Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (625)

Search Parameters:
Keywords = vulnerability chains

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 245 KiB  
Article
Helminth and Malaria Co-Infection Among Pregnant Women in Battor and Adidome Towns of the Volta Region of Ghana
by Sarah Alhakimi, Navneet Kaur, Javeriya Choudry, Naa Adjeley Frempong, Charity Ahiabor, William K. Anyan, Abraham K. Anang and Nilanjan Lodh
Parasitologia 2025, 5(3), 44; https://doi.org/10.3390/parasitologia5030044 - 22 Aug 2025
Viewed by 23
Abstract
Aim: In sub-Saharan Africa, approximately 40 million pregnant women are exposed to parasitic diseases such as malaria caused by Plasmodium falciparum, Schistosome parasites, and soil-transmitted helminths (STHs). When parasitic diseases share the same habitat and overlap in distribution, then high co-infection rates [...] Read more.
Aim: In sub-Saharan Africa, approximately 40 million pregnant women are exposed to parasitic diseases such as malaria caused by Plasmodium falciparum, Schistosome parasites, and soil-transmitted helminths (STHs). When parasitic diseases share the same habitat and overlap in distribution, then high co-infection rates occur. The co-infection can lead to consequences for the child, such as intrauterine growth retardation, low birth weight, pre-term delivery, and neonatal mortality. Methods: The objective of the study was to determine the nature and extent of coinfection from 100 samples collected from the Battor (50) and Adidome (50) towns of Ghana in collaboration with the Noguchi Memorial Institute for Medical Research, University of Ghana. Results: Out of 50 for the Adidome towns determined for P. falciparum by Rapid Diagnostic Test (RDT), Malaria Pan-specific Antigen (PAN), and Malaria Pf kit, 39 were true positive (TP), 8 were true negative (TN), and 30 were false negative (FN). For Battor, 19 were TP, 12 TN, and 20 FN. For S. mansoni in Adidome via polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP), 21 tested positive, and 29 were negative, with 52.5% sensitivity and 100% specificity. For S. haematobium, 28 were positive and 22 negative using PCR with 70% sensitivity and 100% specificity. In LAMP, 28 were positive, and 22 negatives, with 70% sensitivity and 100% specificity. In Battor PCR for S. mansoni, 28 positives and 22 negatives with 68.3% sensitivity and 100% specificity. In LAMP, 32 were positive, and 18 were negative, with 80% sensitivity and 100% specificity. For S. haematobium, PCR showed 30 positive and 20 negative, with 73.2% sensitivity and 100% specificity. With LAMP, 21 were positive, and 29 negatives, with 51% sensitivity and 100% specificity. In both towns, 20–30 years had the highest infection prevalence for P. falciparum, S. mansoni, S. haematobium, and Strongyloides stercoralis. Conclusion: The results will be utilized as a part of the continuous surveillance for future research aiming at gathering nationally representative data in Ghana on the prevalence of coinfection and proposing interventions based on that for the vulnerable pregnant women population. Full article
44 pages, 1673 KiB  
Review
Managing PFAS in Sewage Sludge: Exposure Pathways, Impacts, and Treatment Innovations
by Luoana Florentina Pascu, Valentina Andreea Petre, Ioana Antonia Cimpean, Iuliana Paun, Florinela Pirvu and Florentina Laura Chiriac
J. Xenobiot. 2025, 15(4), 135; https://doi.org/10.3390/jox15040135 - 21 Aug 2025
Viewed by 301
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a global concern due to their persistence, ubiquity, and accumulation in living organisms. Found in soils, biosolids, water, and the food chain, they pose health risks such as hormone disruption, immune damage, reproductive issues, and cancer. Regulations [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are a global concern due to their persistence, ubiquity, and accumulation in living organisms. Found in soils, biosolids, water, and the food chain, they pose health risks such as hormone disruption, immune damage, reproductive issues, and cancer. Regulations mainly target older PFAS like PFOA and PFOS, while many newer PFAS, including breakdown products, are poorly understood in terms of distribution, behavior, and toxicity. To address this complex issue, this review offers a detailed overview of human exposure to PFAS and their toxic effects. It highlights biosolids as a key, understudied source of PFAS in the environment. The review also discusses limitations of testing, missing long-term cleanup data, and regulatory issues that neglect total exposure and vulnerable populations. Additionally, it evaluates, in the specific context of biosolids management, the effectiveness, scalability, benefits, and drawbacks of various treatment technologies, such as thermal processes (pyrolysis, incineration, smoldering combustion), advanced oxidation, adsorption, hydrothermal liquefaction, and biological degradation. This work combines environmental science, toxicology, and engineering to outline PFAS management in biosolids and proposes a research and policy plan. Focusing on regulating PFAS as a group, validating real-world results, and employing adaptable treatment strategies underscores the need for a coordinated, science-based effort to reduce PFAS risks worldwide. Full article
(This article belongs to the Section Emerging Chemicals)
Show Figures

