Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = volcanic ash retrieval

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 17083 KiB  
Article
Volcanic Activity Classification Through Semi-Supervised Learning Applied to Satellite Radiance Time Series
by Francesco Spina, Giuseppe Bilotta, Annalisa Cappello, Marco Spina, Francesco Zuccarello and Gaetana Ganci
Remote Sens. 2025, 17(10), 1679; https://doi.org/10.3390/rs17101679 - 10 May 2025
Viewed by 571
Abstract
Satellite imagery provides a rich source of information that serves as a comprehensive and synoptic tool for the continuous monitoring of active volcanoes, including those in remote and inaccessible areas. The huge influx of such data requires the development of automated systems for [...] Read more.
Satellite imagery provides a rich source of information that serves as a comprehensive and synoptic tool for the continuous monitoring of active volcanoes, including those in remote and inaccessible areas. The huge influx of such data requires the development of automated systems for efficient processing and interpretation. Early warning systems, designed to process satellite imagery to identify signs of impending eruptions and monitor eruptive activity in near real-time, are essential for hazard assessment and risk mitigation. Here, we propose a machine learning approach for the automatic classification of pixels in SEVIRI images to detect and characterize the eruptive activity of a volcano. In particular, we exploit a semi-supervised GAN (SGAN) model that retrieves the presence of thermal anomalies, volcanic ash plumes, and meteorological clouds in each SEVIRI pixel, allowing time series plots to be obtained showing the evolution of volcanic activity. The SGAN model was trained and tested using the huge amount of data available on Mount Etna (Italy). Then, it was applied to other volcanoes, specifically, Stromboli (Italy), Tajogaite (Spain), and Nyiragongo (Democratic Republic of the Congo), to assess the model’s ability to generalize. The validation of the model was performed through a visual comparison between the classification results and the corresponding SEVIRI images. Moreover, we evaluate the model performance by calculating three different metrics, namely the precision (correctness of positive predictions), the recall (ability to find all the positive instances), and the F1-score (general model’s accuracy), finding an average accuracy of 0.9. Our approach can be extended to other geostationary satellite data and applied worldwide to characterize volcanic activity, allowing the monitoring of even remote volcanoes that are difficult to reach from the ground. Full article
(This article belongs to the Special Issue Satellite Monitoring of Volcanoes in Near-Real Time)
Show Figures

Graphical abstract

27 pages, 14376 KiB  
Article
Investigating Synoptic Influences on Tropospheric Volcanic Ash Dispersion from the 2015 Calbuco Eruption Using WRF-Chem Simulations and Satellite Data
by Douglas Lima de Bem, Vagner Anabor, Franciano Scremin Puhales, Damaris Kirsch Pinheiro, Fabio Grasso, Luiz Angelo Steffenel, Leonardo Brenner and Umberto Rizza
Remote Sens. 2024, 16(23), 4455; https://doi.org/10.3390/rs16234455 - 27 Nov 2024
Viewed by 1137
Abstract
We used WRF-Chem to simulate ash transport from eruptions of Chile’s Calbuco volcano on 22–23 April 2015. Massive ash and SO2 ejections reached the upper troposphere, and particulates transported over South America were observed over Argentina, Uruguay, and Brazil via satellite and [...] Read more.
We used WRF-Chem to simulate ash transport from eruptions of Chile’s Calbuco volcano on 22–23 April 2015. Massive ash and SO2 ejections reached the upper troposphere, and particulates transported over South America were observed over Argentina, Uruguay, and Brazil via satellite and surface data. Numerical simulations with the coupled Weather Research and Forecasting–Chemistry (WRF-Chem) model from 22 to 27 April covered eruptions and particle propagation. Chemical and aerosol parameters utilized the GOCART (Goddard Chemistry Aerosol Radiation and Transport) model, while the meteorological conditions came from NCEP-FNL reanalysis. In WRF-Chem, we implemented a more efficient methodology to determine the Eruption Source Parameters (ESP). This permitted each simulation to consider a sequence of eruptions and a time varying ESP, such as the eruption height and mass and the SO2 eruption rate. We used two simulations (GCTS1 and GCTS2) differing in the ash mass fraction in the finest bins (0–15.6 µm) by 2.4% and 16.5%, respectively, to assess model efficiency in representing plume intensity and propagation. Analysis of the active synoptic components revealed their impact on particle transport and the Andes’ role as a natural barrier. We evaluated and compared the simulated Aerosol Optical Depth (AOD) with VIIRS Deep Blue Level 3 data and SO2 data from Ozone Mapper and Profiler Suite (OMPS) Limb Profiler (LP), both of which are sensors onboard the Suomi National Polar Partnership (NPP) spacecraft. The model successfully reproduced ash and SO2 transport, effectively representing influencing synoptic systems. Both simulations showed similar propagation patterns, with GCTS1 yielding better results when compared with AOD retrievals. These results indicate the necessity of specifying lower mass fraction in the finest bins. Comparison with VIIRS Brightness Temperature Difference data confirmed the model’s efficiency in representing particle transport. Overestimation of SO2 may stem from emission inputs. This study demonstrates the feasibility of our implementation of the WRF-Chem model to reproduce ash and SO2 patterns after a multi-eruption event. This enables further studies into aerosol–radiation and aerosol–cloud interactions and atmospheric behavior following volcanic eruptions. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

