Effects of Different Organic Soil Amendments on Nitrogen Nutrition and Yield of Organic Greenhouse Tomato Crop
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Plant Material
2.2. Legume Biomass, N Fixation and N Accumulation
2.3. Tomato Leaf Analysis
2.4. Soil Analysis
2.5. Tomato Production and Yield Components
2.6. Statistical Analysis
3. Results
3.1. Aboveground Legumes Biomass and Biological N Fixation
3.2. Soil Measurements
3.3. Tomato Leaf Analysis
3.4. Tomato Production and Yield Components
4. Discussion
4.1. Aboveground Legumes Biomass and Biological N Fixation
4.2. Soil Measures
4.3. Tomato Growth and Yield Components
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Willer, H.; Lernoud, J. The World of Organic Agriculture: Statistics and Emerging Trends 2019; Research Institute of Organic Agriculture FiBL: Frick, Switzerland; IFOAM Organics International: Bonn, Germany, 2019; pp. 1–336. [Google Scholar]
- Bravo, C.P.; Cordts, A.; Schulze-Ehlers, B.; Spiller, A. Assessing determinants of organic food consumption using data from the German National Nutrition Survey II. Food Qual. Prefer. 2013, 28, 60–70. [Google Scholar] [CrossRef]
- Dimitri, C.; Dettmann, R.L. Organic food consumers: What do we really know about them? Br. Food J. 2012, 114, 1157–1183. [Google Scholar] [CrossRef]
- Woodward, L. Science, Research and Organic Farming. In The Science Beneath Organic Production; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 25–32. ISBN 978-1-119-55461-5. [Google Scholar]
- Kremen, C.; Miles, A. Ecosystem services in biologically diversified versus conventional farming systems: Benefits, externalities, and trade-offs. Ecol. Soc. 2012, 17, 1–25. [Google Scholar] [CrossRef]
- Watson, C.A.; Atkinson, D.; Gosling, P.; Jackson, L.R.; Rayns, F.W. Managing soil fertility in organic farming systems. Soil Use Manag. 2002, 18, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Stockdale, E.A.; Edwards, T.C.; Watson, C.A. Soil health and its management for organic farming. In The Science Beneath Organic Production; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 45–77. [Google Scholar] [CrossRef]
- Berry, P.M.; Stockdale, E.A.; Sylvester-Bradley, R.; Philipps, L.; Smith, K.A.; Lord, E.I.; Watson, C.A.; Fortune, S. N, P and K budgets for crop rotations on nine organic farms in the UK. Soil Use Manag. 2003, 19, 112–118. [Google Scholar] [CrossRef]
- Bustamante, S.C.; Hartz, T. Nitrogen management in organic processing tomato production: Nitrogen sufficiency prediction through early-season soil and plant monitoring. HortScience 2015, 50, 1055–1063. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.; Horwath, W.R.; Shennan, C.; Scow, K.M.; Lantni, W.; Ferris, H. Nitrogen, weeds and water as yield-limiting factors in conventional, low-input, and organic tomato systems. Agric. Ecosyst. Environ. 1999, 73, 257–270. [Google Scholar] [CrossRef]
- Tittarelli, F.; Bath, B.; Ceglie, F.G.; del Carmen Garcia, M.; Möller, K.; Reents, H.J.; Védie, H.; Voogt, W. Soil Fertility Management in Organic Greenhouses in Europe; BioGreenhouse: Wageningen, The Netherlands, 2016; p. 48. ISBN 9789462575363. [Google Scholar]
- Gatsios, A.; Ntatsi, G.; Celi, L.; Said-Pullicino, D.; Tampakaki, A.; Giannakou, I.; Savvas, D. Nitrogen nutrition optimization in organic greenhouse tomato through the use of legume plants as green manure or intercrops. Agronomy 2019, 9, 766. [Google Scholar] [CrossRef] [Green Version]
- The Commission of the European Communities. Commission Regulation (EC) 889 Commission Regulation (EC) No 889/2008. Off. J. Eur. Union 2008, 250, 1–84. [Google Scholar]