Graphical abstract

26 pages, 3939 KiB  
Article
Clinical and Proteomic Associations of SARS-CoV-2 Infection and COVID-19 Vaccination in Multimorbid Patients: A Cross-Sectional Observational Study
by Anett Hudák, Aladár Pettko-Szandtner, Annamária Letoha and Tamás Letoha
Int. J. Mol. Sci. 2025, 26(16), 8007; https://doi.org/10.3390/ijms26168007 - 19 Aug 2025
Viewed by 1943
Abstract
Vaccines played a crucial role in the COVID-19 pandemic, but their long-term biological effects and efficacy in vulnerable populations remain under intensive investigation. This study assessed clinical outcomes, comorbidities, and systemic biomarker and proteomic profiles in 366 multimorbid patients, stratified into four groups [...] Read more.
Vaccines played a crucial role in the COVID-19 pandemic, but their long-term biological effects and efficacy in vulnerable populations remain under intensive investigation. This study assessed clinical outcomes, comorbidities, and systemic biomarker and proteomic profiles in 366 multimorbid patients, stratified into four groups based on SARS-CoV-2 infection and vaccination status (COV+ vac+, COV+ vac−, COV− vac+, COV− vac−). Clinical and laboratory data, including comorbidities and relevant biomarkers, were collected. Proteomic analysis using mass spectrometry was performed to identify molecular changes associated with infection and vaccination. Statistical analyses examined associations between clinical status, biomarkers, and patient outcomes. As most participants received mRNA-based vaccines, the results primarily reflect responses to spike protein-expressing platforms. Biomarkers of cardiac and renal stress—namely proBNP and carbamide—were elevated in vaccinated individuals. Five deaths occurred in the COV+ vac+ group and two in the COV+ vac− group, most of which were attributed to exacerbations of pre-existing chronic diseases rather than to COVID-19 pneumonia. Protection against breakthrough infections waned over time, particularly beyond 200 days post-vaccination. Mass spectrometry identified proteins such as actin, fibrinogen chains, and SAA2 as potential diagnostic targets. Although the cross-sectional observational design limits the ability to draw causal inferences, the observed waning immunity and potential systemic alterations in vaccinated multimorbid patients highlight the importance of longitudinal follow-up to guide tailored immunization strategies and post-vaccination monitoring in high-risk groups. Full article
(This article belongs to the Special Issue Coronavirus Disease (COVID-19): Pathophysiology (6th Edition))
Show Figures