22 pages, 49519 KiB  
Article
Modelling Paroxysmal and Mild-Strombolian Eruptive Plumes at Stromboli and Mt. Etna on 28 August 2019
by Giuseppe Castorina, Agostino Semprebello, Alessandro Gattuso, Giuseppe Salerno, Pasquale Sellitto, Francesco Italiano and Umberto Rizza
Remote Sens. 2023, 15(24), 5727; https://doi.org/10.3390/rs15245727 - 14 Dec 2023
Cited by 1 | Viewed by 1529
Abstract
Volcanic eruptions pose a major natural hazard influencing the environment, climate and human beings at different temporal and spatial scales. Nevertheless, several volcanoes worldwide are poorly monitored and assessing the impact of their eruptions remains, in some cases, challenging. Nowadays, different numerical dispersion [...] Read more.
Volcanic eruptions pose a major natural hazard influencing the environment, climate and human beings at different temporal and spatial scales. Nevertheless, several volcanoes worldwide are poorly monitored and assessing the impact of their eruptions remains, in some cases, challenging. Nowadays, different numerical dispersion models are largely employed in order to evaluate the potential effects of volcanic plume dispersion due to the transport of ash and gases. On 28 August 2019, both Mt. Etna and Stromboli had eruptive activity; Mt. Etna was characterised by mild-Strombolian activity at summit craters, while at Stromboli volcano, a paroxysmal event occurred, which interrupted the ordinary typical-steady Strombolian activity. Here, we explore the spatial dispersion of volcanic sulphur dioxide (SO2) gas plumes in the atmosphere, at both volcanoes, using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) considering the ground-measured SO2 amounts and the plume-height as time-variable eruptive source parameters. The performance of WRF-Chem was assessed by cross-correlating the simulated SO2 dispersion maps with data retrieved by TROPOMI and OMI sensors. The results show a feasible agreement between the modelled dispersion maps and TROPOMI satellite for both volcanoes, with spatial pattern retrievals and a total mass of dispersed SO2 of the same order of magnitude. Predicted total SO2 mass for Stromboli might be underestimated due to the inhibition from ground to resolve the sin-eruptive SO2 emission due to the extreme ash-rich volcanic plume released during the paroxysm. This study demonstrates the feasibility of a WRF-Chem model with time-variable ESPs in simultaneously reproducing two eruptive plumes with different SO2 emission and their dispersion into the atmosphere. The operational implementation of this method could represent effective support for the assessment of local-to-regional air quality and flight security and, in case of particularly intense events, also on a global scale. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

