Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (239)

Search Parameters:
Keywords = wall pressure variation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1742 KiB  
Article
Assessment of Aerodynamic Properties of the Ventilated Cavity in Curtain Wall Systems Under Varying Climatic and Design Conditions
by Nurlan Zhangabay, Aizhan Zhangabay, Kenzhebek Akmalaiuly, Akmaral Utelbayeva and Bolat Duissenbekov
Buildings 2025, 15(15), 2637; https://doi.org/10.3390/buildings15152637 - 25 Jul 2025
Viewed by 311
Abstract
Creating a comfortable microclimate in the premises of buildings is currently becoming one of the priorities in the field of architecture, construction and engineering systems. The increased attention from the scientific community to this topic is due not only to the desire to [...] Read more.
Creating a comfortable microclimate in the premises of buildings is currently becoming one of the priorities in the field of architecture, construction and engineering systems. The increased attention from the scientific community to this topic is due not only to the desire to ensure healthy and favorable conditions for human life but also to the need for the rational use of energy resources. This area is becoming particularly relevant in the context of global challenges related to climate change, rising energy costs and increased environmental requirements. Practice shows that any technical solutions to ensure comfortable temperature, humidity and air exchange in rooms should be closely linked to the concept of energy efficiency. This allows one not only to reduce operating costs but also to significantly reduce greenhouse gas emissions, thereby contributing to sustainable development and environmental safety. In this connection, this study presents a parametric assessment of the influence of climatic and geometric factors on the aerodynamic characteristics of the air cavity, which affect the heat exchange process in the ventilated layer of curtain wall systems. The assessment was carried out using a combined analytical calculation method that provides averaged thermophysical parameters, such as mean air velocity (Vs), average internal surface temperature (tin.sav), and convective heat transfer coefficient (αs) within the air cavity. This study resulted in empirical average values, demonstrating that the air velocity within the cavity significantly depends on atmospheric pressure and façade height difference. For instance, a 10-fold increase in façade height leads to a 4.4-fold increase in air velocity. Furthermore, a three-fold variation in local resistance coefficients results in up to a two-fold change in airflow velocity. The cavity thickness, depending on atmospheric pressure, was also found to affect airflow velocity by up to 25%. Similar patterns were observed under ambient temperatures of +20 °C, +30 °C, and +40 °C. The analysis confirmed that airflow velocity is directly affected by cavity height, while the impact of solar radiation is negligible. However, based on the outcomes of the analytical model, it was concluded that the method does not adequately account for the effects of solar radiation and vertical temperature gradients on airflow within ventilated façades. This highlights the need for further full-scale experimental investigations under hot climate conditions in South Kazakhstan. The findings are expected to be applicable internationally to regions with comparable climatic characteristics. Ultimately, a correct understanding of thermophysical processes in such structures will support the advancement of trends such as Lightweight Design, Functionally Graded Design, and Value Engineering in the development of curtain wall systems, through the optimized selection of façade configurations, accounting for temperature loads under specific climatic and design conditions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

22 pages, 3134 KiB  
Article
Internal Force Analysis of Circular Shaft Structures Considering Spatial Arching and Interlayer Shear Effects
by Dongsheng Li, Zhibing Xu, Long Yu, Xu Zhang and Yang Liu
Appl. Sci. 2025, 15(12), 6820; https://doi.org/10.3390/app15126820 - 17 Jun 2025
Viewed by 268
Abstract
To accurately investigate the stress and deformation behavior of support structures during mechanical shaft construction, this study proposes an analytical method for active earth pressure calculation based on limit equilibrium theory, incorporating both the radial variation of the circumferential stress coefficient and the [...] Read more.
To accurately investigate the stress and deformation behavior of support structures during mechanical shaft construction, this study proposes an analytical method for active earth pressure calculation based on limit equilibrium theory, incorporating both the radial variation of the circumferential stress coefficient and the spatial arching effect. Considering the entire sliding soil mass behind the shaft wall as the analytical object, the inclination angle of the sliding surface under active limit conditions is derived. Subsequently, by incorporating interlayer shear forces, a horizontal layer analysis is employed to establish the vertical and radial force equilibrium equations, leading to the formulation of an active earth pressure model for circular shafts. Furthermore, based on elastic mechanics theory, a corresponding method is developed to calculate the internal forces of the shaft structure. The theoretical predictions show good agreement with existing model test results and field monitoring data, demonstrating the accuracy and reliability of the proposed approach. The findings provide a theoretical basis for optimizing the design of circular shafts and assessing the structural stability of shaft walls. Full article
Show Figures

