Pyrogenic Transformation of Soil Organic Matter in Larch Forests of the Discontinuous Permafrost Zone
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Soil Sampling
2.3. Soil Analysis
2.4. TMAH-py-GC/MS
2.5. TG-DTA
3. Results
3.1. Soil Parameters
3.2. Molecular Composition of SOM
3.3. Derivatographic Determination of SOM Content and Stability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- French, H.M. The Periglacial Environment, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Herzschuh, U. Legacy of the last glacial on the present-day distribution of deciduous versus evergreen boreal forests. Glob. Ecol. Biogeogr. 2020, 29, 198–206. [Google Scholar] [CrossRef]
- Zou, S.; Zhang, J.; Wu, X.; Song, L.; Liu, Q.; Xie, R.; Zang, S. Higher stability of soil organic matter near the permafrost table in a peatland of northeast China. Forests 2024, 15, 1797. [Google Scholar] [CrossRef]
- Glückler, R.; Gloy, J.; Dietze, E.; Herzschuh, U.; Kruse, S. Simulating long-term wildfire impacts on boreal forest structure in Central Yakutia, Siberia, since the Last Glacial Maximum. Fire Ecol. 2024, 20, 1. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; She, D.; Wang, K.; Yang, Y.; Hu, X.; Feng, P.; Yan, X.; Gavrikov, V.; Wang, H.; Han, S.; et al. Post-fire recovery of soil multiple properties, plant diversity, and community structure of boreal forests in China. Forests 2025, 16, 806. [Google Scholar] [CrossRef]
- Weng, Y.; Li, Z.; Luo, S.; Tang, S.; Wang, X.; Liu, H.; Gao, M.; Zeng, W.; Zhang, Y. Drivers of changes in soil properties during post-fire succession on Dahurian larch forest. J. Soils Sediments 2021, 21, 3556–3571. [Google Scholar] [CrossRef]
- Han, C.-L.; Sun, Z.-X.; Shao, S.; Wang, Q.-B.; Libohova, Z.; Owens, P.R. Changes of soil organic carbon after wildfire in a boreal forest, Northeast China. Agronomy 2021, 11, 1925. [Google Scholar] [CrossRef]
- Kondratova, A.; Kotel’nikova, I.; Susloparova, E.; Yurkova, T.; Bryanin, S. Early decomposition and transformation of organic matter in natural and disturbed boreal forests. Org. Geochem. 2023, 185, 104673. [Google Scholar] [CrossRef]
- Lopez, A.M.; Avila, C.; VanderRoest, J.P.; Roth, H.K.; Fendorf, S.; Borch, T. Molecular insights and impacts of wildfire-induced soil chemical changes. Nat. Rev. Earth Environ. 2024, 5, 431–446. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; González-Pérez, J.A.; González-Vila, F.J.; Knicker, H. Medium term effects of fire induced soil organic matter alterations on Andosols under Canarian pine (Pinus canariensis). J. Anal. Appl. Pyrolysis 2013, 104, 269–279. [Google Scholar] [CrossRef]
- Derenne, S.; Quénéa, K. Analytical pyrolysis as a tool to probe soil organic matter. J. Anal. Appl. Pyrolysis 2015, 111, 108–120. [Google Scholar] [CrossRef]
- González-Pérez, J.A.; González-Vila, F.J.; Almendros, G.; Knicker, H. The effect of fire on soil organic matter—A review. Environ. Int. 2004, 30, 855–870. [Google Scholar] [CrossRef] [PubMed]
- Leal, O.d.A.; Jiménez-Morillo, N.T.; González-Pérez, J.A.; Knicker, H.; de Souza Costa, F.; Jiménez-Morillo, P.N.; de Carvalho Júnior, J.A.; dos Santos, J.C.; Dick, D.P. Soil organic matter molecular composition shifts driven by forest regrowth or pasture after slash-and-burn of Amazon forest. Int. J. Environ. Res. Public Health 2023, 20, 3485. [Google Scholar] [CrossRef] [PubMed]
- González-Pérez, J.A.; González-Vila, F.J.; González-Vázquez, R.; Arias, M.E.; Rodríguez, J.F.; Knicker, H.E. Use of multiple biogeochemical parameters to monitor the recovery of soils after forest fires. Org. Geochem. 2008, 39, 940–944. [Google Scholar] [CrossRef]
