dynamic spread by insect-vectors. In this review, major aspects of legume virus epidemiology and integrated control approaches are also summarized. Full article
13 pages, 269 KiB  
Article
Forage Yield and Nutritive Value of Cool-Season and Warm-Season Forages for Grazing Organic Dairy Cattle
by Kathryn E. Ritz, Bradley J. Heins, Roger Moon, Craig Sheaffer and Sharon L. Weyers
Agronomy 2020, 10(12), 1963; https://doi.org/10.3390/agronomy10121963 - 14 Dec 2020
Cited by 15 | Viewed by 4011
Abstract
The objective of this study was to compare the forage nutritive value of cool-season perennial grasses and legumes with that of warm-season annual grasses grazed by organic dairy cows. Two pasture systems were analyzed across the grazing season at an organic dairy in [...] Read more.
The objective of this study was to compare the forage nutritive value of cool-season perennial grasses and legumes with that of warm-season annual grasses grazed by organic dairy cows. Two pasture systems were analyzed across the grazing season at an organic dairy in Morris, Minnesota. Pasture system 1 included perennial ryegrass (Lolium perenne L.), orchardgrass (Dactylis glomerata L.), meadow bromegrass (Bromus riparius Rehmann), meadow fescue (Schedonorus pratensis (Huds.) P. Beauv), alfalfa (Medicago sativa L.), white clover (Trifolium repens L.), red clover (Trifolium pratense L.), and chicory (Cichorium intybus L.). Pasture system 2 was a combination of system 1 and monocultures of warm-season grasses (sorghum-sudangrass (Sorghum bicolor [L.] Moench subsp. drummondii [Steud.]) and teff (Eragrostis tef L.)). Across the grazing season, forage yield was 39% greater for system 2 than system 1 due to greater forage yield during the summer. Neutral detergent fiber (NDF) and acid detergent fiber (ADF) were similar for cool-season and warm-season grasses. Warm-season grasses had greater forage yield during the summer months compared with cool-season grasses and legumes. The total tract NDF digestibility (TTNDFD) varied by month and year across the study for both pasture systems. Overall, weather may affect the forage nutritive value for both cool-season perennial grasses and legumes and warm-season annual grasses. Full article
(This article belongs to the Special Issue Environmental Sustainability of Crop-Livestock Systems)
1 pages, 156 KiB  
Abstract
Transcriptional Down-Regulation of Various Genes in Alfalfa Enhances Tolerance to Abiotic Stresses
by Udaya Subedi, Gaganpreet Kaur Dhariwal, Kimberley Burton Hughes, Guanqun Chen, Surya Acharya and Stacy D. Singer
Biol. Life Sci. Forum 2021, 4(1), 61; https://doi.org/10.3390/IECPS2020-08888 - 3 Dec 2020
Viewed by 1018
Abstract
Alfalfa (Medicago sativa L.) is a perennial legume esteemed for its yield, adaptability and superior nutritional quality as a forage crop. However, alfalfa production is often impacted by various environmental challenges such as drought and poor drainage throughout the growing season, which [...] Read more.
Alfalfa (Medicago sativa L.) is a perennial legume esteemed for its yield, adaptability and superior nutritional quality as a forage crop. However, alfalfa production is often impacted by various environmental challenges such as drought and poor drainage throughout the growing season, which lead to a decline in farmers’ profitability. These factors are anticipated to become more problematic in the coming years due to global warming scenarios, and as such, there is a need for the development of alfalfa cultivars with enhanced abiotic stress resilience. In this study, five gene homologs (CBF2, ACBP3, TAC1, FAO3 and HB2) negatively regulating various abiotic stresses in other closely related crop species were identified in alfalfa, and RNAi genotypes exhibiting down-regulation of each gene, respectively, were generated. The RNAi genotypes were subjected to drought and flooding treatments, respectively, to assess their responses to abiotic stresses. Preliminary results demonstrated that alfalfa genotypes with reduced expression of TAC1 exhibited increased tolerance to drought, while the down-regulation of ACBP3 and HB2 in alfalfa led to enhanced tolerance to flooding. Further experiments are underway to unravel the mechanisms driving increased abiotic stress tolerance in these genotypes. Our aim is to use the knowledge gained in this study to produce transgene-free highly adaptable alfalfa germplasm using advanced molecular breeding platforms such as genome editing via CRISPR/Cas, which could reduce production costs and enhance biomass production by minimizing forage crop losses under extreme weather conditions. Full article
(This article belongs to the Proceedings of The 1st International Electronic Conference on Plant Science)
10 pages, 476 KiB  
Review
Fighting the Deadly Helminthiasis without Drug Resistance
by George F. W. Haenlein and Young W. Park
Dairy 2020, 1(3), 177-186; https://doi.org/10.3390/dairy1030012 - 14 Oct 2020
Cited by 3 | Viewed by 4772
Abstract
Helminthiasis is a very costly management problem in the sheep and goat industry, because the gastrointestinal parasites develop resistance against all chemical products that are discovered and produced by the pharmaceutical industry. The use of natural herbal contents of tannin as especially in [...] Read more.
Helminthiasis is a very costly management problem in the sheep and goat industry, because the gastrointestinal parasites develop resistance against all chemical products that are discovered and produced by the pharmaceutical industry. The use of natural herbal contents of tannin as especially in Sericea Lespedeza (SL; Lespedeza cuneate) is very promising. Utilizing genetic differences in resistance among the different goat and sheep breeds is a promising alternative, with limited success to date. Totally eliminating the offending parasites from re-infesting by plowing under affected pastures for some seasons, or scheduling rotational pastures, or feeding fresh (grazed) or dried forms of the perennial warm-season legume sericea lespedeza to the infected sheep and goats, or using elevated housing with slatted floors are the most promising alternatives to the ancient tradition of herding and managing ruminants by transhumance. An elevated slatted floor housing is desirable, and deserves wider attention because of its potential in controlling helminthiasis. Slatted floors are already used in the sheep and goat industries in Sweden, Norway, Malaysia and Guatemala. Full article
(This article belongs to the Special Issue Challenge to The Dairy Industry and Human Nutrition)
Show Figures