Figure 1

31 pages, 6448 KiB  
Review
Review of Research on Supercritical Carbon Dioxide Axial Flow Compressors
by Yong Tian, Dexi Chen, Yuming Zhu, Peng Jiang, Bo Wang, Xiang Xu and Xiaodi Tang
Energies 2025, 18(12), 3081; https://doi.org/10.3390/en18123081 - 11 Jun 2025
Viewed by 536
Abstract
Since the beginning of the 21st century, the supercritical carbon dioxide (sCO2) Brayton cycle has emerged as a hot topic of research in the energy field. Among its key components, the sCO2 compressor has received significant attention. In particular, axial-flow [...] Read more.
Since the beginning of the 21st century, the supercritical carbon dioxide (sCO2) Brayton cycle has emerged as a hot topic of research in the energy field. Among its key components, the sCO2 compressor has received significant attention. In particular, axial-flow sCO2 compressors are increasingly being investigated as power systems advance toward high power scaling. This paper reviews global research progress in this field. As for performance characteristics, currently, sCO2 axial-flow compressors are mostly designed with large mass flow rates (>100 kg/s), near-critical inlet conditions, multistage configurations with relatively low stage pressure ratios (1.1–1.2), and high isentropic efficiencies (87–93%). As for internal flow characteristics, although similarity laws remain applicable to sCO2 turbomachinery, the flow dynamics are strongly influenced by abrupt variations in thermophysical properties (e.g., viscosities, sound speeds, and isentropic exponents). High Reynolds numbers reduce frictional losses and enhance flow stability against separation but increase sensitivity to wall roughness. The locally reduced sound speed may induce shock waves and choke, while drastic variation in the isentropic exponent makes the multistage matching difficult and disperses normalized performance curves. Additionally, the quantitative impact of a near-critical phase change remains insufficiently understood. As for the experimental investigation, so far, it has been publicly shown that only the University of Notre Dame has conducted an axial-flow compressor experimental test, for the first stage of a 10 MW sCO2 multistage axial-flow compressor. Although the measured efficiency is higher than that of all known sCO2 centrifugal compressors, the inlet conditions evidently deviate from the critical point, limiting the applicability of the results to sCO2 power cycles. As for design and optimization, conventional design methodologies for axial-flow compressors require adaptations to incorporate real-gas property correction models, re-evaluations of maximum diffusion (e.g., the DF parameter) for sCO2 applications, and the intensification of structural constraints due to the high pressure and density of sCO2. In conclusion, further research should focus on two aspects. The first is to carry out more fundamental cascade experiments and numerical simulations to reveal the complex mechanisms for the near-critical, transonic, and two-phase flow within the sCO2 axial-flow compressor. The second is to develop loss models and design a space suitable for sCO2 multistage axial-flow compressors, thus improving the design tools for high-efficiency and wide-margin sCO2 axial-flow compressors. Full article
Show Figures

