Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (181)

Search Parameters:
Keywords = vortex particle methods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4769 KB  
Article
Trajectory Planning Method for Multi-UUV Formation Rendezvous in Obstacle and Current Environments
by Tao Chen, Kai Wang and Qingzhe Wang
J. Mar. Sci. Eng. 2025, 13(12), 2221; https://doi.org/10.3390/jmse13122221 - 21 Nov 2025
Viewed by 409
Abstract
Formation rendezvous is a critical phase during the deployment or recovery of multiple unmanned underwater vehicles (UUVs) in cooperative missions, and represents one of the core problems in multi-UUV cooperative planning. In practical marine environments with obstacles and currents, multiple constraints must be [...] Read more.
Formation rendezvous is a critical phase during the deployment or recovery of multiple unmanned underwater vehicles (UUVs) in cooperative missions, and represents one of the core problems in multi-UUV cooperative planning. In practical marine environments with obstacles and currents, multiple constraints must be simultaneously satisfied, including obstacle avoidance, inter-UUV collision prevention, kinematic limitations, and specified initial and terminal states. These requirements make energy-optimal trajectory planning for multi-UUV formation rendezvous highly challenging. Traditional integrated cooperative planning methods often struggle to obtain optimal or even feasible solutions due to the complexity of constraints and the vastness of the solution space. To address these issues, a dual-layer planning framework for multi-UUV formation rendezvous trajectory planning in environments with obstacles and currents is proposed in this paper. The framework consists of an initial individual trajectory planning layer and a secondary cooperative planning layer. In the initial individual trajectory planning stage, the Grey Wolf Optimization (GWO) algorithm is employed to optimize high-order terms of polynomial curves, generating initial trajectories for individual UUVs that satisfy obstacle avoidance, kinematic constraints, and state requirements. These trajectories are then used as inputs to the secondary cooperative planning stage. In the cooperative stage, a Self-Adaptive Particle Swarm Optimization (SAPSO) is introduced to explicitly address inter-UUV collision avoidance while incorporating all individual constraints, ultimately producing a cooperative rendezvous trajectory that minimizes overall energy consumption. To validate the effectiveness of the proposed method, a simulation environment incorporating vortex flow fields and real-world island topography was constructed. Simulation results demonstrate that the proposed hierarchical trajectory planning method is capable of generating energy-optimal formation rendezvous trajectories that satisfy multiple constraints for multi-UUV systems in environments with obstacles and ocean currents, highlighting its strong potential for practical engineering applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 4753 KB  
Article
Numerical Analysis and Experimental Study on the Classification of Fine Particles Using a Hydrocyclone with Multiple Vortex Finders
by Feng Li, Guodong Huang, Chaoqi Zou, Yuting Fu, Jiawei Li, Baocong Ma, Yanchao Wang and Chenglei Zhang
Separations 2025, 12(11), 318; https://doi.org/10.3390/separations12110318 - 15 Nov 2025
Viewed by 460
Abstract
Ultrafine particles, as raw materials for various industries such as construction and environmental protection, are currently obtained through repeated ball milling and multiple classifications, but classification efficiency remains at a low level. Based on the principle of hydrocyclone classification, this paper designs a [...] Read more.
Ultrafine particles, as raw materials for various industries such as construction and environmental protection, are currently obtained through repeated ball milling and multiple classifications, but classification efficiency remains at a low level. Based on the principle of hydrocyclone classification, this paper designs a hydrocyclone with a triple-vortex finder structure that can achieve finer particle size distributions without altering the main structure of the hydrocyclone. The classification performance of the triple-vortex finder hydrocyclone is investigated through numerical analysis and experimental methods, with numerical comparisons made to single-vortex finder and double-vortex finder structures. The results indicate that with an increase in the number of vortex finders, the static pressure and tangential velocity gradually decrease, reducing the likelihood of tangential vortex formation while meeting classification requirements. The axial velocity in the triple-vortex finder structure is significantly reduced, which extends the residence time within the hydrocyclone and facilitates sufficient particle classification. As the number of vortex finders increases, the zero-velocity envelope surface (LZVV) gradually migrates inward, enlarging the external swirling classification space. Through numerical and experimental analyses, it is found that the triple-vortex finder hydrocyclone exhibits the highest classification efficiency, the strongest cutting ability, and the best classification accuracy. Compared to the single-vortex finder structure, the cutting particle size of the triple-vortex finder hydrocyclone decreases by 2.5 µm, and the content of fine particles in the underflow is reduced by 4.36 percentage points, effectively decreasing the fine particle content in the underflow. The quality efficiency improves by 18.85 percentage points compared to the single-vortex finder, while the quantity efficiency shows no significant decline. The obtained data provide a theoretical foundation and data support for the structural design of the new hydrocyclone. Full article
(This article belongs to the Topic Advances in Separation Engineering)
Show Figures