22 pages, 7040 KiB  
Article
Volcanic Clouds Characterization of the 2020–2022 Sequence of Mt. Etna Lava Fountains Using MSG-SEVIRI and Products’ Cross-Comparison
by Lorenzo Guerrieri, Stefano Corradini, Nicolas Theys, Dario Stelitano and Luca Merucci
Remote Sens. 2023, 15(8), 2055; https://doi.org/10.3390/rs15082055 - 13 Apr 2023
Cited by 15 | Viewed by 2763
Abstract
From December 2020 to February 2022, 66 lava fountains (LF) occurred at Etna volcano (Italy). Despite their short duration (an average of about two hours), they produced a strong impact on human life, environment, and air traffic. In this work, the measurements collected [...] Read more.
From December 2020 to February 2022, 66 lava fountains (LF) occurred at Etna volcano (Italy). Despite their short duration (an average of about two hours), they produced a strong impact on human life, environment, and air traffic. In this work, the measurements collected from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument, on board Meteosat Second Generation (MSG) geostationary satellite, are processed every 15 min to characterize the volcanic clouds produced during the activities. In particular, a quantitative estimation of volcanic cloud top height (VCTH) and ash/ice/SO2 masses’ time series are obtained. VCTHs are computed by integrating three different retrieval approaches based on coldest pixel detection, plume tracking, and HYSPLIT models, while particles and gas retrievals are realized simultaneously by exploiting the Volcanic Plume Retrieval (VPR) real-time procedure. The discrimination between ashy and icy pixels is carried out by applying the Brightness Temperature Difference (BTD) method with thresholds obtained by making specific Radiative Transfer Model simulations. Results indicate a VCTH variation during the entire period between 4 and 13 km, while the SO2, ash, and ice total masses reach maximum values of about 50, 100, and 300 Gg, respectively. The cumulative ash, ice, and SO2 emitted from all the 2020–2022 LFs in the atmosphere are about 750, 2300, and 670 Gg, respectively. All the retrievals indicate that the overall activity can be grouped into 3 main periods in which it passes from high (December 2020 to March 2021), low (March to June 2021), and medium/high (June 2021 to February 2022). The different products have been validated by using TROPOspheric Monitoring Instrument (TROPOMI) polar satellite sensor, Volcano Observatory Notices for Aviation (VONA) bulletins, and by processing the SEVIRI data considering a different and more accurate retrieval approach. The products’ cross-comparison shows a generally good agreement, except for the SO2 total mass in case of high ash/ice content in the volcanic cloud. Full article
(This article belongs to the Special Issue Assessment and Prediction of Volcano Hazard Using Remote Sensing)
Show Figures

Figure 1

23 pages, 5470 KiB  
Article
Multi-Channel Spectral Band Adjustment Factors for Thermal Infrared Measurements of Geostationary Passive Imagers
by Dennis Piontek, Luca Bugliaro, Richard Müller, Lukas Muser and Matthias Jerg
Remote Sens. 2023, 15(5), 1247; https://doi.org/10.3390/rs15051247 - 24 Feb 2023
Cited by 2 | Viewed by 2824
Abstract
The newest and upcoming geostationary passive imagers have thermal infrared channels comparable to those of more established instruments, but their spectral response functions still differ significantly. Therefore, retrievals developed for a certain type of radiometer cannot simply be applied to another imager. Here, [...] Read more.
The newest and upcoming geostationary passive imagers have thermal infrared channels comparable to those of more established instruments, but their spectral response functions still differ significantly. Therefore, retrievals developed for a certain type of radiometer cannot simply be applied to another imager. Here, a set of spectral band adjustment factors is determined for MSG/SEVIRI, Himawari-8/AHI, and MTG1/FCI from a training dataset based on MetOp/IASI hyperspectral observations. These correction functions allow to turn the observation of one sensor into an analogue observation of another sensor. This way, the same satellite retrieval—that has been usually developed for a specific instrument with a specific spectral response function—can be applied to produce long time series that go beyond one single satellite/satellite series or to cover the entire geostationary ring in a consistent way. It is shown that the mean uncorrected brightness temperature differences between corresponding channels of two imagers can be >1 K, in particular for the channels centered around 13.4 μm in the carbon dioxide absorption band and even when comparing different imager realizations of the same series, such as the four SEVIRI sensors aboard MSG1 to MSG4. The spectral band adjustment factors can remove the bias and even reduce the standard deviation in the brightness temperature difference by more than 80%, with the effect being dependent on the spectral channel and the complexity of the correction function. Further tests include the application of the spectral band adjustment factors in combination with (a) a volcanic ash cloud retrieval to Himawari-8/AHI observations of the Raikoke eruption 2019 and a comparison to an ICON-ART model simulation, and (b) an ice cloud retrieval to simulated MTG1/FCI test data with the outcome compared to the retrieval results using real MSG3/SEVIRI measurements for the same scene. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

