Experimental Investigation of the Entrainment Mechanism in Circular and Lobed Hemispherical Jets
Abstract
1. Introduction
2. Experimental Procedures
2.1. Exit Nozzle Conditions of the Air Jet Facility
2.2. TR-PIV Measurements of Jets
3. Results and Discussion
3.1. Initial Conditions of Jets
3.2. Mean Velocity Fields
3.3. Entrainment Mechanism
3.4. Shear Layer Growth
3.5. Momentum Flux Distribution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ho, C.-M.; Gutmark, E. Vortex induction and mass entrainment in a small-aspect-ratio elliptic jet. J. Fluid Mech. 1987, 179, 383–405. [Google Scholar] [CrossRef]
- Austin, T. The Small Scale Topology of a 2:1 Aspect-Ratio Elliptic Jet. Ph.D. Thesis, University of South California, Los Angeles, CA, USA, 1992. [Google Scholar]
- El Hassan, M.; Meslem, A. Time-resolved stereoscopic particle image velocimetry investigation of the entrainment in the near field of circular and daisy-shaped orifice jets. Phys. Fluids 2010, 22, 035107. [Google Scholar] [CrossRef]
- Hashiehbaf, A.; Romano, G. Particle image velocimetry investigation on mixing enhancement of non-circular sharp edge nozzles. Int. J. Heat Fluid Flow 2013, 44, 208–221. [Google Scholar] [CrossRef]
- Nastase, I.; Meslem, A.; El Hassan, M. Image processing analysis of vortex dynamics of lobed jets from three-dimensional diffusers. Fluid Dyn. Res. 2011, 43, 065502. [Google Scholar] [CrossRef]
- El Hassan, M.; Meslem, A.; Abed-Meraim, K. Experimental investigation of the flow in the near-field of a cross-shaped orifice jet. Phys. Fluids 2011, 23, 045101. [Google Scholar] [CrossRef]
- Paizis, S.T.; Schwarz, W.H. Entrainment rates in turbulent shear flows. J. Fluid Mech. 1975, 68, 297–308. [Google Scholar] [CrossRef]
- Sodjavi, K.; Montagné, B.; Meslem, A.; Byrne, P.; Serres, L.; Sobolik, V. Passive control of wall shear stress and mass transfer generated by submerged lobed impinging jet. Heat Mass Transf. 2015, 52, 925–936. [Google Scholar] [CrossRef]
- Nastase, Analyse des Jets Lobés en vue de Leur Intégration Dans les Unités Terminales de Diffusion d’air. Ph.D. Thesis, Université de La Rochelle, La Rochelle, France, 2007.
- Nastase, I.; Meslem, A. Vortex dynamics and mass entrainment in turbulent lobed jets with and without lobe deflection angles. Exp. Fluids 2010, 48, 693–714. [Google Scholar] [CrossRef]
- Nastase, I.; Meslem, A.; Gervais, P. Primary and secondary vortical structures contribution in the entrainment of low Reynolds number jet flows. Exp. Fluids 2008, 44, 1027–1033. [Google Scholar] [CrossRef]
- Bode, F.I.; Dogeanu, A.; Tăcutu, L.; Nastase, I.; Danca, P.A.; Angelescu, A.E. Experimental study of an innovative perforated air diffuser at real scale conditions. Energy Rep. 2022, 8, 1479–1490. [Google Scholar] [CrossRef]
- Kannan, B.; Ssheshan, P.; Senthilkumar, S. Large Eddy Simulation of isothermal cruciform jet flow: Preliminary results. Perspect. Sci. 2016, 8, 10–12. [Google Scholar] [CrossRef]
- Myeong, J.; Kim, S.; Kim, D.; Kim, J.; Shin, W.G. The effect of the nozzle exit geometry on the flow characteristics of the free condensing jet. Nucl. Eng. Technol. 2024, 56, 2545–2556. [Google Scholar] [CrossRef]
- Seif, A.; Zedan, M.; Shibl, A. Effect of nozzle exit geometry on the development of turbulent jets. J. King Saud Univ. Eng. Sci. 1994, 6, 217–239. [Google Scholar] [CrossRef]
- Pawlowska, A.; Boguslawski, A.; Tyliszczak, A.; Geurts, B. Dynamics of transitional jets emanating from a non-circular nozzle. Exp. Therm. Fluid Sci. 2022, 139, 110720. [Google Scholar] [CrossRef]