Figure 1

21 pages, 5782 KB  
Article
Sand Ingestion Behavior of Helicopter Engines During Hover in Ground Effect
by Qiang Li, Linghua Dong, Changxin Song and Weidong Yang
Aerospace 2025, 12(10), 927; https://doi.org/10.3390/aerospace12100927 - 15 Oct 2025
Viewed by 605
Abstract
Sand ingestion exerts significant effects on the performance of helicopter engines, and it is imperative to investigate this phenomenon. In this study, the mechanisms of engine sand ingestion during helicopter hover in ground effect are analyzed. Firstly, a coupled computational model is established [...] Read more.
Sand ingestion exerts significant effects on the performance of helicopter engines, and it is imperative to investigate this phenomenon. In this study, the mechanisms of engine sand ingestion during helicopter hover in ground effect are analyzed. Firstly, a coupled computational model is established based on computational fluid dynamics (CFD) and the discrete element method (DEM). The aerodynamic calculation accuracy of this model is validated by comparing the pressure coefficient and tip vortex with wind tunnel test results. Subsequently, based on this method, a systematic simulation is carried out to investigate the flow field dynamics and sand cloud distribution for the helicopter at different ground-effect heights (GEHs, h). Simulation results indicate that helicopter engines can potentially directly ingest sand particles from the ground at low GEHs. When h > 2R (where R is the rotor radius), the height of sand clouds is insufficient for helicopter engines to ingest sand. Finally, guided by the simulation conclusions, a rotor test bench is designed to conduct research on sand ingestion by helicopter engines. It aims to further study how GEH and engine intake flowrate (Q) affect sand ingestion amount and distribution across the inlet cross-section. Experimental results demonstrate that the sand ingestion amount exhibits a nonlinear decreasing trend with the increasing GEH and a positive correlation with Q. At h = 0.5R, the engine directly ingests sand particles from the ground sand field, leading to a significant increase in sand ingestion. The increase reaches 11 times that at other GEHs. For the right-handed rotor in this study, the sand ingestion of the right engine is significantly higher than that of the left engine. Furthermore, for the cross-sectional position of the engine inlet in this study, over 60% of sand particles are ingested through the upper region. The research can provide scientific guidance for the design of particle separators and is of great significance for helicopter engine sand prevention. Full article
(This article belongs to the Special Issue Fluid Flow Mechanics (4th Edition))
Show Figures

Figure 1

20 pages, 15205 KB  
Article
19 × 1 Photonic Lantern for Mode Conversion: Simulation and Adaptive Control for Enhanced Mode Output Quality
by Pengfei Liu, Yuxuan Ze, Hanwei Zhang, Baozhu Yan, Qiong Zhou, Dan Zhang, Yimin Yin and Wenguang Liu
Photonics 2025, 12(9), 911; https://doi.org/10.3390/photonics12090911 - 11 Sep 2025
Viewed by 1186
Abstract
High-order linear polarization (LP) modes and vortex beams carrying orbital angular momentum (OAM) are highly useful in various fields. High-order LP modes provide higher thresholds for nonlinear effects, reduced sensitivity to distortions, and better energy extraction in high-power lasers. OAM beams are useful [...] Read more.
High-order linear polarization (LP) modes and vortex beams carrying orbital angular momentum (OAM) are highly useful in various fields. High-order LP modes provide higher thresholds for nonlinear effects, reduced sensitivity to distortions, and better energy extraction in high-power lasers. OAM beams are useful in optical communication, imaging, particle manipulation, and fiber sensing. The ability to switch between these mode outputs enhances system versatility and adaptability, supporting advanced applications both in research and industry. This paper presents the design of a 19 × 1 photonic lantern capable of outputting 19 LP modes and 16 OAM modes with low loss. Using the beam propagation method, we simulated and analyzed the mode evolution process and insertion loss, and we calculated the transmission matrix of the photonic lantern. The results indicate that the designed device can efficiently evolve into these modes with a maximum insertion loss not exceeding 0.07 dB. Furthermore, an adaptive control system was developed by introducing a mode decomposition system at the output and combining it with the Stochastic Parallel Gradient Descent (SPGD) + basin hopping algorithm. Simulation results show that this system can produce desired modes with over 90% mode content, demonstrating promising application prospects in switchable high-order mode systems. Full article
(This article belongs to the Special Issue Advanced Fiber Laser Technology and Its Application)
Show Figures