Figure 1

29 pages, 21376 KiB  
Article
Numerical Simulation of Fracture Failure Propagation in Water-Saturated Sandstone with Pore Defects Under Non-Uniform Loading Effects
by Gang Liu, Yonglong Zan, Dongwei Wang, Shengxuan Wang, Zhitao Yang, Yao Zeng, Guoqing Wei and Xiang Shi
Water 2025, 17(12), 1725; https://doi.org/10.3390/w17121725 - 7 Jun 2025
Cited by 1 | Viewed by 518
Abstract
The instability of mine roadways is significantly influenced by the coupled effects of groundwater seepage and non-uniform loading. These interactions often induce localized plastic deformation and progressive failure, particularly in the roof and sidewall regions. Seepage elevates pore water pressure and deteriorates the [...] Read more.
The instability of mine roadways is significantly influenced by the coupled effects of groundwater seepage and non-uniform loading. These interactions often induce localized plastic deformation and progressive failure, particularly in the roof and sidewall regions. Seepage elevates pore water pressure and deteriorates the mechanical properties of the rock mass, while non-uniform loading leads to stress concentration. The combined effect facilitates the propagation of microcracks and the formation of shear zones, ultimately resulting in localized instability. This initial damage disrupts the mechanical equilibrium and can evolve into severe geohazards, including roof collapse, water inrush, and rockburst. Therefore, understanding the damage and failure mechanisms of mine roadways at the mesoscale, under the combined influence of stress heterogeneity and hydraulic weakening, is of critical importance based on laboratory experiments and numerical simulations. However, the large scale of in situ roadway structures imposes significant constraints on full-scale physical modeling due to limitations in laboratory space and loading capacity. To address these challenges, a straight-wall circular arch roadway was adopted as the geometric prototype, with a total height of 4 m (2 m for the straight wall and 2 m for the arch), a base width of 4 m, and an arch radius of 2 m. Scaled physical models were fabricated based on geometric similarity principles, using defect-bearing sandstone specimens with dimensions of 100 mm × 30 mm × 100 mm (length × width × height) and pore-type defects measuring 40 mm × 20 mm × 20 mm (base × wall height × arch radius), to replicate the stress distribution and deformation behavior of the prototype. Uniaxial compression tests on water-saturated sandstone specimens were performed using a TAW-2000 electro-hydraulic servo testing system. The failure process was continuously monitored through acoustic emission (AE) techniques and static strain acquisition systems. Concurrently, FLAC3D 6.0 numerical simulations were employed to analyze the evolution of internal stress fields and the spatial distribution of plastic zones in saturated sandstone containing pore defects. Experimental results indicate that under non-uniform loading, the stress–strain curves of saturated sandstone with pore-type defects typically exhibit four distinct deformation stages. The extent of crack initiation, propagation, and coalescence is strongly correlated with the magnitude and heterogeneity of localized stress concentrations. AE parameters, including ringing counts and peak frequencies, reveal pronounced spatial partitioning. The internal stress field exhibits an overall banded pattern, with localized variations induced by stress anisotropy. Numerical simulation results further show that shear failure zones tend to cluster regionally, while tensile failure zones are more evenly distributed. Additionally, the stress field configuration at the specimen crown significantly influences the dispersion characteristics of the stress–strain response. These findings offer valuable theoretical insights and practical guidance for surrounding rock control, early warning systems, and reinforcement strategies in water-infiltrated mine roadways subjected to non-uniform loading conditions. Full article
Show Figures

Figure 1

13 pages, 3783 KiB  
Article
Harvesting Reactor Pressure Vessel Beltline Material from the Decommissioned Zion Nuclear Power Plant Unit 1
by Thomas M. Rosseel, Mikhail A. Sokolov, Xiang (Frank) Chen and Randy K. Nanstad
Metals 2025, 15(6), 634; https://doi.org/10.3390/met15060634 - 5 Jun 2025
Viewed by 424
Abstract
The decommissioning of the Zion Nuclear Power Plant (NPP) provided a unique opportunity to harvest and study service-aged reactor pressure vessel (RPV) beltline materials. This work, conducted through the U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) Program, aims to improve the [...] Read more.
The decommissioning of the Zion Nuclear Power Plant (NPP) provided a unique opportunity to harvest and study service-aged reactor pressure vessel (RPV) beltline materials. This work, conducted through the U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) Program, aims to improve the understanding of radiation-induced embrittlement to support extended nuclear plant operations. Material segments containing the Linde 80 flux, wire heat 72105 (WF-70) beltline weld and the A533B Heat B7835-1 base metal, obtained from the intermediate shell region with a peak fluence of 0.7 × 1019 n/cm2 (E > 1.0 MeV), were extracted, cut into blocks, and machined into test specimens for mechanical and microstructural characterization. The segmentation process involved oxy-propane torch-cutting, followed by precision machining using wire saws and electrical discharge machining (EDM). A chemical composition analysis confirmed the expected variations in alloying elements, with copper levels being notably higher in the weld metal. The harvested specimens enable a detailed evaluation of through-wall embrittlement gradients, a comparison with the existing surveillance data, and the validation of predictive embrittlement models. This study provides critical data for assessing long-term reactor vessel integrity, informing aging-management strategies, and supporting regulatory decisions to extend the life of nuclear plants. This article is a revised and expanded version of a paper entitled, “Current Status of the Characterization of RPV Materials Harvested from the Decommissioned Zion Unit 1 Nuclear Power Plant”, PVP2017-65090, which was accepted and presented at the ASME 2017 Pressure Vessels and Piping Conference, Waikoloa, HI, USA, 16–20 July 2017. Full article
Show Figures