Figure 1

22 pages, 1202 KiB  
Article
Identifying Critical Fire Risk Transmission Paths in Subway Stations: A PSR–DEMATEL–ISM Approach
by Rongshui Qin, Xiangxiang Zhang, Chenchen Shi, Qian Zhao, Tao Yu, Junfeng Xiao and Xiangyang Liu
Fire 2025, 8(8), 332; https://doi.org/10.3390/fire8080332 - 19 Aug 2025
Viewed by 250
Abstract
To enhance the understanding and management of fire risks in subway stations, this study aims to identify critical fire risk transmission paths using an integrated PSR–DEMATEL–ISM approach. A comprehensive evaluation framework is first constructed based on the Pressure–State–Response (PSR) model, systematically categorizing 22 [...] Read more.
To enhance the understanding and management of fire risks in subway stations, this study aims to identify critical fire risk transmission paths using an integrated PSR–DEMATEL–ISM approach. A comprehensive evaluation framework is first constructed based on the Pressure–State–Response (PSR) model, systematically categorizing 22 influencing factors into three dimensions: pressure, state, and response. The Decision-Making Trial and Evaluation Laboratory (DEMATEL) method is then employed to analyze the causal relationships and centrality among these factors, distinguishing between cause and effect groups. Subsequently, Interpretive Structural Modeling (ISM) is applied to organize the factors into a multi-level hierarchical structure, enabling the identification of risk propagation pathways. The analysis reveals five high-centrality and high-causality factors: fire safety education and training, completeness of fire management rules and regulations, fire smoke detection and firefighting capability, operational status of monitoring equipment, and effectiveness of emergency response plans. Based on these key drivers, six major transmission paths are derived, reflecting the internal logic of fire risk evolution in subway environments. Among them, chains originating from Fire Safety Education and Training (S6), Architectural Fire Protection Design (S7), and Completeness of Fire Management Rules and Regulations (S16) exhibit the most significant influence on system-wide safety performance. This study provides theoretical support and practical guidance for proactive fire prevention and emergency planning in urban rail transit systems, offering a structured and data-driven approach to identifying vulnerabilities and improving system resilience. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

17 pages, 1684 KiB  
Article
Privacy-Preserving EV Charging Authorization and Billing via Blockchain and Homomorphic Encryption
by Amjad Aldweesh and Someah Alangari
World Electr. Veh. J. 2025, 16(8), 468; https://doi.org/10.3390/wevj16080468 - 17 Aug 2025
Viewed by 275
Abstract
Electric vehicle (EV) charging infrastructures raise significant concerns about data security and user privacy because traditional centralized authorization and billing frameworks expose sensitive information to breaches and profiling. To address these vulnerabilities, we propose a novel decentralized framework that couples a permissioned blockchain [...] Read more.
Electric vehicle (EV) charging infrastructures raise significant concerns about data security and user privacy because traditional centralized authorization and billing frameworks expose sensitive information to breaches and profiling. To address these vulnerabilities, we propose a novel decentralized framework that couples a permissioned blockchain with fully homomorphic encryption (FHE). Unlike prior blockchain-only or blockchain-and-machine-learning solutions, our architecture performs all authorization and billing computations on encrypted data and records transactions immutably via smart contracts. We implemented the system on Hyperledger Fabric using the CKKS-based TenSEAL library, chosen for its efficient arithmetic on real-valued vectors, and show that homomorphic operations are executed off-chain within a secure computation layer while smart contracts handle only encrypted records. In a simulation involving 20 charging stations and up to 100 concurrent users, the proposed system achieved an average authorization latency of 610 ms, a billing computation latency of 310 ms, and transaction throughput of 102 Tx min while maintaining energy overhead below 0.14 kWh day per station. When compared to state-of-the-art blockchain-only approaches, our method reduces data exposure by 100%, increases privacy from “moderate” to “very high,” and achieves similar throughput with acceptable computational overhead. These results demonstrate that privacy-preserving EV charging is practical using present-day cryptography, paving the way for secure, scalable EV charging and billing services. Full article
(This article belongs to the Special Issue New Trends in Electrical Drives for EV Applications)
Show Figures