Figure 1

24 pages, 5764 KB  
Article
Multi-Fidelity Aerodynamic Optimization of the Wing Extension of a Tiltrotor Aircraft
by Alberto Savino
Appl. Sci. 2025, 15(17), 9491; https://doi.org/10.3390/app15179491 - 29 Aug 2025
Cited by 2 | Viewed by 968
Abstract
Given the fast-evolving context of electrical vertical takeoff and landing vehicles (eVTOL) based on the concept of tiltrotor aircraft, this work describes a framework aimed at the preliminary aerodynamic design and optimization of innovative lifting surfaces of such rotorcraft vehicles. In particular, a [...] Read more.
Given the fast-evolving context of electrical vertical takeoff and landing vehicles (eVTOL) based on the concept of tiltrotor aircraft, this work describes a framework aimed at the preliminary aerodynamic design and optimization of innovative lifting surfaces of such rotorcraft vehicles. In particular, a multiobjective optimization process was applied to the design of a wing extension representing an innovative feature recently investigated to improve the aerodynamic performance of a tiltrotor aircraft wing. The wing/proprotor configurations, selected using a Design Of Experiment (DOE) approach, were simulated by the mid-fidelity aerodynamic code DUST, which used a vortex-particle method (VPM) approach to model the wing/rotor wakes. A linear regression model accounting for nonlinear interactions was used by an evolutionary algorithm within a multiobjective optimization framework, which provided a set of Pareto-optimal solutions for the wing extension, maximizing both wing and rotor efficiency. Moreover, the present work highlighted how the use of a fast and reliable numerical modeling for aerodynamics, such as the VPM approach, enhanced the capabilities of an optimization framework aimed at achieving a more accurate preliminary design of innovative features for rotorcraft configurations while taking into account the effects of the aerodynamic interaction between wings and proprotors. Full article
Show Figures

Figure 1

16 pages, 3638 KB  
Article
Effects of Sidewall Gas Blowing and Slag Layer on Flow and Tracer Transport in a Single-Strand Tundish
by Yansong Zhao, Tianyang Wang, Mengjiao Geng, Yonglin Huang, Jiale Liu, Haozheng Wang, Xing Zhang, Kun Yang, Jia Wang and Chao Chen
Modelling 2025, 6(3), 87; https://doi.org/10.3390/modelling6030087 - 21 Aug 2025
Cited by 2 | Viewed by 768
Abstract
A novel right-sidewall gas blowing method is proposed to improve the flow behavior in a single-strand tundish. Despite advances in tundish flow control, the impact of slag layers and sidewall gas injection on flow dynamics and tracer transport remains underexplored. This study combines [...] Read more.
A novel right-sidewall gas blowing method is proposed to improve the flow behavior in a single-strand tundish. Despite advances in tundish flow control, the impact of slag layers and sidewall gas injection on flow dynamics and tracer transport remains underexplored. This study combines 1:3.57 scale water model experiments and Compuational Fluid Dynamics (CFD) simulations to investigate the effects of gas injection heights (50 mm and 100 mm) on flow structure, mixing efficiency, and slag layer interactions. Particle Image Velocimetry (PIV) and the stimulus-response method are used for quantitative validation. Results show that sidewall gas blowing suppresses short-circuit flow, increases average residence time by up to 37%, and reduces dead zone volume by up to 19%. The 50 mm blowing height induces stronger surface turbulence, while the 100 mm height improves flow uniformity. The presence of a slag layer significantly dampens surface fluctuations and alters vortex formation. These findings fill a critical research gap in tundish metallurgy and offer a practical reference for optimizing gas blowing strategies in industrial applications. Full article
Show Figures