Figure 1

23 pages, 2955 KiB  
Article
Numerical Simulations of Scaling of the Chamber Dimensions of the Liquid Piston Compressor for Hydrogen Applications
by Marina Konuhova, Valerijs Bezrukovs, Vladislavs Bezrukovs, Deniss Bezrukovs, Maksym Buryi, Nikita Gorbunovs and Anatoli I. Popov
Technologies 2025, 13(6), 226; https://doi.org/10.3390/technologies13060226 - 3 Jun 2025
Viewed by 1182
Abstract
Hydrogen compression is a critical process in hydrogen storage and distribution, particularly for energy infrastructure and transportation. As hydrogen technologies expand beyond limited industrial applications, they are increasingly supporting the green economy, including offshore energy systems, smart ports, and sustainable marine industries. Efficient [...] Read more.
Hydrogen compression is a critical process in hydrogen storage and distribution, particularly for energy infrastructure and transportation. As hydrogen technologies expand beyond limited industrial applications, they are increasingly supporting the green economy, including offshore energy systems, smart ports, and sustainable marine industries. Efficient compression technologies are essential for ensuring reliable hydrogen storage and distribution across these sectors. This study focuses on optimizing hydrogen compression using a Liquid Piston Hydrogen Compressor through numerical simulations and scaling analysis. The research examines the influence of compression chamber geometry, including variations in radius and height, on thermal behavior and energy efficiency. A computational model was developed using COMSOL Multiphysics® 6.0, incorporating Computational Fluid Dynamics (CFD) and heat transfer modules to analyze thermodynamic processes. The results highlight temperature distribution in hydrogen, working fluid, and chamber walls at different initial pressures (3.0 MPa and 20.0 MPa) and compression stroke durations. Larger chamber volumes lead to higher temperature increases but reach thermal stabilization. Increasing the chamber volume allows for a significant increase in the performance of the hydraulic compression system with a moderate increase in the temperature of hydrogen. These findings provide insights into optimizing hydrogen compression for enhanced production and broader applications. Full article
Show Figures

Figure 1

19 pages, 3970 KiB  
Article
Effect of Vortex Finder Wall Thickness on Internal Flow Field and Classification Performance in a Hydrocyclone
by Zaihai Wu, Zhitao Liang, Peiyang Li, Feng Li and Huanbo Yang
Separations 2025, 12(6), 149; https://doi.org/10.3390/separations12060149 - 3 Jun 2025
Viewed by 423
Abstract
The hydrocyclone generally exhibits limited separation efficiency and classification sharpness. As the discharge channel for fine particles, the vortex finder plays a critical role in influencing the classification performance through its structural parameters. However, the influence of vortex finder wall thickness on fly [...] Read more.
The hydrocyclone generally exhibits limited separation efficiency and classification sharpness. As the discharge channel for fine particles, the vortex finder plays a critical role in influencing the classification performance through its structural parameters. However, the influence of vortex finder wall thickness on fly ash classification within the hydrocyclone has not yet been reported. In this study, computational fluid dynamics (CFDs) were employed to investigate the variations in pressure field, velocity field, and separation efficiency with respect to changes in vortex finder wall thickness. The results indicate that the radial velocity increases with vortex finder wall thickness, which facilitates the rapid formation of a particle-size stratification, thereby reducing the number of misclassified particles. The cut size initially decreases and then increases as the wall thickness of the vortex finder increases. A minimum cut size of 17.2 µm was observed when the wall thickness reached 10 mm. The classification sharpness improves progressively with increasing wall thickness. At a wall thickness of 15 mm, the steepness index reaches 0.68. Experimental results demonstrate that a thick-walled vortex finder structure can significantly enhance the classification sharpness of the hydrocyclone. Specifically, the content of −19 µm particles in the underflow decreased by 32.17% when the vortex finder wall thickness increased from 5 mm to 15 mm. Meanwhile, the proportion of −19 µm particles in the overflow increased by 12.72%. Therefore, employing a thick-walled vortex finder structure can not only enhance the cut size precision but also effectively improve the classification performance of the hydrocyclone. Full article
(This article belongs to the Topic Advances in Separation Engineering)
Show Figures