Figure 1

17 pages, 519 KiB  
Article
The Impact of Drug Price Reduction on Healthcare System Sustainability: A CGE Analysis of China’s Centralized Volume-Based Procurement Policy
by Yujia Tian, Fei Sha, Haohui Chi and Zheng Ji
Sustainability 2025, 17(16), 7388; https://doi.org/10.3390/su17167388 - 15 Aug 2025
Viewed by 328
Abstract
China’s healthcare expenditure tripled during 2010–2019, prompting the nationwide implementation of centralized volume-based procurement (CVBP). While effective in reducing drug prices, CVBP introduces sustainability challenges including supply chain vulnerabilities and welfare trade-offs. This study develops a pharmaceutical sector-embedded computable general equilibrium (CGE) model [...] Read more.
China’s healthcare expenditure tripled during 2010–2019, prompting the nationwide implementation of centralized volume-based procurement (CVBP). While effective in reducing drug prices, CVBP introduces sustainability challenges including supply chain vulnerabilities and welfare trade-offs. This study develops a pharmaceutical sector-embedded computable general equilibrium (CGE) model to quantify CVBP’s multidimensional sustainability impacts. Using China’s 2020 Social Accounting Matrix (SAM) with simulated 10–50% price reductions, key findings reveal that (1) >40% price reductions trigger sectoral output reversal; (2) GDP exhibits an inverted U-shape; (3) household income declines despite corporate/government gains; and (4) industrial contraction impairs innovation capacity and employment stability. Our analysis identifies potential sustainability risks, emphasizing the need for rigorous empirical validation prior to implementing aggressive price reduction policies, and underscores the importance of integrating supply chain considerations into procurement policy design. This approach maximizes resource allocation efficiency while advancing socioeconomic resilience in healthcare systems. Full article
Show Figures

Figure 1

12 pages, 1240 KiB  
Article
Pyrogenic Transformation of Soil Organic Matter in Larch Forests of the Discontinuous Permafrost Zone
by Anjelica Kondratova, Kazuto Sazawa, Naoya Wada and Semyon Bryanin
Forests 2025, 16(8), 1309; https://doi.org/10.3390/f16081309 - 11 Aug 2025
Viewed by 220
Abstract
The increasing frequency of wildfires in larch forests across the discontinuous permafrost zone of Eastern Eurasia heightens the vulnerability of soil organic matter (SOM) under a warming climate. However, post-fire SOM thermal stability in this frequently burned forest region remain poorly understood. We [...] Read more.
The increasing frequency of wildfires in larch forests across the discontinuous permafrost zone of Eastern Eurasia heightens the vulnerability of soil organic matter (SOM) under a warming climate. However, post-fire SOM thermal stability in this frequently burned forest region remain poorly understood. We assessed the long-term effects of wildfire on SOM structure and thermal stability in burned and unburned larch forests using complex analytical approaches: pyrolysis–gas chromatography/mass spectrometry (TMAH-py-GC/MS) and thermogravimetry/differential thermal analysis (TG/DTA). The focus was on the upper mineral soil horizon, where fire impacts may persist for decades. Sixteen years post-fire, total carbon content did not differ significantly between burned and control soils. Nonetheless, the molecular composition and thermal properties of SOM showed marked post-fire alterations. Burned soils exhibited higher proportions of lignin-derived compounds and reduced levels of short-chain fatty acid methyl esters. A lower degradation temperature (T50) and a higher thermal mass loss of labile fractions indicate a decrease in the thermal stability of SOM after fire. Our study shows that recurrent forest fires in larch forests of the Russian Far East decrease the thermal stability of soil organic matter, thereby increasing its vulnerability to subsequent fire degradation. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