Figure 1

21 pages, 1559 KB  
Article
Diffusiophoresis of a Conducting Liquid Metal Droplet (LMD) in a Cylindrical Pore
by Sunny Chen, Lily Chuang, Nemo Chang, Jean Chien, Venesa Liao and Eric Lee
Molecules 2025, 30(16), 3372; https://doi.org/10.3390/molecules30163372 - 13 Aug 2025
Viewed by 693
Abstract
Diffusiophoresis of a liquid metal droplet (LMD) in a cylindrical pore is investigated theoretically in this study. A patched pseudo-spectral method based on Chebyshev polynomials combined with a geometric mapping technique is adopted to solve the resulting governing electrokinetic equations in irregular geometries. [...] Read more.
Diffusiophoresis of a liquid metal droplet (LMD) in a cylindrical pore is investigated theoretically in this study. A patched pseudo-spectral method based on Chebyshev polynomials combined with a geometric mapping technique is adopted to solve the resulting governing electrokinetic equations in irregular geometries. Several interesting phenomena are found which provide useful guidelines in practical applications involving liquid metal droplets (LMDs) such as drug delivery. In particular, the severe boundary confinement effect brings about unique features of droplet motion, leading to mobility reversal and a “stagnation phenomenon” where droplets cease to move regardless of their surface charge densities in a narrow cylindrical pore. An overwhelming exterior vortex flow nearly enclosing the entire droplet is found to be responsible for this. This finds various practical applications in droplet microfluidics and drug delivery. For instance, a cylindrical pore or blood vessel may be clogged by a droplet much smaller than its radius. In addition, the “solidification phenomenon”, where all droplets move with identical speed regardless of their viscosities like rigid particles with no interior recirculating vortex flows, is also discovered. The electrokinetic mechanism behind it and its potential applications are discussed. Overall, the geometric configuration considered here is a classic one, with many other possible applications yet to be found by experimental researchers and engineers in the field of colloid industry and operations. Full article
Show Figures

Figure 1

39 pages, 1168 KB  
Article
A Tuned Parallel Population-Based Genetic Algorithm for BESS Operation in AC Microgrids: Minimizing Operational Costs, Power Losses, and Carbon Footprint in Grid-Connected and Islanded Topologies
by Hugo Alessandro Figueroa-Saavedra, Daniel Sanin-Villa and Luis Fernando Grisales-Noreña
Electricity 2025, 6(3), 45; https://doi.org/10.3390/electricity6030045 - 9 Aug 2025
Cited by 2 | Viewed by 803
Abstract
The transition to decentralized renewable energy systems has highlighted the role of AC microgrids and battery energy storage systems in achieving operational efficiency and sustainability. This study proposes an improved energy management system for AC MGs based on a tuned Parallel Population-Based Genetic [...] Read more.
The transition to decentralized renewable energy systems has highlighted the role of AC microgrids and battery energy storage systems in achieving operational efficiency and sustainability. This study proposes an improved energy management system for AC MGs based on a tuned Parallel Population-Based Genetic Algorithm for the optimal operation of batteries under variable generation and demand. The optimization framework minimizes power losses, emissions, and economic costs through a master–slave strategy, employing hourly power flow via successive approximations for technical evaluation. A comprehensive assessment is carried out under both grid-connected and islanded operation modes using a common test bed, centered on a flexible slack bus capable of adapting to either mode. Comparative analyses against Particle Swarm Optimization and the Vortex Search Algorithm demonstrate the superior accuracy, stability, and computational efficiency of the proposed methodology. In grid-connected mode, the Parallel Population-Based Genetic Algorithm achieves average reductions of 1.421% in operational cost, 4.383% in power losses, and 0.183% in CO2 emissions, while maintaining standard deviations below 0.02%. In islanded mode, it attains reductions of 0.131%, 4.469%, and 0.184%, respectively. The improvement in cost relative to the benchmark exact methods is 0.00158%. Simulations on a simplified 33-node AC MG with actual demand and generation profiles confirm significant improvements across all performance metrics compared to previous research works. Full article
Show Figures