Figure 1

22 pages, 1510 KiB  
Article
Effects of Geological and Fluid Characteristics on the Injection Filtration of Hydraulic Fracturing Fluid in the Wellbores of Shale Reservoirs: Numerical Analysis and Mechanism Determination
by Qiang Li, Qingchao Li, Fuling Wang, Jingjuan Wu, Yanling Wang and Jiafeng Jin
Processes 2025, 13(6), 1747; https://doi.org/10.3390/pr13061747 - 2 Jun 2025
Cited by 1 | Viewed by 461
Abstract
To mitigate the influence of wellbore heat transfer on the physicochemical properties of water-based fracturing fluids in the high-temperature environments of low-permeability shale reservoirs, this study investigates the fluid filtration behavior of water-based fracturing fluids within the wellbore under such reservoir conditions. A [...] Read more.
To mitigate the influence of wellbore heat transfer on the physicochemical properties of water-based fracturing fluids in the high-temperature environments of low-permeability shale reservoirs, this study investigates the fluid filtration behavior of water-based fracturing fluids within the wellbore under such reservoir conditions. A wellbore heat-transfer model based on solid–liquid coupling was constructed in order to analyse the effects of different reservoir and wellbore factors on fluid properties (viscosity and filtration volume) in the water-based fracturing fluids. Concurrently, boundary conditions and control equations were established for the numerical model, thereby delineating the heat-transfer conditions extant between the water-based fracturing fluid and the wellbore. Furthermore, molecular dynamics theory and microgrid theory were utilised to elucidate the mechanisms of the alterations of the fluid properties of the water-based fracturing fluids due to wellbore heat transfer in low-permeability shale reservoirs. The findings demonstrated that wellbore heat transfer in low-permeability shale reservoirs exerts a pronounced influence on the fluid viscosity and filtration volume of the water-based fracturing fluids. Parameters such as wellbore wall thickness, heat-transfer coefficient, radius, and pressure differential introduce distinct variation trends in these fluid properties. At the microscopic scale, the disruption of intermolecular hydrogen bonds and the consequent increase in free molecular content induced by thermal effects are the fundamental mechanisms driving the observed changes in viscosity and fluid filtration. These findings may offer theoretical guidance for improving the thermal stability of water-based fracturing fluids under wellbore heat-transfer conditions. Full article
Show Figures

Figure 1

18 pages, 2402 KiB  
Article
Factors Influencing Step Ablation in the Expansion Section of a Composite Nozzle in a Solid Rocket Motor
by Jiming Cheng, Chunyu Zhang, Hang Yan, Xiping Feng and Guoqiang Zhu
Aerospace 2025, 12(6), 499; https://doi.org/10.3390/aerospace12060499 - 31 May 2025
Viewed by 495
Abstract
During the operation of a solid rocket motor, the nozzle, which is a key component, is subjected to extreme conditions, including high temperatures, high-speed gas flow, and discrete-phase particles. For composite nozzles incorporating a carbon/carbon (C/C) throat liner and a carbon/phenolic expansion section, [...] Read more.
During the operation of a solid rocket motor, the nozzle, which is a key component, is subjected to extreme conditions, including high temperatures, high-speed gas flow, and discrete-phase particles. For composite nozzles incorporating a carbon/carbon (C/C) throat liner and a carbon/phenolic expansion section, thermochemical ablation and the formation of ablation steps during the ablation process significantly hinder nozzle performance and engine operational stability. In this study, the fluid and solid domains and the physicochemical interactions between them during nozzle operation were analyzed. An innovative thermochemical ablation model for composite nozzles was developed to account for wall recession. The coupled model covered multi-component gas flow, heterogeneous chemical reactions on the nozzle surface, structural heat transfer, variations in material parameters induced by carbon/phenolic pyrolysis, and the dynamic recession process of the nozzle profile due to ablation. The model achieved coupling between gas flow, heterogeneous reactions, and structural heat transfer through interfacial mass and energy balance relationships. Based on this model, the distribution of the nozzle’s thermochemical ablation rate was analyzed to investigate the mechanisms underlying ablation step formation. Furthermore, detailed calculations and analyses were performed to determine the effects of the gas pressure, temperature, H2O concentration, and aluminum concentration in the propellant on the ablation rate of the throat liner and the thickness of the ablation steps. This study provides a theoretical foundation for the thermal protection design and performance optimization of composite nozzles, improving the reliability and service life of solid rocket motor nozzles and advancing technological development. Full article
Show Figures