21 pages, 2608 KiB  
Article
Quality and Quantity Losses of Tomatoes Grown by Small-Scale Farmers Under Different Production Systems
by Tintswalo Molelekoa, Edwin M. Karoney, Nazareth Siyoum, Jarishma K. Gokul and Lise Korsten
Horticulturae 2025, 11(8), 884; https://doi.org/10.3390/horticulturae11080884 - 1 Aug 2025
Viewed by 471
Abstract
Postharvest losses amongst small-scale farmers in developing countries are high due to inadequate resources and infrastructure. Among the various affected crops, tomatoes are particularly vulnerable; however, studies on postharvest losses of most fruits and vegetables are limited. Therefore, this study aimed to assess [...] Read more.
Postharvest losses amongst small-scale farmers in developing countries are high due to inadequate resources and infrastructure. Among the various affected crops, tomatoes are particularly vulnerable; however, studies on postharvest losses of most fruits and vegetables are limited. Therefore, this study aimed to assess postharvest tomato losses under different production systems within the small-scale supply chain using the indirect assessment (questionnaires and interviews) and direct quantification of losses. Farmers reported tomato losses due to insects (82.35%), cracks, bruises, and deformities (70.58%), and diseases (64.71%). Chemical sprays were the main form of pest and disease control reported by all farmers. The direct quantification sampling data revealed that 73.07% of the tomatoes were substandard at the farm level, with 47.92% and 25.15% categorized as medium-quality and poor-quality, respectively. The primary contributors to the losses were decay (39.92%), mechanical damage (31.32%), and blotchiness (27.99%). Postharvest losses were significantly higher under open-field production systems compared to closed tunnels. The fungi associated with decay were mainly Geotrichum, Fusarium spp., and Alternaria spp. These findings demonstrate the main drivers behind postharvest losses, which in turn highlight the critical need for intervention through training and support, including the use of postharvest loss reduction technologies to enhance food security. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Graphical abstract

23 pages, 766 KiB  
Review
Pathophysiological Links Between Inflammatory Bowel Disease and Cardiovascular Disease: The Role of Dysbiosis and Emerging Biomarkers
by Roko Šantić, Nikola Pavlović, Marko Kumrić, Marino Vilović and Joško Božić
Biomedicines 2025, 13(8), 1864; https://doi.org/10.3390/biomedicines13081864 - 31 Jul 2025
Viewed by 305
Abstract
This review introduces a novel integrative framework linking gut dysbiosis, systemic inflammation, and cardiovascular risk in patients with inflammatory bowel disease (IBD). We highlight emerging biomarkers, including short-chain fatty acids (SCFAs), calprotectin, and zonulin, that reflect alterations in the gut microbiome and increased [...] Read more.
This review introduces a novel integrative framework linking gut dysbiosis, systemic inflammation, and cardiovascular risk in patients with inflammatory bowel disease (IBD). We highlight emerging biomarkers, including short-chain fatty acids (SCFAs), calprotectin, and zonulin, that reflect alterations in the gut microbiome and increased intestinal permeability, which contribute to cardiovascular pathology. Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide, and recent evidence identifies IBD, encompassing ulcerative colitis (UC) and Crohn’s disease (CD), as a significant non-traditional risk factor for CVD. This review synthesizes current knowledge on how dysbiosis-driven inflammation in IBD patients exacerbates endothelial dysfunction, hypercoagulability, and atherosclerosis, even in the absence of traditional risk factors. Additionally, we discuss how commonly used IBD therapies may modulate cardiovascular risk. Understanding these multifactorial mechanisms and validating reliable biomarkers are essential for improving cardiovascular risk stratification and guiding targeted prevention strategies in this vulnerable population. Full article
Show Figures