20 pages, 74316 KiB  
Article
Retrieval of Volcanic Ash Cloud Base Height Using Machine Learning Algorithms
by Fenghua Zhao, Jiawei Xia, Lin Zhu, Hongfu Sun and Dexin Zhao
Atmosphere 2023, 14(2), 228; https://doi.org/10.3390/atmos14020228 - 23 Jan 2023
Viewed by 2419
Abstract
There are distinct differences between radiation characteristics of volcanic ash and meteorological clouds, and conventional retrieval methods for cloud base height (CBH) of the latter are difficult to apply to volcanic ash without substantial parameterisation and model correction. Furthermore, existing CBH inversion methods [...] Read more.
There are distinct differences between radiation characteristics of volcanic ash and meteorological clouds, and conventional retrieval methods for cloud base height (CBH) of the latter are difficult to apply to volcanic ash without substantial parameterisation and model correction. Furthermore, existing CBH inversion methods have limitations, including the involvement of many empirical formulae and a dependence on the accuracy of upstream cloud products. A machine learning (ML) method was developed for the retrieval of volcanic ash cloud base height (VBH) to reduce uncertainties in physical CBH retrieval methods. This new methodology takes advantage of polar-orbit active remote-sensing data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), from vertical profile information and from geostationary passive remote-sensing measurements from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) and the Advanced Geostationary Radiation Imager (AGRI) aboard the Meteosat Second Generation (MSG) and FengYun-4B (FY-4B) satellites, respectively. The methodology involves a statistics-based algorithm with hybrid use of principal component analysis (PCA) and one of four ML algorithms including the k-nearest neighbour (KNN), extreme gradient boosting (XGBoost), random forest (RF), and gradient boosting decision tree (GBDT) methods. Eruptions of the Eyjafjallajökull volcano (Iceland) during April-May 2010, the Puyehue-Cordón Caulle volcanic complex (Chilean Andes) in June 2011, and the Hunga Tonga-Hunga Ha’apai volcano (Tonga) in January 2022 were selected as typical cases for the construction of the training and validation sample sets. We demonstrate that a combination of PCA and GBDT performs more accurately than other combinations, with a mean absolute error (MAE) of 1.152 km, a root mean square error (RMSE) of 1.529 km, and a Pearson’s correlation coefficient (r) of 0.724. Use of PCA as an additional process before training reduces feature relevance between input predictors and improves algorithm accuracy. Although the ML algorithm performs well under relatively simple single-layer volcanic ash cloud conditions, it tends to overestimate VBH in multi-layer conditions, which is an unresolved problem in meteorological CBH retrieval. Full article
Show Figures

Figure 1

22 pages, 6474 KiB  
Article
Using an Ensemble Filter to Improve the Representation of Temporal Source Variations in a Volcanic Ash Forecasting System
by Meelis J. Zidikheri
Atmosphere 2022, 13(8), 1243; https://doi.org/10.3390/atmos13081243 - 5 Aug 2022
Viewed by 1758
Abstract
The use of ensemble models to forecast the dispersion and transport of airborne volcanic ash in operational contexts is increasingly being explored. The ensemble members are usually constructed to represent a priori uncertainty estimates in meteorological fields and volcanic ash source parameters. Satellite [...] Read more.
The use of ensemble models to forecast the dispersion and transport of airborne volcanic ash in operational contexts is increasingly being explored. The ensemble members are usually constructed to represent a priori uncertainty estimates in meteorological fields and volcanic ash source parameters. Satellite data can be used to further filter ensemble members within an analysis time window by rejecting poorly performing members, leading to improved forecasts. In this study, the ensemble filtering technique is used to improve the representation of temporal source variations. Ensemble members are initially created by representing the source time variations as random functions of time that are modulated by crude initial estimates of the variations estimated from satellite imagery. Ensemble filtering is then used to remove members whose fields match poorly with observations within a specified analysis time window that are represented by satellite retrievals of volcanic ash properties such as mass load, effective radius, and cloud top height. The filtering process leads to an ensemble with statistics in closer agreement with the observations. It is shown in the context of the 30 May 2014 Sangeang Api eruption case study that this method leads to significantly enhanced forecasting skill beyond the analysis time window—about 20% improvement on average—when compared to a system that assumes constant emission rates for the duration of the eruption, as is the case in many operational volcanic ash forecasting systems. Full article
(This article belongs to the Special Issue Feature Papers in Atmosphere Science)
Show Figures