- Colla, G.; Mitchell, J.P.; Poudel, D.D.; Temple, S.R. Changes of tomato yield and fruit elemental composition in conventional, low input, and organic systems. J. Sustain. Agric. 2002, 20, 53–67. [Google Scholar] [CrossRef]
- Voogt, W.; De Visser, P.; Van Winkel, A.; Cuijpers, W.; Van De Burgt, G. Nutrient management in organic greenhouse production: Navigation between constraints. Acta Hortic. 2011, 915, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Heuvelink, E. Tomatoes, 2nd ed.; CABI: Boston, MA, USA, 2018; Volume 27, ISBN 178-064-193-1. [Google Scholar]
- Chowdhury, A.K.M.M.B.; Akratos, C.; Vayenas, D.; Pavlou, S. Olive mill waste composting: A review. Int. Biodeterior. Biodegrad. 2013, 85, 108–119. [Google Scholar] [CrossRef]
- Lenzi, A.; Antichi, D.; Bigongiali, F.; Mazzoncini, M.; Migliorini, P.; Tesi, R. Effect of different cover crops on organic tomato production. Renew. Agric. Food Syst. 2009, 24, 92–101. [Google Scholar] [CrossRef]
- Fatima, T.; Teasdale, J.R.; Bunce, J.; Mattoo, A.K. Tomato response to legume cover crop and nitrogen: Differing enhancement patterns of fruit yield, photosynthesis and gene expression. Funct. Plant Biol. 2012, 39, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Araki, H. Tomato production with cover crops in greenhouse. In Alternative Crops and Cropping Systems; Intehopen: London, UK, 2016; p. 87. [Google Scholar] [CrossRef] [Green Version]
- Denton, M.D.; Phillips, A.L.; Peoples, M.B.; Pearce, D.J.; Swan, A.D.; Mele, P.M.; Brockwell, J. Legume inoculant application methods: Effects on nodulation patterns, nitrogen fixation, crop growth and yield in narrow-leaf lupin and faba bean. Plant Soil 2017, 419, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Tampakaki, A.P.; Fotiadis, C.T.; Ntatsi, G.; Savvas, D. Phylogenetic multilocus sequence analysis of indigenous slow-growing rhizobia nodulating cowpea (Vigna unguiculata L.) in Greece. Syst. Appl. Microbiol. 2017, 40, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Efstathiadou, E.; Savvas, D.; Tampakaki, A.P. Genetic diversity and phylogeny of indigenous rhizobia nodulating faba bean (Vicia faba L.) in Greece. Syst. Appl. Microbiol. 2020, 43, 126149. [Google Scholar] [CrossRef]
- Unkovich, M.J.; Herridge, D.; Peoples, M.; Cadish, G.; Boddey, R.; Giller, K.; Alves, B.; Chalk, P. 15N natural abundance method. In Measuring Plant Associated Nitrogen Fixation in Agricultural Systems; ACIAR: Canberra, Australia, 2008; pp. 131–162. ISBN 978-1-921531-26-2. [Google Scholar]
- Ntatsi, G.; Karkanis, A.; Yfantopoulos, D.; Pappa, V.; Konosonoka, I.H.; Travlos, I.; Bilalis, D.; Bebeli, P.; Savvas, D. Evaluation of the field performance, nitrogen fixation efficiency and competitive ability of pea landraces grown under organic and conventional farming systems. Arch. Agron. Soil Sci. 2018, 65, 294–307. [Google Scholar] [CrossRef]
- Bedard-Haughn, A.; Van Groenigen, J.W.; van Kessel, C. Tracing 15N through landscapes: Potential uses and precautions. J. Hydrol. 2003, 272, 175–190. [Google Scholar] [CrossRef]
- Collino, D.J.; Salvagiotti, F.; Perticari, A.; Piccinetti, C.; Ovando, G.; Urquiaga, S.; Racca, R.W. Biological nitrogen fixation in soybean in Argentina: Relationships with crop, soil, and meteorological factors. Plant Soil 2015, 392, 239–252. [Google Scholar] [CrossRef]
- Miller, R.O.; Gavlak, R.; Horneck, D. Soil, plant and water reference methods for the western region. In WREP-125, 4th ed.; Colorado State University: Fort Collins, CO, USA, 2013; p. 155. [Google Scholar]
- Keeney, D.R.; Nelson, D.W. Nitrogen—Inorganic Forms. Methods Soil Anal. 1983, 9, 643–698. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954; p. 939.