Figure 1

17 pages, 1353 KiB  
Article
SSB: Smart Contract Security Detection Tool Suitable for Industrial Control Scenarios
by Ci Tao, Shuai He and Xingqiu Shen
Sensors 2025, 25(15), 4695; https://doi.org/10.3390/s25154695 - 30 Jul 2025
Viewed by 426
Abstract
The results of this study highlight the effectiveness of the proposed semantic security detection framework, SSB, in identifying a wide range of vulnerabilities in smart contracts tailored for industrial control scenarios. Compared to existing tools like ZEUS, Securify, and VULTRON, SSB demonstrates superior [...] Read more.
The results of this study highlight the effectiveness of the proposed semantic security detection framework, SSB, in identifying a wide range of vulnerabilities in smart contracts tailored for industrial control scenarios. Compared to existing tools like ZEUS, Securify, and VULTRON, SSB demonstrates superior logical coverage across various vulnerability types, as evidenced by its performance on smart contract samples. This suggests that semantic-based approaches, which integrate domain-specific invariants and runtime monitoring, can address the unique challenges of ICS, such as real-time constraints and semantic consistency between code and physical control logic. The framework’s ability to model industrial invariants—covering security, functionality, consistency, time-related, and resource consumption aspects—provides a robust mechanism to prevent critical errors like unauthorized access or premature equipment operation. However, the lack of real-world ICS validation due to confidentiality constraints limits the generalizability of these findings. Future research should focus on adapting SSB for real industrial deployments, exploring scalability across diverse ICS architectures, and integrating advanced AI techniques for dynamic invariant adjustment. Additionally, addressing cross-chain interoperability and privacy concerns could further enhance the framework’s applicability in complex industrial ecosystems. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

59 pages, 3467 KiB  
Review
Are Hippocampal Hypoperfusion and ATP Depletion Prime Movers in the Genesis of Alzheimer’s Disease? A Review of Recent Pertinent Observations from Molecular Biology
by Valerie Walker
Int. J. Mol. Sci. 2025, 26(15), 7328; https://doi.org/10.3390/ijms26157328 - 29 Jul 2025
Viewed by 686
Abstract
Alzheimer’s dementia (AD) is a disease of the ageing brain. It begins in the hippocampal region with the epicentre in the entorhinal cortex, then gradually extends into adjacent brain areas involved in memory and cognition. The events which initiate the damage are unknown [...] Read more.
Alzheimer’s dementia (AD) is a disease of the ageing brain. It begins in the hippocampal region with the epicentre in the entorhinal cortex, then gradually extends into adjacent brain areas involved in memory and cognition. The events which initiate the damage are unknown and under intense investigation. Localization to the hippocampus can now be explained by anatomical features of the blood vessels supplying this region. Blood supply and hence oxygen delivery to the area are jeopardized by poor flow through narrowed arteries. In genomic and metabolomic studies, the respiratory chain and mitochondrial pathways which generate ATP were leading pathways associated with AD. This review explores the notion that ATP depletion resulting from hippocampal hypoperfusion has a prime role in initiating damage. Sections cover sensing of ATP depletion and protective responses, vulnerable processes with very heavy ATP consumption (the malate shuttle, the glutamate/glutamine/GABA (γ-aminobutyric acid) cycle, and axonal transport), phospholipid disturbances and peroxidation by reactive oxygen species, hippocampal perfusion and the effects of hypertension, chronic hypoxia, and arterial vasospasm, and an overview of recent relevant genomic studies. The findings demonstrate strong scientific arguments for the proposal with increasing supportive evidence. These lines of enquiry should be pursued. Full article
Show Figures