Figure 1

26 pages, 33873 KiB  
Article
A Near-Real-Time Method for Estimating Volcanic Ash Emissions Using Satellite Retrievals
by Rachel E. Pelley, David J. Thomson, Helen N. Webster, Michael C. Cooke, Alistair J. Manning, Claire S. Witham and Matthew C. Hort
Atmosphere 2021, 12(12), 1573; https://doi.org/10.3390/atmos12121573 - 27 Nov 2021
Cited by 10 | Viewed by 2611
Abstract
We present a Bayesian inversion method for estimating volcanic ash emissions using satellite retrievals of ash column load and an atmospheric dispersion model. An a priori description of the emissions is used based on observations of the rise height of the volcanic plume [...] Read more.
We present a Bayesian inversion method for estimating volcanic ash emissions using satellite retrievals of ash column load and an atmospheric dispersion model. An a priori description of the emissions is used based on observations of the rise height of the volcanic plume and a stochastic model of the possible emissions. Satellite data are processed to give column loads where ash is detected and to give information on where we have high confidence that there is negligible ash. An atmospheric dispersion model is used to relate emissions and column loads. Gaussian distributions are assumed for the a priori emissions and for the errors in the satellite retrievals. The optimal emissions estimate is obtained by finding the peak of the a posteriori probability density under the constraint that the emissions are non-negative. We apply this inversion method within a framework designed for use during an eruption with the emission estimates (for any given emission time) being revised over time as more information becomes available. We demonstrate the approach for the 2010 Eyjafjallajökull and 2011 Grímsvötn eruptions. We apply the approach in two ways, using only the ash retrievals and using both the ash and clear sky retrievals. For Eyjafjallajökull we have compared with an independent dataset not used in the inversion and have found that the inversion-derived emissions lead to improved predictions. Full article
(This article belongs to the Special Issue Data-Driven Methods in Atmospheric Dispersion Modelling)
Show Figures

Figure 1

25 pages, 14904 KiB  
Article
Effects of Variable Eruption Source Parameters on Volcanic Plume Transport: Example of the 23 November 2013 Paroxysm of Etna
by Umberto Rizza, Franck Donnadieu, Salvatore Magazu, Giorgio Passerini, Giuseppe Castorina, Agostino Semprebello, Mauro Morichetti, Simone Virgili and Enrico Mancinelli
Remote Sens. 2021, 13(20), 4037; https://doi.org/10.3390/rs13204037 - 9 Oct 2021
Cited by 9 | Viewed by 2859
Abstract
The purpose of the present paper is to investigate the effects of variable eruption source parameters on volcanic plume transport in the Mediterranean basin after the paroxysm of Mount Etna on 23 November 2013. This paroxysm was characterized by a north-east transport of [...] Read more.
The purpose of the present paper is to investigate the effects of variable eruption source parameters on volcanic plume transport in the Mediterranean basin after the paroxysm of Mount Etna on 23 November 2013. This paroxysm was characterized by a north-east transport of ash and gas, caused by a low-pressure system in northern Italy. It is evaluated here in a joint approach considering the WRF-Chem model configured with eruption source parameters (ESPs) obtained elaborating the raw data from the VOLDORAD-2B (V2B) Doppler radar system. This allows the inclusion of the transient and fluctuating nature of the volcanic emissions to accurately model the atmospheric dispersion of ash and gas. Two model configurations were considered: the first with the climax values for the ESP and the second with the time-varying ESP according to the time profiles of the mass eruption rate recorded by the V2B radar. It is demonstrated that the second configuration produces a considerably better comparison with satellite retrievals from different sensors platforms (Ozone Mapping and Profiler Suite, Meteosat Second-Generation Spinning Enhanced Visible and Infrared Imager, and Visible Infrared Imaging Radiometer Suite). In the context of volcanic ash transport dispersion modeling, our results indicate the need for (i) the use of time-varying ESP, and (ii) a joint approach between an online coupled chemical transport model like WRF-Chem and direct near-source measurements, such as those carried out by the V2B Doppler radar system. Full article
Show Figures