- Sheng, Z.-Q.; Liu, J.-Y.; Yao, Y.; Xu, Y.-H. Mechanisms of lobed jet mixing: About circularly alternating-lobe mixers. Aerosp. Sci. Technol. 2020, 98, 105660. [Google Scholar] [CrossRef]
- Rohn, M.; Mathis, P.; Röder, T.; Müller, D. Stereoscopic particle image velocimetry study of the single side entrainment behaviour of multiple air jets with different nozzle cross-sections. Build. Environ. 2021, 205, 108195. [Google Scholar] [CrossRef]
- Bragança, P.; Sodjavi, K.; Meslem, A.; Nastase, I. Passive control strategy for mixing ventilation in heating mode using lobed inserts. Energy Build. 2016, 133, 512–528. [Google Scholar] [CrossRef]
- Salewski, M.; Stankovic, D.; Fuchs, L. Mixing in circular and non-circular jets in crossflow. Flow Turbul. Combust. 2008, 80, 255–283. [Google Scholar] [CrossRef]
- Rahman, M.S.; Tay, G.F.K.; Tachie, M.F. Effects of nozzle geometry on turbulent characteristics and structure of surface attaching jets. Flow Turbul. Combust. 2019, 103, 797–825. [Google Scholar] [CrossRef]
- Hashiehbaf, A.; Romano, G. Experimental investigation on circular and non-circular synthetic jets issuing from sharp edge orifices. In Proceedings of the 17th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 7–10 July 2014. [Google Scholar]
- Bennia, A.; Fellouah, H.; Khelil, A.; Loukarfi, L.; Naji, H. Experiments and Large-Eddy Simulations of Lobed and Swirling Turbulent Thermal Jets for HVAC’s Applications. J. Appl. Fluid Mech. 2020, 13, 103–117. [Google Scholar] [CrossRef]
- Prasad, A.K.; Adrian, R.J. Stereoscopic particle image velocimetry applied to liquid flows. Exp. Fluids 1993, 15, 49–60. [Google Scholar] [CrossRef]
- Arroyo, M.P.; Greated, C.A. Stereoscopic particle image velocimetry. Meas. Sci. Technol. 1991, 2, 1181. [Google Scholar] [CrossRef]
- Sinha, S.K.; Kuhlman, P.S. Investigating the use of stereoscopic particle streak velocimetry for estimating the three-dimensional vorticity field. Exp. Fluids 1988, 12, 377–384. [Google Scholar] [CrossRef]
- Prasad, A.K. Stereoscopic particle image velocimetry. Exp. Fluids 2000, 29, 103. [Google Scholar] [CrossRef]
- Westerweel, J. Digital Particle Image Velocimetry. Ph.D. Thesis, Delft University, Delft, The Netherlands, 1993. [Google Scholar]
- Prasad, A.K.; Adrian, R.J.; Landreth, C.C.; Offutt, P.W. Effect of resolution on the speed and accuracy of particle image velocimetry interrogation. Exp. Fluids 1992, 13, 105–116. [Google Scholar] [CrossRef]
- Lawson, N.J.; Wu, J. Three-dimensional particle image velocimetry: Error analysis of stereoscopic techniques. Meas. Sci. Technol. 1997, 8, 894–900. [Google Scholar] [CrossRef]
- Soloff, S.M.; Adrian, R.J.; Liu, Z.-C. Distortion compensation for generalized stereoscopic particle image velocimetry. Meas. Sci. Technol. 1997, 8, 1441–1454. [Google Scholar] [CrossRef]
- Krueger, P.S. An over-pressure correction to the slug model for vortex ring circulation. J. Fluid Mech. 2005, 545, 427–443. [Google Scholar] [CrossRef]
- Quinn, W. Upstream nozzle shaping effects on near field flow in round turbulent free jets. Eur. J. Mech. B/Fluids 2006, 25, 279–301. [Google Scholar] [CrossRef]
- Ashforth-Frost, S.; Jambunathan, K. Effect of nozzle geometry and semi-confinement on the potential core of a turbulent axisymmetric free jet. Int. Commun. Heat Mass Transf. 1996, 23, 155–162. [Google Scholar] [CrossRef]
- Hu, H.; Saga, T.; Kobayashi, T.; Taniguchi, N. A study on a lobed jet mixing flow by using stereoscopic particle image velocimetry technique. Phys. Fluids 2001, 13, 3425–3441. [Google Scholar] [CrossRef]
- Zaman, K.B.M.Q. Spreading characteristics of compressible jets from nozzles of various geometries. J. Fluid Mech. 1999, 383, 197–228. [Google Scholar] [CrossRef]