Graphical abstract

19 pages, 4063 KiB  
Article
Exposure to Mitochondrial Toxins: An In Vitro Study of Energy Depletion and Oxidative Stress in Driving Dopaminergic Neuronal Death in MN9D Cells
by Oluwatosin Adefunke Adetuyi and Kandatege Wimalasena
Toxics 2025, 13(8), 637; https://doi.org/10.3390/toxics13080637 - 29 Jul 2025
Viewed by 394
Abstract
Mitochondrial dysfunction is a key contributor to neurodegeneration, particularly in Parkinson’s disease (PD), where dopaminergic neurons being highly metabolically active are vulnerable to oxidative stress and bioenergetic failure. In this study, we investigate the effects of rotenone, a Complex I inhibitor, and antimycin [...] Read more.
Mitochondrial dysfunction is a key contributor to neurodegeneration, particularly in Parkinson’s disease (PD), where dopaminergic neurons being highly metabolically active are vulnerable to oxidative stress and bioenergetic failure. In this study, we investigate the effects of rotenone, a Complex I inhibitor, and antimycin A, a Complex III inhibitor, on mitochondrial function in MN9D dopaminergic neuronal cells. Cells were treated with rotenone (1.5 µM) or antimycin A (10 µM) for one hour, and key biochemical parameters were assessed, including ATP levels, reactive oxygen species (ROS) production, dopamine metabolism, and neuromelanin formation. Our results indicate significant ATP depletion and ROS accumulation following treatment with both inhibitors, with antimycin A inducing a more pronounced oxidative stress response. Dysregulation of dopamine biosynthesis differed mechanistically from vesicular monoamine transporter (VMAT2) inhibition by tetrabenazine, suggesting alternative pathways of catecholamine disruption. Additionally, oxidative stress led to increased neuromelanin accumulation, indicating a possible adaptive response to mitochondrial dysfunction. These findings provide insights into the cellular mechanisms underlying dopaminergic neurotoxicity and highlight mitochondrial electron transport chain inhibition as a key driver of PD pathogenesis. Future research should explore therapeutic strategies aimed at enhancing mitochondrial function to mitigate neurodegenerative progression. Full article
Show Figures