Figure 1

15 pages, 655 KiB  
Article
Predicting Forage Quality of Warm-Season Legumes by Near Infrared Spectroscopy Coupled with Machine Learning Techniques
by Gurjinder S. Baath, Harpinder K. Baath, Prasanna H. Gowda, Johnson P. Thomas, Brian K. Northup, Srinivas C. Rao and Hardeep Singh
Sensors 2020, 20(3), 867; https://doi.org/10.3390/s20030867 - 6 Feb 2020
Cited by 32 | Viewed by 5670
Abstract
Warm-season legumes have been receiving increased attention as forage resources in the southern United States and other countries. However, the near infrared spectroscopy (NIRS) technique has not been widely explored for predicting the forage quality of many of these legumes. The objective of [...] Read more.
Warm-season legumes have been receiving increased attention as forage resources in the southern United States and other countries. However, the near infrared spectroscopy (NIRS) technique has not been widely explored for predicting the forage quality of many of these legumes. The objective of this research was to assess the performance of NIRS in predicting the forage quality parameters of five warm-season legumes—guar (Cyamopsis tetragonoloba), tepary bean (Phaseolus acutifolius), pigeon pea (Cajanus cajan), soybean (Glycine max), and mothbean (Vigna aconitifolia)—using three machine learning techniques: partial least square (PLS), support vector machine (SVM), and Gaussian processes (GP). Additionally, the efficacy of global models in predicting forage quality was investigated. A set of 70 forage samples was used to develop species-based models for concentrations of crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), and in vitro true digestibility (IVTD) of guar and tepary bean forages, and CP and IVTD in pigeon pea and soybean. All species-based models were tested through 10-fold cross-validations, followed by external validations using 20 samples of each species. The global models for CP and IVTD of warm-season legumes were developed using a set of 150 random samples, including 30 samples for each of the five species. The global models were tested through 10-fold cross-validation, and external validation using five individual sets of 20 samples each for different legume species. Among techniques, PLS consistently performed best at calibrating (R2c = 0.94–0.98) all forage quality parameters in both species-based and global models. The SVM provided the most accurate predictions for guar and soybean crops, and global models, and both SVM and PLS performed better for tepary bean and pigeon pea forages. The global modeling approach that developed a single model for all five crops yielded sufficient accuracy (R2cv/R2v = 0.92–0.99) in predicting CP of the different legumes. However, the accuracy of predictions of in vitro true digestibility (IVTD) for the different legumes was variable (R2cv/R2v = 0.42–0.98). Machine learning algorithms like SVM could help develop robust NIRS-based models for predicting forage quality with a relatively small number of samples, and thus needs further attention in different NIRS based applications. Full article
(This article belongs to the Special Issue Emerging Sensor Technology in Agriculture)
Show Figures