- Mi, J.; Nobes, D.S.; Nathan, G.J. Influence of jet exit conditions on the passive scalar field of an axisymmetric free jet. J. Fluid Mech. 2001, 432, 91–125. [Google Scholar] [CrossRef]
- Gutmark, E.; Grinstein, F.F. Flow control with noncircular jets. Annu. Rev. Fluid Mech. 1999, 31, 239–272. [Google Scholar] [CrossRef]
- Eckerle, W.A.; Sheibani, H.; Awad, J. Experimental measurement of the vortex development downstream of a lobed forced mixer. J. Eng. Gas Turbines Power 1992, 114, 63–71. [Google Scholar] [CrossRef]
- Werle, M.J.; Paterson, R.W.; Presz, W.M. Flow Structure in a Periodic Axial Vortex Array; AIAA Paper No. 87-610; AIAA: Reston, VA, USA, 1987. [Google Scholar]
- Ho, C.-M.; Huang, L.-S. Subharmonics and vortex merging in mixing layers. J. Fluid Mech. 1982, 119, 443–473. [Google Scholar] [CrossRef]
- Ho, C.M.; Nosseir, N.S. Dynamics of an impinging jet. Part 1. The feedback phenomenon. J. Fluid Mech. 1981, 105, 119. [Google Scholar] [CrossRef]
- Samimy, M.; Kim, J.-H.; Kastner, J.; Adamovich, I.; Utkin, Y. Active control of high-speed and high-Reynolds-number jets using plasma actuators. J. Fluid Mech. 2007, 578, 305–330. [Google Scholar] [CrossRef]
- McCormick, D.C.; Bennett, J.C. Vortical and turbulent structure of a lobed mixer free shear layer. AIAA J. 1994, 32, 1852–1859. [Google Scholar] [CrossRef]
- Kotsovinos, N.E. A note on the conservation of the axial momentum of a turbulent jet. J. Fluid Mech. 1978, 87, 55–63. [Google Scholar] [CrossRef]
- Rajaratnam, N. Turbulent Jets; Elsevier: New York, NY, USA, 1976. [Google Scholar]
- Townsend, A.A. The Structure of Turbulent Shear Flows, 2nd ed.; Cambridge University Press: Cambridge, UK, 1976. [Google Scholar]
- Kotsovinos, N.E. A Study of the Entrainment and Turbulence in a Plane Buoyant Jet. Ph.D. Dissertation, California Institute of Technology, Pasadena, CA, USA, 1975. Available online: https://resolver.caltech.edu/CaltechETD:etd-05162007-081622 (accessed on 29 June 2025). [CrossRef]
- Kotsovinos, N.E.; Angelidis, P.B. The momentum flux in turbulent submerged jets. J. Fluid Mech. 1991, 229, 453–470. [Google Scholar] [CrossRef]
- Miller, D.R.; Comings, E.W. Static pressure distribution in the free turbulent jet. J. Fluid Mech. 1957, 3, 1. [Google Scholar] [CrossRef]
- Bradbury, L.J.S. The structure of a self-preserving turbulent plane jet. J. Fluid Mech. 1965, 23, 31–64. [Google Scholar] [CrossRef]
- Hussein, H.J.; Capp, S.P.; George, W.K. Velocity measurements in a high Reynolds number, momentum-conserving axisymmetric turbulent jet. J. Fluid Mech. 1994, 258, 31. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldossary, S.; El Hassan, M.; Bukharin, N.; Abed-Meraim, K.; Sakout, A. Experimental Investigation of the Entrainment Mechanism in Circular and Lobed Hemispherical Jets. Fluids 2025, 10, 177. https://doi.org/10.3390/fluids10070177
Aldossary S, El Hassan M, Bukharin N, Abed-Meraim K, Sakout A. Experimental Investigation of the Entrainment Mechanism in Circular and Lobed Hemispherical Jets. Fluids. 2025; 10(7):177. https://doi.org/10.3390/fluids10070177
Chicago/Turabian StyleAldossary, Saad, Mouhammad El Hassan, Nikolay Bukharin, Kamel Abed-Meraim, and Anas Sakout. 2025. "Experimental Investigation of the Entrainment Mechanism in Circular and Lobed Hemispherical Jets" Fluids 10, no. 7: 177. https://doi.org/10.3390/fluids10070177
APA StyleAldossary, S., El Hassan, M., Bukharin, N., Abed-Meraim, K., & Sakout, A. (2025). Experimental Investigation of the Entrainment Mechanism in Circular and Lobed Hemispherical Jets. Fluids, 10(7), 177. https://doi.org/10.3390/fluids10070177