Graphical abstract

18 pages, 81419 KiB  
Article
Day–Night Monitoring of Volcanic SO2 and Ash Clouds for Aviation Avoidance at Northern Polar Latitudes
by Nickolay Krotkov, Vincent Realmuto, Can Li, Colin Seftor, Jason Li, Kelvin Brentzel, Martin Stuefer, Jay Cable, Carl Dierking, Jennifer Delamere, David Schneider, Johanna Tamminen, Seppo Hassinen, Timo Ryyppö, John Murray, Simon Carn, Jeffrey Osiensky, Nate Eckstein, Garrett Layne and Jeremy Kirkendall
Remote Sens. 2021, 13(19), 4003; https://doi.org/10.3390/rs13194003 - 6 Oct 2021
Cited by 7 | Viewed by 4516
Abstract
We describe NASA’s Applied Sciences Disasters Program, which is a collaborative project between the Direct Readout Laboratory (DRL), ozone processing team, Jet Propulsion Laboratory, Geographic Information Network of Alaska (GINA), and Finnish Meteorological Institute (FMI), to expedite the processing and delivery of direct [...] Read more.
We describe NASA’s Applied Sciences Disasters Program, which is a collaborative project between the Direct Readout Laboratory (DRL), ozone processing team, Jet Propulsion Laboratory, Geographic Information Network of Alaska (GINA), and Finnish Meteorological Institute (FMI), to expedite the processing and delivery of direct readout (DR) volcanic ash and sulfur dioxide (SO2) satellite data. We developed low-latency quantitative retrievals of SO2 column density from the solar backscattered ultraviolet (UV) measurements using the Ozone Mapping and Profiler Suite (OMPS) spectrometers as well as the thermal infrared (TIR) SO2 and ash indices using Visible Infrared Imaging Radiometer Suite (VIIRS) instruments, all flying aboard US polar-orbiting meteorological satellites. The VIIRS TIR indices were developed to address the critical need for nighttime coverage over northern polar regions. Our UV and TIR SO2 and ash software packages were designed for the DRL’s International Planetary Observation Processing Package (IPOPP); IPOPP runs operationally at GINA and FMI stations in Fairbanks, Alaska, and Sodankylä, Finland. The data are produced within 30 min of satellite overpasses and are distributed to the Alaska Volcano Observatory and Anchorage Volcanic Ash Advisory Center. FMI receives DR data from GINA and posts composite Arctic maps for ozone, volcanic SO2, and UV aerosol index (UVAI, proxy for ash or smoke) on its public website and provides DR data to EUMETCast users. The IPOPP-based software packages are available through DRL to a broad DR user community worldwide. Full article
(This article belongs to the Special Issue Remote Sensing for Near-Real-Time Disaster Monitoring)
Show Figures

Graphical abstract

24 pages, 4659 KiB  
Article
Improving Ensemble Volcanic Ash Forecasts by Direct Insertion of Satellite Data and Ensemble Filtering
by Meelis J. Zidikheri and Chris Lucas
Atmosphere 2021, 12(9), 1215; https://doi.org/10.3390/atmos12091215 - 17 Sep 2021
Cited by 8 | Viewed by 2472
Abstract
Improved quantitative forecasts of volcanic ash are in great demand by the aviation industry to enable better risk management during disruptive volcanic eruption events. However, poor knowledge of volcanic source parameters and other dispersion and transport modelling uncertainties, such as those due to [...] Read more.
Improved quantitative forecasts of volcanic ash are in great demand by the aviation industry to enable better risk management during disruptive volcanic eruption events. However, poor knowledge of volcanic source parameters and other dispersion and transport modelling uncertainties, such as those due to errors in numerical weather prediction fields, make this problem very challenging. Nonetheless, satellite-based algorithms that retrieve ash properties, such as mass load, effective radius, and cloud top height, combined with inverse modelling techniques, such as ensemble filtering, can significantly ameliorate these problems. The satellite-retrieved data can be used to better constrain the volcanic source parameters, but they can also be used to avoid the description of the volcanic source altogether by direct insertion into the forecasting model. In this study we investigate the utility of the direct insertion approach when employed within an ensemble filtering framework. Ensemble members are formed by initializing dispersion models with data from different timesteps, different values of cloud top height, thickness, and NWP ensemble members. This large ensemble is then filtered with respect to observations to produce a refined forecast. We apply this approach to 14 different eruption case studies in the tropical atmosphere. We demonstrate that the direct insertion of data improves model forecast skill, particularly when it is used in a hybrid ensemble in which some ensemble members are initialized from the volcanic source. Moreover, good forecast skill can be obtained even when detailed satellite retrievals are not available, which is frequently the case for volcanic eruptions in the tropics. Full article
(This article belongs to the Special Issue Data-Driven Methods in Atmospheric Dispersion Modelling)
Show Figures