- Aaltonen, H.; Köster, K.; Köster, E.; Berninger, F.; Zhou, X.; Karhu, K.; Biasi, C.; Bruckman, V.J.; Palviainen, M.; Pumpanen, J. Forest fires in Canadian permafrost region: The combined effects of fire and permafrost dynamics on soil organic matter quality. Biogeochemistry 2019, 143, 257–274. [Google Scholar] [CrossRef]
- Sandeep, S.N.; Ninu, J.M.; Sreejith, K.A. Mineralogical transformations under fire in the montane grassland systems of the southern Western Ghats, India. Curr. Sci. 2019, 116, 966–971. [Google Scholar] [CrossRef]
- Sazawa, K.; Sugano, T.; Kuramitz, H. High-heat effects on the physical and chemical properties of soil organic matter and its water-soluble components in Japan’s forests: A comprehensive approach using multiple analytical methods. Anal. Sci. 2020, 36, 601–605. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; González-Pérez, J.A.; González-Vázquez, R.; Knicker, H.; López-Capel, E.; Manning, D.A.C.; González-Vila, F.J. Use of pyrolysis/GC-MS combined with thermal analysis to monitor C and N changes in soil organic matter from a Mediterranean fire affected forest. Catena 2008, 74, 296–303. [Google Scholar] [CrossRef]
- Shapchenkova, O.A.; Loskutov, S.R.; Kukavskaya, E.A. Alteration of organic matter during wildfires in the forests of Southern Siberia. Fire 2023, 6, 304. [Google Scholar] [CrossRef]
- Duguy, B.; Rovira, P. Differential thermogravimetry and differential scanning calorimetry of soil organic matter in mineral horizons: Effect of wildfires and land use. Org. Geochem. 2010, 41, 742–752. [Google Scholar] [CrossRef]
- WRB IWG. World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; WRB IWG: Rome, Italy, 2014. [Google Scholar]
- Vidal, A.; Quénéa, K.; Alexis, M.A.; Derenne, S. Molecular fate of root and shoot litter on incorporation and decomposition in earthworm casts 201. Org. Geochem. 2016, 101, 1–10. [Google Scholar] [CrossRef]
- Chen, H.; Rhoades, C.C.; Chow, A.T. Characteristics of soil organic matter 14 years after a wildfire: A pyrolysis-gas-chromatography mass spectrometry (Py-GC-MS) study. J. Anal. Appl. Pyrolysis 2020, 152, 104922. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Filimonenko, E.; Uporova, M.; Prikhodko, N.; Samokhina, N.; Belyanovskaya, A.; Kurganova, I.; Lopes de Gerenyu, V.; Merino, C.; Matus, F.; Chen, C.; et al. Organic matter stability in forest-tundra soils after wildfire. Catena 2024, 243, 108155. [Google Scholar] [CrossRef]
- Palviainen, M.; Laurén, A.; Pumpanen, J.; Bergeron, Y.; Bond-Lamberty, B.P.; Larjavaara, M.; Kashian, D.M.; Köster, K.; Prokushkin, A.S.; Chen, H.Y.; et al. Decadal-scale recovery of carbon stocks after wildfires throughout the boreal forests. Glob. Biogeochem. Cycles 2020, 34, e2020GB006612. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Faria, S.R.; Varela, M.E.; Knicker, H.; González-Vila, F.J.; González-Pérez, J.A.; Keizer, J. Characterization of wildfire effects on soil organic matter using analytical pyrolysis. Geoderma 2012, 191, 24–30. [Google Scholar] [CrossRef]
- Clifford, D.J.; Carson, D.M.; McKinney, D.E.; Bortiatynski, J.M.; Hatcher, P.G. A new rapid technique for the characterization of lignin in vascular plants: Thermochemolysis with tetramethylammonium hydroxide (TMAH). Org. Geochem. 1995, 23, 169–175. [Google Scholar] [CrossRef]
- Kondratova, A.V.; Abramova, E.; Bryanin, S.V. Decomposition of Main Litter Types and Nitrogen Release in Post-fire Larch Forests of the Russian Far East. Contemp. Probl. Ecol. 2021, 14, 171–181. [Google Scholar] [CrossRef]