Figure 1

27 pages, 9421 KiB  
Article
Transport Mechanism and Optimization Design of LBM–LES Coupling-Based Two-Phase Flow in Static Mixers
by Qiong Lin, Qihan Li, Pu Xu, Runyuan Zheng, Jiaji Bao, Lin Li and Dapeng Tan
Processes 2025, 13(6), 1666; https://doi.org/10.3390/pr13061666 - 26 May 2025
Cited by 4 | Viewed by 572
Abstract
Static mixers have been widely used in marine research fields, such as marine control systems, ballast water treatment systems, and seawater desalination, due to their high efficiency, low energy consumption, and broad applicability. However, the turbulent mixing process and fluid–wall interactions involving complex [...] Read more.
Static mixers have been widely used in marine research fields, such as marine control systems, ballast water treatment systems, and seawater desalination, due to their high efficiency, low energy consumption, and broad applicability. However, the turbulent mixing process and fluid–wall interactions involving complex structures make the mixing transport characteristics of static mixers complex and nonlinear, which affect the mixing efficiency and stability of the fluid control device. Here, the modeling and design optimization of the two-phase flow mixing and transport dynamics of a static mixer face many challenges. This paper proposes a modeling and problem-solving method for the two-phase flow transport dynamics of static mixers, based on the lattice Boltzmann method (LBM) and large eddy simulation (LES). The characteristics of the two-phase flow mixing dynamics and design optimization strategies for complex component structures are analyzed. First, a two-phase flow transport dynamics model for static mixers is set up, based on the LBM and a multiple-relaxation-time wall-adapting local eddy (MRT-WALE) vortex viscosity coupling model. Using octree lattice block refinement technology, the interaction mechanism between the fluid and the wall during the mixing process is explored. Then, the design optimization strategies for the flow field are analyzed under different flow rates and mixing element configurations to improve the mixing efficiency and stability. The research results indicate that the proposed modeling and problem-solving methods can reveal the dynamic evolution process of mixed-flow fields. Blade components are the main driving force behind the increased turbulent kinetic energy and induced vortex formation, enhancing the macroscopic mixing effect. Moreover, variations in the flow velocity and blade angles are important factors affecting the system pressure drop. If the inlet velocity is 3 m/s and the blade angle is 90°, the static mixer exhibits optimized overall performance. The quantitative analysis shows that increasing the blade angle from 80° to 100° reduces the pressure drop by approximately 44%, while raising the inlet velocity from 3 m/s to 15 m/s lowers the outlet COV value by about 70%, indicating enhanced mixing uniformity. These findings confirm that an inlet velocity of 3 m/s combined with a 90° blade angle provides an optimal trade-off between mixing performance and energy efficiency. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

16 pages, 5732 KiB  
Article
Research on the Deformation and Failure Mechanism of Flexible Formwork Walls in Gob-Side-Entry Retaining of Ultra-Long Isolated Mining Faces and Pressure Relief-Control Technology via Roof Cutting
by Heng Wang and Junqing Guo
Appl. Sci. 2025, 15(11), 5833; https://doi.org/10.3390/app15115833 - 22 May 2025
Viewed by 420
Abstract
To resolve the critical issues of severe deformation, structural failure, and maintenance difficulties in the advanced reuse zone of gob-side-entry retaining roadways under pillarless mining conditions in ultra-long fully mechanized top-coal caving isolated mining faces, this study proposes a surrounding rock control technology [...] Read more.
To resolve the critical issues of severe deformation, structural failure, and maintenance difficulties in the advanced reuse zone of gob-side-entry retaining roadways under pillarless mining conditions in ultra-long fully mechanized top-coal caving isolated mining faces, this study proposes a surrounding rock control technology incorporating pressure relief through roof cutting. Taking the 3203 ultra-long isolated mining face at Nanyang Coal Industry as the engineering case, an integrated methodology combining laboratory experiments, theoretical analysis, numerical simulations, and industrial-scale field trials was implemented. The deformation and failure mechanism of flexible formwork walls in gob-side-entry retaining and the fundamental principles of pressure relief via roof cutting were systematically examined. The vertical stress variations in the advanced reuse zone of the retained roadway before and after roof cutting were investigated, with specific focus on the strata pressure behavior of roadways and face-end hydraulic supports on both the wide coal-pillar side and the pillarless side following roof cutting. The key findings are as follows: ① Blast-induced roof cutting reduces the cantilever beam length adjacent to the flexible formwork wall, thereby decreasing the load per unit area on the flexible concrete wall. This reduction consequently alleviates lateral abutment stress and loading in the floor heave-affected zone, achieving effective control of roadway surrounding rock stability. ② Compared with non-roof cutting, the plastic zone damage area of surrounding rock in the gob-side entry retained by flexible formwork concrete wall is significantly reduced after roof cutting, and the vertical stress on the flexible formwork wall is also significantly decreased. ③ Distinct differences exist in the distribution patterns and magnitudes of working resistance for face-end hydraulic supports between the wide coal-pillar side and the pillarless gob-side-entry retaining side after roof cutting. As the interval resistance increases, the average working resistance of hydraulic supports on the wide pillar side demonstrates uniform distribution, whereas the pillarless side exhibits a declining frequency trend in average working resistance, with an average reduction of 30% compared to non-cutting conditions. ④ After roof cutting, the surrounding rock deformation control effectiveness of the track gateway on the gob-side-entry retaining side is comparable to that of the haulage gateway on the 50 m wide coal-pillar side, ensuring safe mining of the working face. Full article
(This article belongs to the Special Issue Advances in Green Coal Mining Technologies)
Show Figures