Graphical abstract

17 pages, 274 KiB  
Article
“I Shouldn’t Have to Drive to the Suburbs”: Grocery Store Access, Transportation, and Food Security in Detroit During the COVID-19 Pandemic
by Aeneas O. Koosis, Alex B. Hill, Megan Whaley and Alyssa W. Beavers
Nutrients 2025, 17(15), 2441; https://doi.org/10.3390/nu17152441 - 26 Jul 2025
Viewed by 422
Abstract
Objective: To explore the relationship between type of grocery store used (chain vs. independent), transportation access, food insecurity, and fruit and vegetable intake in Detroit, Michigan, USA, during the COVID-19 pandemic. Design: A cross-sectional online survey was conducted from December 2021 to May [...] Read more.
Objective: To explore the relationship between type of grocery store used (chain vs. independent), transportation access, food insecurity, and fruit and vegetable intake in Detroit, Michigan, USA, during the COVID-19 pandemic. Design: A cross-sectional online survey was conducted from December 2021 to May 2022. Setting: Detroit, Michigan. Participants: 656 Detroit residents aged 18 and older. Results: Bivariate analyses showed that chain grocery store shoppers reported significantly greater fruit and vegetable intake (2.42 vs. 2.14 times/day for independent grocery store shoppers, p < 0.001) and lower rates of food insecurity compared to independent store shoppers (45.9% vs. 65.3% for independent grocery store shoppers, p < 0.001). Fewer independent store shoppers used their own vehicle (52.9% vs. 76.2% for chain store shoppers, p < 0.001). After adjusting for socioeconomic and demographic variables transportation access was strongly associated with increased odds of shopping at chain stores (OR = 1.89, 95% CI [1.21,2.95], p = 0.005) but food insecurity was no longer associated with grocery store type. Shopping at chain grocery stores was associated with higher fruit and vegetable intake after adjusting for covariates (1.18 times more per day, p = 0.042). Qualitative responses highlighted systemic barriers, including poor food quality, high costs, and limited transportation options, exacerbating food access inequities. Conclusions: These disparities underscore the need for targeted interventions to improve transportation options and support food security in vulnerable populations, particularly in urban areas like Detroit. Addressing these structural challenges is essential for reducing food insecurity and promoting equitable access to nutritious foods. Full article
(This article belongs to the Section Nutrition and Public Health)
10 pages, 271 KiB  
Article
The Prevalence and Characteristics of Post-COVID-19 Syndrome Among Patients Attending the University Health Center in Muscat, Oman
by Reem Ali Alhabsi, Amani Abdullah Almukhladi, Rania Ali Mahdi Kadhim, Reham Ali Alhabsi, Maisa Hamed Al Kiyumi and Abdulaziz Al Mahrezi
J. Oman Med. Assoc. 2025, 2(2), 11; https://doi.org/10.3390/joma2020011 - 26 Jul 2025
Viewed by 298
Abstract
Background and Aims: The majority of individuals with COVID-19 developed acute symptoms. Post-COVID-19 syndrome refers to the signs and symptoms of COVID-19 that persist for more than 12 weeks. The present study was conducted to estimate the prevalence and risk factors for post-COVID-19 [...] Read more.
Background and Aims: The majority of individuals with COVID-19 developed acute symptoms. Post-COVID-19 syndrome refers to the signs and symptoms of COVID-19 that persist for more than 12 weeks. The present study was conducted to estimate the prevalence and risk factors for post-COVID-19 syndrome in the Omani population. Methods: This is a cross-sectional study that was conducted at the University Hospital Center (UHC). All patients diagnosed with COVID-19 (through polymerase chain reaction PCR testing) between March 2020 and March 2022 were included. Eligible participants were interviewed through a phone call, informed about the study procedure, and invited to participate in the study. Results: The study enrolled 265 COVID-19 patients, of whom 156 (59.2%) were females and 204 (77.3%) had been vaccinated. The overall prevalence of post-COVID-19 syndrome was 48.5%. The most common symptom was fatigue (71, 26.9%), followed by joint pain (44, 16.7%). The other symptoms included loss of taste/smell (34, 12.9%), cough (32, 12.1%), palpitation (25, 9.5%), and hair loss (27, 10.2%). Unvaccinated patients showed a higher incidence of fatigue (p = 0.03) and loss of smell/taste (p = 0.01) on univariate analysis. Females were at high risk for the development of various symptoms, including fatigue, muscular pain, breathing difficulty, cough, chest pain, palpitation, headache, and hair loss. Multivariate analysis showed that female gender is a significant independent predictor (odds ratio: 3.1; p = 0.00) for the development of post-COVID-19 syndrome. Conclusions: The prevalence of post-COVID-19 syndrome among the Omani population was high, highlighting the need for targeted interventions to manage long-term symptoms in vulnerable groups. Full article
14 pages, 561 KiB  
Review
BCMA CAR-T: From Multiple Myeloma to Light-Chain Amyloidosis
by Ellen Lewis and Victor Hugo Jimenez-Zepeda
Curr. Oncol. 2025, 32(8), 418; https://doi.org/10.3390/curroncol32080418 - 25 Jul 2025
Viewed by 331
Abstract
Light-chain (AL) amyloidosis is a rare clonal plasma cell disorder that, if left untreated, carries a high risk of organ damage and mortality. Due to the rarity of the disease and the vulnerability of affected organ systems, treatment requires significant caution and nuance. [...] Read more.
Light-chain (AL) amyloidosis is a rare clonal plasma cell disorder that, if left untreated, carries a high risk of organ damage and mortality. Due to the rarity of the disease and the vulnerability of affected organ systems, treatment requires significant caution and nuance. As a plasma cell dyscrasia, AL amyloidosis treatment regimens are often adapted from those used for related disorders, particularly multiple myeloma. Despite substantial progress in research and drug development, optimal treatment strategies for relapsed/refractory (RR) AL amyloidosis remain unclear, and no FDA-approved therapies currently exist for this setting. B-cell maturation antigen (BCMA) has emerged as a promising immunotherapy target, with associated drug classes including antibody–drug conjugates, bispecific antibodies, and CAR-T cell therapies. These therapies have been extensively studied in relapsed/refractory multiple myeloma (RRMM) and are now being explored in the context of RR AL amyloidosis. This review summarizes the current literature on the efficacy and tolerability of BCMA-directed therapies in AL amyloidosis, with a particular emphasis on CAR-T cell therapy and offers comparisons to outcomes observed in RRMM. Full article
Show Figures

Figure 1

Back to TopTop