Figure 1

19 pages, 822 KiB  
Article
Digestibility and Retention Time of Coastal Bermudagrass (Cynodon dactylon) Hay by Horses
by Tayler L. Hansen, Elisabeth L. Chizek, Olivia K. Zugay, Jessica M. Miller, Jill M. Bobel, Jessie W. Chouinard, Angie M. Adkin, Leigh Ann Skurupey and Lori K. Warren
Animals 2019, 9(12), 1148; https://doi.org/10.3390/ani9121148 - 14 Dec 2019
Cited by 11 | Viewed by 4060
Abstract
Bermudagrass (Cynodon dactylon) and other warm-season grasses are known for their increased fiber concentrations and reduced digestibility relative to cool-season grasses and legumes. This study investigated the digestive characteristics and passage kinetics of three maturities of Coastal bermudagrass hay. A 5 [...] Read more.
Bermudagrass (Cynodon dactylon) and other warm-season grasses are known for their increased fiber concentrations and reduced digestibility relative to cool-season grasses and legumes. This study investigated the digestive characteristics and passage kinetics of three maturities of Coastal bermudagrass hay. A 5 × 5 Latin square design experiment was used to compare the digestion of five hays: alfalfa (Medicago sativa, ALF), orchardgrass (Dactylis glomerata, ORCH), and Coastal bermudagrass harvested at 4 (CB 4), 6 (CB 6), and 8 weeks of regrowth (CB 8). Horses were fed cobalt-ethylenediaminetetraacetic acid (Co-EDTA) and ytterbium (Yb) labeled neutral detergent fiber (NDF) before an 84-h total fecal collection to determine digesta retention time. Dry matter digestibility was greatest for ALF (62.1%) and least for CB 6 (36.0%) and CB 8 diets (36.8%, SEM = 2.1; p < 0.05). Mean retention time was longer (p < 0.05) for Coastal bermudagrass (particulate 31.3 h, liquid 25.3 h) compared with ORCH and ALF (28.0 h, SEM = 0.88 h; 20.7 h, SEM = 0.70 h). Further evaluation of digesta passage kinetics through mathematical modeling indicated ALF had distinct parameters compared to the other diets. Differences in digestive variables between forage types are likely a consequence of fiber physiochemical properties, warranting further investigation on forage fiber and digestive health. Full article
(This article belongs to the Special Issue Horse Feeding and Management)
Show Figures

Figure 1

9 pages, 1392 KiB  
Article
Forage Warm-Season Legumes and Grasses Intercropped with Corn as an Alternative for Corn Silage Production
by Renata La Guardia Nave and Michael Dereck Corbin
Agronomy 2018, 8(10), 199; https://doi.org/10.3390/agronomy8100199 - 21 Sep 2018
Cited by 17 | Viewed by 4743
Abstract
Intercropping of forage grasses and legumes can increase forage productivity and nutritive value; however, intercropping of corn with warm-season forages has not yet been studied in southeast U.S., thus requiring more information. The purpose of this study was to determine the yield and [...] Read more.
Intercropping of forage grasses and legumes can increase forage productivity and nutritive value; however, intercropping of corn with warm-season forages has not yet been studied in southeast U.S., thus requiring more information. The purpose of this study was to determine the yield and nutritive value potential of warm-season annual forages intercropped with corn (Zea mays L.) for silage production. Crabgrass [Digitaria sanguinalis (L.)] is considered a weed for corn production systems; however, our study shows that if crabgrass is interseeded with corn, it does not compete for resources and can maintain high corn yields. Forage mass for sunn hemp (Crotalaria juncea L.) was higher than that of cowpea [Vigna unguiculata (L.) Walp.] and crabgrass in 2016, due to a drought in spring and summer, giving sunn hemp a competitive advantage. Crude protein content was higher for cowpea as compared to crabgrass and sunn hemp, due to cowpea’s ability to maintain its vegetative stage and high N-fixation, when compared to crabgrass and sunn hemp. Despite differences in the mass of the intercropped forages, the total herbage mass of the produced silage did not differ in 2016 and 2017. Intercropped forages can be harvested and ensiled with corn for silage production or can be left with the corn residue after harvesting to be grazed on in integrated crop-livestock systems. Full article
(This article belongs to the Special Issue Forage and Bioenergy Crops)
Show Figures

Figure 1

Back to TopTop