Figure 1

19 pages, 7168 KiB  
Article
Numerical Simulation of a 330 MW Tangentially Fired Boiler by a Model Coupling CFD and Hydrodynamic Calculation
by Lijun Sun, Miao Wang, Peian Chong, Yunhao Shao and Lei Deng
Energies 2025, 18(10), 2585; https://doi.org/10.3390/en18102585 - 16 May 2025
Viewed by 356
Abstract
The interaction mechanism of multi-physical fields in a 330 MW tangentially fired boiler is explored by coupling the CFD (computational fluid dynamics) model and the working fluid side hydrodynamic model under steady-state conditions. The research focuses on the flue gas flow field, the [...] Read more.
The interaction mechanism of multi-physical fields in a 330 MW tangentially fired boiler is explored by coupling the CFD (computational fluid dynamics) model and the working fluid side hydrodynamic model under steady-state conditions. The research focuses on the flue gas flow field, the hydrodynamic safety of the water wall, the variation of the working fluid parameters and the formation and distribution characteristics of sulfide (SO2, H2S) under different steady loads (35%, 50%, 75%, 100% Boiler Maximum Continuous Rating). The results show that under high load, the flue gas attaches to the wall. The overall stagnation differential pressure ratio (1.85–2.07) and reversal differential pressure ratio (1.22–1.30) of the G1 tube group with the lowest heat flux are higher than the safety threshold (1.05), proving reliable operational safety under equilibrium conditions. The temperature distribution of the furnace center obtained by numerical simulation is consistent with the actual situation. The mass fraction of sulfide increases significantly with the increase in load. SO2 is mainly distributed in the wall area of the middle and upper burners, while H2S is mainly distributed in the wall area between the secondary air and the main burner. The maximum mass fractions of SO2 and H2S at 330 MW are 0.120% and 0.0524%, respectively. It is suggested that a wall-attached air system be added to inhibit the enrichment of corrosive gases. This work may provide theoretical support and engineering guidance for multi-objective optimization design and high temperature corrosion prevention and control of tangentially fired boilers. Full article
Show Figures

Figure 1

23 pages, 5980 KiB  
Article
Study on Moisture Phase Changes in Bread Baking Using a Coupling Model
by Luo Zhang, Wei Yang, Kai Xu, Linshuang Long and Hong Ye
Foods 2025, 14(9), 1649; https://doi.org/10.3390/foods14091649 - 7 May 2025
Viewed by 563
Abstract
Moisture phase change (MPC), a key process in bread baking, significantly impacts heat and mass transfer, as confirmed by experiments. However, existing models poorly characterize this phenomenon, and its quantitative impact on baking needs systematic study. This research develops a coupled multiphase model [...] Read more.
Moisture phase change (MPC), a key process in bread baking, significantly impacts heat and mass transfer, as confirmed by experiments. However, existing models poorly characterize this phenomenon, and its quantitative impact on baking needs systematic study. This research develops a coupled multiphase model for heat and mass transfer with large deformation, employing both equilibrium and nonequilibrium approaches to describe MPC in closed and open pores, respectively. Experimentally calibrated pore-opening functions and viscosity variations revealed that pore-opening primarily occurs at 71–81 °C, whereas dough solidification occurs at 50–110 °C. Model-based analysis indicates that in closed pores, evaporation–diffusion–condensation is the primary mode of moisture transport and heat transfer with contributing approximately 60% of the total effective thermal conductivity, and when pores open, water vapor evaporates or condenses on pore walls, forming an ‘evaporation front’ and ‘condensation front’. The content of liquid water increases at the ‘condensation front’ and decreases at the ‘evaporation front’. Bread deformation is predominantly governed by pressure differentials between closed pores and the ambient environment, with the partial pressure of water vapor emerging as the principal driver because its average content exceeds 70% within closed pores. These findings demonstrate that MPC governs heat and mass transfer and deformation during bread baking. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