Figure 1

24 pages, 8377 KB  
Article
Investigation of Wind Pressure Dynamics on Low-Rise Buildings in Sand-Laden Wind Environments
by Di Hu, Teng Zhang and Qiang Jin
Buildings 2025, 15(15), 2779; https://doi.org/10.3390/buildings15152779 - 6 Aug 2025
Cited by 2 | Viewed by 1266
Abstract
To enhance the structural safety in wind-sand regions, this study employs the Euler-Lagrange numerical method to investigate the wind pressure characteristics of typical low-rise auxiliary buildings in a strong wind-blown sand environment. The results reveal that sand particle motion dissipates wind energy, leading [...] Read more.
To enhance the structural safety in wind-sand regions, this study employs the Euler-Lagrange numerical method to investigate the wind pressure characteristics of typical low-rise auxiliary buildings in a strong wind-blown sand environment. The results reveal that sand particle motion dissipates wind energy, leading to a slight reduction in average wind speed, while the increase in small-scale vortex energy enhances fluctuating wind speed. In the sand-laden wind field, the average wind pressure coefficient shows no significant change, whereas the fluctuating wind pressure coefficient increases markedly, particularly in the windward region of the building. Analysis of the skewness and kurtosis of wind pressure reveals that the non-Gaussian characteristics of wind pressure are amplified in the sand-laden wind, thereby elevating the risk of damage to the building envelope. Consequently, it is recommended that the design fluctuating wind load for envelopes and components of low-rise buildings in wind-sand regions be increased by 10% to enhance structural resilience. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

12 pages, 1740 KB  
Article
Identification of Streamline-Based Coherent Vortex Structures in a Backward-Facing Step Flow
by Fangfang Wang, Xuesong Yu, Peng Chen, Xiufeng Wu, Chenguang Sun, Zhaoyuan Zhong and Shiqiang Wu
Water 2025, 17(15), 2304; https://doi.org/10.3390/w17152304 - 3 Aug 2025
Viewed by 891
Abstract
Accurately identifying coherent vortex structures (CVSs) in backward-facing step (BFS) flows remains a challenge, particularly in reconciling visual streamlines with mathematical criteria. In this study, high-resolution velocity fields were captured using particle image velocimetry (PIV) in a pressurized BFS setup. Instantaneous streamlines reveal [...] Read more.
Accurately identifying coherent vortex structures (CVSs) in backward-facing step (BFS) flows remains a challenge, particularly in reconciling visual streamlines with mathematical criteria. In this study, high-resolution velocity fields were captured using particle image velocimetry (PIV) in a pressurized BFS setup. Instantaneous streamlines reveal distinct spiral patterns, vortex centers, and saddle points, consistent with physical definitions of vortices and offering intuitive guidance for CVS detection. However, conventional vortex identification methods often fail to reproduce these visual features. To address this, an improved Q-criterion method is proposed, based on the normalization of the velocity gradient tensor. This approach enhances the rotational contribution while suppressing shear effects, leading to improved agreement in vortex position and shape with those observed in streamlines. While the normalization process alters the representation of physical vortex strength, the method bridges qualitative visualization and quantitative analysis. This streamline-consistent identification framework facilitates robust CVS detection in separated flows and supports further investigations in vortex dynamics and turbulence control. Full article
Show Figures

Figure 1

23 pages, 3203 KB  
Article
Experimental Investigation of the Entrainment Mechanism in Circular and Lobed Hemispherical Jets
by Saad Aldossary, Mouhammad El Hassan, Nikolay Bukharin, Kamel Abed-Meraim and Anas Sakout
Fluids 2025, 10(7), 177; https://doi.org/10.3390/fluids10070177 - 6 Jul 2025
Viewed by 965
Abstract
Better mixing in the near-field region of jets with their surrounding fluid is of high interest for several industrial applications. Passive control that involves jet geometry modifications as compared to the traditional circular design is used in the present work. An analysis of [...] Read more.
Better mixing in the near-field region of jets with their surrounding fluid is of high interest for several industrial applications. Passive control that involves jet geometry modifications as compared to the traditional circular design is used in the present work. An analysis of the entrainment mechanism in the near jet-exit field is proposed for innovative hemispherical nozzles (circular and six-lobed). High-speed Time-Resolved Particle Image Velocimetry (TR-PIV) measurements are used to experimentally characterize the entrainment mechanism in these jets. The distributions of mean entrainment rates, shear layer growth, and momentum flux are investigated along the longitudinal direction within the near-field region of both circular and lobed hemispherical jets. Significant entrainment enhancement is found using the hemispherical geometry as a passive-control method. By comparing both investigated hemispherical nozzle geometries, it has been demonstrated that the lobed nozzle provides higher mixing rates compared to the circular jet. This enhancement in mixing can be attributed to the stronger streamwise vortex structures generated by the lobed nozzle geometry, which promote increased entrainment of the surrounding fluid. Full article
(This article belongs to the Section Heat and Mass Transfer)
Show Figures