- Chefetz, B.; Chen, Y.; Clapp, C.E.; Hatcher, P.G. Characterization of organic matter in soils by thermochemolysis using tetramethylammonium hydroxide (TMAH). Soil Sci. Soc. Am. J. 2000, 64, 583–589. [Google Scholar] [CrossRef]
- Buurman, P.; Schellekens, J.; Fritze, H.; Nierop, K.G.J. Selective depletion of organic matter in mottled podzol horizons. Soil Biol. Biochem. 2007, 39, 607–621. [Google Scholar] [CrossRef]
- Almendros, G.; Martín, F.; González-Vila, F.J. Effects of fire on humic and lipid fractions in a Dystric Xerochrept in Spain. Geoderma 1988, 42, 115–127. [Google Scholar] [CrossRef]
- Plante, A.F.; Fernandez, J.M.; Leifeld, J. Application of thermal analysis techniques in soil science. Geoderma 2009, 153, 1–10. [Google Scholar] [CrossRef]
- Siewert, C. Rapid screening of soil properties using thermogravimetry. Soil Sci. Soc. Am. J. 2004, 68, 1656–1661. [Google Scholar] [CrossRef]
- Filimonenko, E.; Uporova, M.; Dimitryuk, E.; Samokhina, N.; Ge, T.; Aloufi, A.S.; Prikhodko, N.; Kuzyakov, Y.; Soromotin, A. Effects of reindeer grazing on thermal stability of organic matter in topsoil in Arctic tundra. Catena 2025, 254, 108928. [Google Scholar] [CrossRef]
- Wang, L.; Yao, P.; Wang, Z.; Zhao, B.; Wang, N.; Ye, X.; Gao, C. Sources, degradation, and thermal stability of organic matter in riparian soils along two major rivers of China. Catena 2025, 250, 108783. [Google Scholar] [CrossRef]
- Kristl, M.; Muršec, M.; Šuštar, V.; Kristl, J. Application of thermogravimetric analysis for the evaluation of organic and inorganic carbon contents in agricultural soils. J. Therm. Anal. Calorim. 2016, 123, 2139–2147. [Google Scholar] [CrossRef]
- Ludwig, M.; Achtenhagen, J.; Miltner, A.; Eckhardt, K.; Leinweber, P.; Emmerling, C.; Thiele-Bruhn, S. Microbial contribution to SOM quantity and quality in density fractions of temperate arable soils. Soil Biol. Biochem. 2015, 81, 311–322. [Google Scholar] [CrossRef]
- Ortner, M.; Seidel, M.; Diehl, D.; Vohland, M.; Thiele-Bruhn, S. Assignment of thermogravimetric mass losses to soil organic matter, its fractions hot water—Extractable and microbial biomass carbon, and organic matter—Stabilizing soil mineral properties. J. Plant Nutr. Soil Sci. 2025, 188, 334–349. [Google Scholar] [CrossRef]
Soil Sample | C, % (ns) | N, % (ns) | C/N | pHH2O (**) |
---|---|---|---|---|
unburned soil | 7.37 ± 1.03 | 0.33 ± 0.04 | 22.3 ± 1.27 | 5.14 ± 0.07 |
burned soil | 9.50 ± 2.18 | 0.44 ± 0.09 | 21.2 ± 0.52 | 5.92 ± 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondratova, A.; Sazawa, K.; Wada, N.; Bryanin, S. Pyrogenic Transformation of Soil Organic Matter in Larch Forests of the Discontinuous Permafrost Zone. Forests 2025, 16, 1309. https://doi.org/10.3390/f16081309
Kondratova A, Sazawa K, Wada N, Bryanin S. Pyrogenic Transformation of Soil Organic Matter in Larch Forests of the Discontinuous Permafrost Zone. Forests. 2025; 16(8):1309. https://doi.org/10.3390/f16081309
Chicago/Turabian StyleKondratova, Anjelica, Kazuto Sazawa, Naoya Wada, and Semyon Bryanin. 2025. "Pyrogenic Transformation of Soil Organic Matter in Larch Forests of the Discontinuous Permafrost Zone" Forests 16, no. 8: 1309. https://doi.org/10.3390/f16081309
APA StyleKondratova, A., Sazawa, K., Wada, N., & Bryanin, S. (2025). Pyrogenic Transformation of Soil Organic Matter in Larch Forests of the Discontinuous Permafrost Zone. Forests, 16(8), 1309. https://doi.org/10.3390/f16081309