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Cavigelli, M.A.; Teasdale, J.R.; Conklin, A.E. Long-term agronomic performance of organic and conventional field crops in the Mid-Atlantic region. Agron. J. 2008, 100, 785–794. [Google Scholar] [CrossRef] [Green Version]
- Rochester, I.J.; Peoples, M.B.; Constable, G.A.; Gault, R.R. Faba beans and other legumes add nitrogen to irrigated cotton cropping systems. Aust. J. Exp. Agric. 1998, 38, 253–260. [Google Scholar] [CrossRef]
- Reinbott, T.M.; Conley, S.; Blevins, D.G. No-tillage corn and grain sorghum response to cover crop and nitrogen fertilization. Agron. J. 2004, 96, 1158–1163. [Google Scholar] [CrossRef]
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Rochester, I.J.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Peoples, M.B.; Herridge, D.; Ladha, J. Biological nitrogen fixation: An efficient source of nitrogen for sustainable agricultural production? Plant Soil 1995, 174, 3–28. [Google Scholar] [CrossRef]
- Sainju, U.; Singh, B.; Whitehead, W. Comparison of the effects of cover crops and nitrogen fertilization on tomato yield, root growth, and soil properties. Sci. Hortic. 2001, 91, 201–214. [Google Scholar] [CrossRef]
- Gianquinto, G.; Muñoz, P.; Pardossi, A.; Ramazzotti, S.; Savvas, D. Soil fertility and plant nutrition. In Good Agricultural Practices for Greenhouse Vegetable Crops. Principles for Mediterranean Climate Areas; FAO: Rome, Italy, 2013; pp. 205–269. ISBN 9789251076491. [Google Scholar]
- Sainju, U.M.; Dris, R.; Singh, B. Mineral nutrition of tomato. Food Agric. Environ. 2003, 1, 176–184. [Google Scholar]
- Li, Z.; Zeng, Z.; Tian, D.; Wang, J.; Fu, Z.; Zhang, F.; Zhang, R.; Chen, W.; Luo, Y.; Niu, S. Global patterns and controlling factors of soil nitrification rate. Glob. Chang. Biol. 2020, 26, 4147–4157. [Google Scholar] [CrossRef]
- Barnard, R.; Leadley, P.W.; A Hungate, B. Global change, nitrification, and denitrification: A review. Glob. Biogeochem. Cycles 2005, 19, 1–13. [Google Scholar] [CrossRef]
- Pandey, A.; Li, F.; Askegaard, M.; Rasmussen, I.A.; Olesen, J.E. Nitrogen balances in organic and conventional arable crop rotations and their relations to nitrogen yield and nitrate leaching losses. Agric. Ecosyst. Environ. 2018, 265, 350–362. [Google Scholar] [CrossRef]
- Van Eysinga, J.R. Fertilization of Tomatoes with Nitrogen; Pudoc: Wageningen, The Netherlands, 1971; p. 17. [Google Scholar]
- Baldwin, K.R. Soil Fertility on Organic Farms; North Carolina Cooperative Extension: Raleigh, NC, USA, 2006; pp. 1–32. [Google Scholar]
- Nair, A.; Delate, K. Composting, crop rotation, and cover crop practices in organic vegetable production. In Sustainable Development and Biodiversity; Springer: Berlin/Heidelberg, Germany, 2016; pp. 231–257. [Google Scholar]
- Bryson, G.M.; Barker, A.V. Determination of optimal fertilizer concentration range for tomatoes grown in peat-based medium. Commun. Soil Sci. Plant Anal. 2002, 33, 759–777. [Google Scholar] [CrossRef]
- Mills, H.A.; Jones, J.B., Jr. Plant Analysis Handbook II: A Practical Sampling, Preparation, Analysis, and Interpretation Guide; MicroMacro Publishing: Athens, GA, USA, 1996; ISBN 1878148052. [Google Scholar]
- Hanan, J.J. Greenhouses: Advanced Technology for Protected Horticulture; CRC Press: Boca Raton, FL, USA, 1997; p. 684. ISBN 0849316987. [Google Scholar]
- Papadopoulos, A.P. Growing Greenhouse Tomatoes in Soil and in Soilless Media; Communications Branch, Agriculture Canada: Ottawa, ON, Canada, 1991; p. 79. ISBN 0662188594.