Figure 1

16 pages, 3000 KB  
Article
A Simple Vortex-Based Method for the Generation of High-Throughput Spherical Micro- and Nanohydrogels
by Moussa Boujemaa, Remi Peters, Jiabin Luan, Yieuw Hin Mok, Shauni Keller and Daniela A. Wilson
Int. J. Mol. Sci. 2025, 26(13), 6300; https://doi.org/10.3390/ijms26136300 - 30 Jun 2025
Viewed by 1518
Abstract
Hydrogel particles, renowned for their high water content and biocompatibility in drug delivery and tissue engineering, typically rely on complex, costly microfluidic systems to reach sub 5 µm dimensions. We present a vortex-based inverse-emulsion polymerization strategy in which UV crosslinking of polyethylene glycol [...] Read more.
Hydrogel particles, renowned for their high water content and biocompatibility in drug delivery and tissue engineering, typically rely on complex, costly microfluidic systems to reach sub 5 µm dimensions. We present a vortex-based inverse-emulsion polymerization strategy in which UV crosslinking of polyethylene glycol diacrylate (PEGDA) dispersed in n-hexadecane and squalene yields tunable micro- and nanogels while delineating the parameters that govern particle size and uniformity. Systematic variation in surfactant concentration, vessel volume, continuous phase viscosity, vortex speed and duration, oil-to-polymer ratio, polymer molecular weight, and pulsed vortexing revealed that increases in surfactant level, vortex intensity/duration, vessel volume, and oil-to-polymer ratio each reduced mean diameter and PDI, whereas higher polymer molecular weight and continuous phase viscosity broadened the size distribution. We further investigated how these same parameters can be tuned to shift particle populations between nano- and microscale regimes. Under optimized conditions, microhydrogels achieved a coefficient of variation of 0.26 and a PDI of 0.07, with excellent reproducibility, and nanogels measured 161 nm (PDI = 0.05). This rapid, cost-effective method enables precise and scalable control over hydrogel dimensions using only standard laboratory equipment, without specialized training. Full article
(This article belongs to the Special Issue Rational Design and Application of Functional Hydrogels)
Show Figures

Figure 1

26 pages, 3671 KB  
Article
Energy-Optimized Path Planning for Fully Actuated AUVs in Complex 3D Environments
by Shuo Liu, Zhengfei Wang, Tao Wang, Shanmin Zhou, Yu Zhang, Pengji Jin and Guanjun Yang
J. Mar. Sci. Eng. 2025, 13(7), 1269; https://doi.org/10.3390/jmse13071269 - 29 Jun 2025
Cited by 1 | Viewed by 993
Abstract
This paper presents an energy-optimized path planning approach for fully actuated autonomous underwater vehicles (AUVs) in three-dimensional ocean environments to enhance their operational range and endurance. A fully actuated AUV is characterized by its high degrees of freedom and precise controllability. Using real [...] Read more.
This paper presents an energy-optimized path planning approach for fully actuated autonomous underwater vehicles (AUVs) in three-dimensional ocean environments to enhance their operational range and endurance. A fully actuated AUV is characterized by its high degrees of freedom and precise controllability. Using real terrain data, we construct environmental models incorporating a Lamb vortex and random obstacles. We develop a mathematical model of the AUV’s total energy consumption, accounting for constraints imposed by its fully actuated design and extensive maneuverability. To minimize energy usage, we propose an energy-optimized path planning algorithm that combines energy-optimized particle swarm optimization (EOPSO) and sequential quadratic programming (SQP). The proposed method identifies the optimal path for energy consumption and the corresponding optimal surge speed. The efficacy of the algorithm in optimizing the total energy consumption of the AUV is demonstrated through the simulation of various scenarios. In comparison to other algorithms, paths planned by this algorithm are shown to have superior robustness and optimized energy consumption. Full article
(This article belongs to the Special Issue Dynamics and Control of Marine Mechatronics)
Show Figures