19 pages, 5653 KiB  
Article
Implementation of Machine Learning in Flat Die Extrusion of Polymers
by Nickolas D. Polychronopoulos, Ioannis Sarris and John Vlachopoulos
Molecules 2025, 30(9), 1879; https://doi.org/10.3390/molecules30091879 - 23 Apr 2025
Cited by 2 | Viewed by 1000
Abstract
Achieving a uniform thickness and defect-free production in the flat die extrusion of polymer sheets and films is a major challenge. Dies are designed for one extrusion scenario, for a polymer grade with specified rheological behavior, and for a given throughput rate. The [...] Read more.
Achieving a uniform thickness and defect-free production in the flat die extrusion of polymer sheets and films is a major challenge. Dies are designed for one extrusion scenario, for a polymer grade with specified rheological behavior, and for a given throughput rate. The extrusion of different polymer grades and at different flow rates requires trial-and-error procedures. This study investigated the application of machine learning (ML) to provide guidance for the extrusion of sheets and films with a reduced thickness, non-uniformities, and without defects. A dataset of 200 cases was generated using computer simulation software for flat die extrusion. The dataset encompassed variations in die geometry by varying the gap under a restrictor, polymer rheological and thermophysical properties, and processing conditions, including throughput rate and temperatures. The dataset was used to train and evaluate the following three powerful machine learning (ML) algorithms: Random Forest (RF), XGBoost, and Support Vector Regression (SVR). The ML models were trained to predict thickness variations, pressure drops, and the lowest wall shear rate (targets). Using the SHapley Additive exPlanations (SHAP) analysis provided valuable insights into the influence of input features, highlighting the critical roles of polymer rheology, throughput rate, and the gap beneath the restrictor in determining targets. This ML-based methodology has the potential to reduce or even eliminate the use of trial and error procedures. Full article
Show Figures

Figure 1

35 pages, 10267 KiB  
Article
Numerical Study on the Transient Pneumatic Characteristics of a Piston-Type Air Compressor During the Compressing Process
by Yan-Juan Zhao, Bing-Yin Zhou, Hui-Fan Huang, Wan-Wan Tian, Yan-Jie Wang, Hai-Bin Lin, Liang-Huai Tong and Yu-Liang Zhang
Processes 2025, 13(4), 1211; https://doi.org/10.3390/pr13041211 - 16 Apr 2025
Cited by 1 | Viewed by 478
Abstract
To investigate the pneumatic characteristics of a piston-type air compressor during the rapid transient processes of intake and compression, this study establishes a computational model incorporating the tank, valves, cylinder, intake and discharge pipe, etc. Utilizing the dynamic mesh method combined with user-defined [...] Read more.
To investigate the pneumatic characteristics of a piston-type air compressor during the rapid transient processes of intake and compression, this study establishes a computational model incorporating the tank, valves, cylinder, intake and discharge pipe, etc. Utilizing the dynamic mesh method combined with user-defined functions, numerical calculations were performed to analyze the compression process, focusing on pressure variation patterns at various positions inside the cylinder and their impact on compressor performance. The purpose is to enhance understanding of these dynamics. Key findings reveal that during the intake phase, pressure at all monitored points rapidly decreases, with the most significant pressure changes occurring directly below the intake valve. Pressure variations on the surfaces of the intake and discharge valves exhibit high consistency. However, during compression, negative pressure changes become more pronounced. The pressures on the top, side walls, and bottom of the cylinder rapidly decrease as the compression ends. Furthermore, as air flows into the storage tank, its pressure decreases but remains mostly stable until equilibrium is reached, causing the tank pressure to rise. Finally, significant low-pressure areas were observed in small corners below the pipe, while higher pressure values were found in larger corners above the side, demonstrating flow characteristics and energy loss under different geometric conditions. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

Back to TopTop