- Márquez-Quiroz, C.; Sanchez-Chavez, E.; De La Cruz-Lázaro, E.; Osorio-Osorio, R.; López-Espinosa, S.T. Nitrogen metabolism and tomato yield in response to organic fertilization. Commun. Soil Sci. Plant Anal. 2015, 46, 2774–2786. [Google Scholar] [CrossRef]
- Heeb, A.; Lundegårdh, B.; Ericsson, T.; Savage, G.P. Effects of nitrate-, ammonium-, and organic-nitrogen-based fertilizers on growth and yield of tomatoes. J. Plant Nutr. Soil Sci. 2005, 168, 123–129. [Google Scholar] [CrossRef]
- Hernández, V.; Hellín, P.; Fenoll, J.; Flores, P. Impact of nitrogen supply limitation on tomato fruit composition. Sci. Hortic. 2020, 264, 109173. [Google Scholar] [CrossRef]
No | Treatment | Description |
---|---|---|
1 | FYM | Farmyard manure 50 t ha−1 (considered as control) |
2 | OMWC | Olive-mill waste compost 30 t ha−1 |
3 | LT | Cowpea green manure before the preceding tomato crop and faba bean intercropped with the preceding tomato crop |
4 | LT + OMWC | Cowpea green manure before the preceding tomato crop and faba bean intercropped with the preceding tomato crop plus olive-mill waste compost at a rate of 30 t ha−1 |
Month | Tmean | Tmax | Tmin | RHmean | RHmax | RHmin |
---|---|---|---|---|---|---|
February 2018 | 13.1 | 15.7 | 11.6 | 87.3 | 94.4 | 79.2 |
March 2018 | 14.7 | 20.9 | 10.5 | 82.9 | 93.1 | 75.1 |
April 2018 | 19.3 | 27.5 | 13.6 | 78.1 | 89.4 | 68.3 |
May 2018 | 23.1 | 31.0 | 18.1 | 70.8 | 87.1 | 55.3 |
June 2018 | 25.5 | 33.1 | 20.1 | 62.3 | 84.6 | 33.9 |
Treatment | FB (g m−2) | DMC (%) | DB (g m−2) | Total-N (mg g−1) | Total-N (g m−2) | Ndfa (%) | BNF (kg ha−1) |
---|---|---|---|---|---|---|---|
Cowpea as green manure applied before the preceding tomato crop | |||||||
LT | 3165 | 12.8 | 405 | 3.68 | 15.0 | 93.2 | 140 |
LT + OMWC | 3128 | 13.4 | 417 | 3.65 | 15.2 | 88.0 | 134 |
Significance | ns | ns | ns | ns | ns | ns | ns |
Faba bean intercropping applied in the preceding tomato crop | |||||||
LT | 650 | 8.21 | 53.6 | 3.53 | 1.89 | 77.8 | 14.7 |
LT + OMWC | 630 | 8.56 | 54.1 | 3.44 | 1.86 | 80.2 | 15.0 |
Significance | ns | ns | ns | ns | ns | ns | ns |
Treatment | C (%) | N (%) | P (mg kg−1) | K (mg kg−1) |
---|---|---|---|---|
FYM | 2.71 a | 0.22 a | 167 a | 756 a |
OMWC | 2.75 a | 0.23 a | 132 b | 783 a |
LT | 2.01 b | 0.20 b | 112 c | 556 b |
LT + OMWC | 2.81 a | 0.24 a | 130 b | 763 a |
Significance | ** | ** | ** | ** |
Treatment | N mg g−1 | P mg g−1 | K mg g−1 |
---|---|---|---|
FYM | 19.3 a | 2.03 | 52 |
OMWC | 13.1 c | 2.27 | 48 |
LT | 14.7 b | 2.14 | 51 |
LT + OMWC | 14.8 b | 2.09 | 47 |
Significance | * | ns | ns |
Treatment | Yield (g m−2) | Fruit (No Plant−1) | MFW (g Fruit−1) |
---|---|---|---|
FYM | 7732 a | 19.4 a | 186 |
OMWC | 5048 c | 13.1 c | 180 |
LT | 6216 b | 15.2 b | 191 |
LT + OMWC | 6413 b | 15.8 b | 190 |
Significance of differences | ** | *** | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatsios, A.; Ntatsi, G.; Yfantopoulos, D.; Baltzoi, P.; Karapanos, I.C.; Tsirogiannis, I.; Patakioutas, G.; Savvas, D. Effects of Different Organic Soil Amendments on Nitrogen Nutrition and Yield of Organic Greenhouse Tomato Crop. Nitrogen 2021, 2, 347-358. https://doi.org/10.3390/nitrogen2030024
Gatsios A, Ntatsi G, Yfantopoulos D, Baltzoi P, Karapanos IC, Tsirogiannis I, Patakioutas G, Savvas D. Effects of Different Organic Soil Amendments on Nitrogen Nutrition and Yield of Organic Greenhouse Tomato Crop. Nitrogen. 2021; 2(3):347-358. https://doi.org/10.3390/nitrogen2030024
Chicago/Turabian StyleGatsios, Anastasios, Georgia Ntatsi, Dionisios Yfantopoulos, Penelope Baltzoi, Ioannis C. Karapanos, Ioannis Tsirogiannis, Georgios Patakioutas, and Dimitrios Savvas. 2021. "Effects of Different Organic Soil Amendments on Nitrogen Nutrition and Yield of Organic Greenhouse Tomato Crop" Nitrogen 2, no. 3: 347-358. https://doi.org/10.3390/nitrogen2030024
APA StyleGatsios, A., Ntatsi, G., Yfantopoulos, D., Baltzoi, P., Karapanos, I. C., Tsirogiannis, I., Patakioutas, G., & Savvas, D. (2021). Effects of Different Organic Soil Amendments on Nitrogen Nutrition and Yield of Organic Greenhouse Tomato Crop. Nitrogen, 2(3), 347-358. https://doi.org/10.3390/nitrogen2030024