Figure 1

18 pages, 908 KB  
Article
Diffusiophoresis of a Weakly Charged Dielectric Fluid Droplet in a Cylindrical Pore
by Lily Chuang, Sunny Chen, Nemo Chang, Jean Chien, Venesa Liao and Eric Lee
Micromachines 2025, 16(6), 707; https://doi.org/10.3390/mi16060707 - 13 Jun 2025
Cited by 1 | Viewed by 1010
Abstract
Diffusiophoresis of a weakly charged dielectric droplet in a cylindrical pore is investigated theoretically in this study. The governing fundamental electrokinetic equations are solved with a patched pseudo-spectral method based on Chebyshev polynomials, coupled with a geometric mapping scheme to take care of [...] Read more.
Diffusiophoresis of a weakly charged dielectric droplet in a cylindrical pore is investigated theoretically in this study. The governing fundamental electrokinetic equations are solved with a patched pseudo-spectral method based on Chebyshev polynomials, coupled with a geometric mapping scheme to take care of the irregular solution domain. The impact of the boundary confinement effect upon the droplet motion is explored in detail, which is most profound in narrow channels. We found, among other things, that the droplet moving direction may reverse with varying channel widths. Enhanced motion-inducing double-layer polarization due to the presence of a nearby channel wall is found to be responsible for it. In particular, an interesting and seemingly peculiar phenomenon referred to as the “solidification phenomenon” is observed here at some specific critical droplet sizes or electrolyte strengths in narrow channels, under which all the droplets move at identical speeds regardless of their viscosities. They move like a rigid particle without the surface spinning motions and the induced interior recirculating vortex flows. As the corresponding shear rate is zero at this point, the droplet is resilient to undesirable exterior shear stresses tending to damage the droplet in motion. This provides a helpful guideline in the fabrication of liposomes in drug delivery in terms of the optimal liposome size, as well as in the microfluidic and nanofluidic manipulations of cells, among other potential practical applications. The effects of other parameters of electrokinetic interest are also examined. Full article
Show Figures

Figure 1

28 pages, 445 KB  
Article
Integration of Distributed Energy Resources in Unbalanced Networks Using a Generalized Normal Distribution Optimizer
by Laura Sofía Avellaneda-Gómez, Brandon Cortés-Caicedo, Oscar Danilo Montoya and Jesús M. López-Lezama
Computation 2025, 13(6), 146; https://doi.org/10.3390/computation13060146 - 12 Jun 2025
Cited by 2 | Viewed by 891
Abstract
This article proposes an optimization methodology to address the joint placement as well as the capacity design of PV units and D-STATCOMs within unbalanced three-phase distribution systems. The proposed model adopts a mixed-integer nonlinear programming structure using complex-valued variables, with the objective of [...] Read more.
This article proposes an optimization methodology to address the joint placement as well as the capacity design of PV units and D-STATCOMs within unbalanced three-phase distribution systems. The proposed model adopts a mixed-integer nonlinear programming structure using complex-valued variables, with the objective of minimizing the total annual cost—including investment, maintenance, and energy purchases. A leader–followeroptimization framework is adopted, where the leader stage utilizes the Generalized Normal Distribution Optimization (GNDO) algorithm to generate candidate solutions, while the follower stage conducts power flow calculations through successive approximation to assess the objective value. The proposed approach is tested on 25- and 37-node feeders and benchmarked against three widely used metaheuristic algorithms: the Chu and Beasley Genetic Algorithm, Particle Swarm Optimization, and Vortex Search Algorithm. The results indicate that the proposed strategy consistently achieves highly cost-efficient outcomes. For the 25-node system, the cost is reduced from USD 2,715,619.98 to USD 2,221,831.66 (18.18%), and for the 37-node system, from USD 2,927,715.61 to USD 2,385,465.29 (18.52%). GNDO also surpassed the alternative algorithms in terms of solution precision, robustness, and statistical dispersion across 100 runs. All numerical simulations were executed using MATLAB R2024a. These findings confirm the scalability and reliability of the proposed method, positioning it as an effective tool for planning distributed energy integration in practical unbalanced networks. Full article
Show Figures

Figure 1

Back to TopTop