Figure 1

36 pages, 3714 KiB  
Article
The New Volcanic Ash Satellite Retrieval VACOS Using MSG/SEVIRI and Artificial Neural Networks: 2. Validation
by Dennis Piontek, Luca Bugliaro, Jayanta Kar, Ulrich Schumann, Franco Marenco, Matthieu Plu and Christiane Voigt
Remote Sens. 2021, 13(16), 3128; https://doi.org/10.3390/rs13163128 - 7 Aug 2021
Cited by 18 | Viewed by 4360
Abstract
Volcanic ash clouds can damage aircrafts during flight and, thus, have the potential to disrupt air traffic on a large scale, making their detection and monitoring necessary. The new retrieval algorithm VACOS (Volcanic Ash Cloud properties Obtained from SEVIRI) using the [...] Read more.
Volcanic ash clouds can damage aircrafts during flight and, thus, have the potential to disrupt air traffic on a large scale, making their detection and monitoring necessary. The new retrieval algorithm VACOS (Volcanic Ash Cloud properties Obtained from SEVIRI) using the geostationary instrument MSG/SEVIRI and artificial neural networks is introduced in a companion paper. It performs pixelwise classifications and retrieves (indirectly) the mass column concentration, the cloud top height and the effective particle radius. VACOS is comprehensively validated using simulated test data, CALIOP retrievals, lidar and in situ data from aircraft campaigns of the DLR and the FAAM, as well as volcanic ash transport and dispersion multi model multi source term ensemble predictions. Specifically, emissions of the eruptions of Eyjafjallajökull (2010) and Puyehue-Cordón Caulle (2011) are considered. For ash loads larger than 0.2 g m−2 and a mass column concentration-based detection procedure, the different evaluations give probabilities of detection between 70% and more than 90% at false alarm rates of the order of 0.3–3%. For the simulated test data, the retrieval of the mass load has a mean absolute percentage error of ~40% or less for ash layers with an optical thickness at 10.8 μm of 0.1 (i.e., a mass load of about 0.3–0.7 g m−2, depending on the ash type) or more, the ash cloud top height has an error of up to 10% for ash layers above 5 km, and the effective radius has an error of up to 35% for radii of 0.6–6 μm. The retrieval error increases with decreasing ash cloud thickness and top height. VACOS is applicable even for overlaying meteorological clouds, for example, the mean absolute percentage error of the optical depth at 10.8 μm increases by only up to ~30%. Viewing zenith angles >60° increase the mean percentage error by up to ~20%. Desert surfaces are another source of error. Varying geometrical ash layer thicknesses and the occurrence of multiple layers can introduce an additional error of about 30% for the mass load and 5% for the cloud top height. For the CALIOP data, comparisons with its predecessor VADUGS (operationally used by the DWD) show that VACOS is more robust, with retrieval errors of mass load and ash cloud top height reduced by >10% and >50%, respectively. Using the model data indicates an increase in detection rate in the order of 30% and more. The reliability under a wide spectrum of atmospheric conditions and volcanic ash types make VACOS a suitable tool for scientific studies and air traffic applications related to volcanic ash clouds. Full article
Show Figures

Graphical abstract

29 pages, 1931 KiB  
Article
The New Volcanic Ash Satellite Retrieval VACOS Using MSG/SEVIRI and Artificial Neural Networks: 1. Development
by Dennis Piontek, Luca Bugliaro, Marius Schmidl, Daniel K. Zhou and Christiane Voigt
Remote Sens. 2021, 13(16), 3112; https://doi.org/10.3390/rs13163112 - 6 Aug 2021
Cited by 10 | Viewed by 3994
Abstract
Volcanic ash clouds are a threat to air traffic security and, thus, can have significant societal and financial impact. Therefore, the detection and monitoring of volcanic ash clouds to enhance the safety of air traffic is of central importance. This work presents the [...] Read more.
Volcanic ash clouds are a threat to air traffic security and, thus, can have significant societal and financial impact. Therefore, the detection and monitoring of volcanic ash clouds to enhance the safety of air traffic is of central importance. This work presents the development of the new retrieval algorithm VACOS (Volcanic Ash Cloud properties Obtained from SEVIRI) which is based on artificial neural networks, the thermal channels of the geostationary sensor MSG/SEVIRI and auxiliary data from a numerical weather prediction model. It derives a pixel classification as well as cloud top height, effective particle radius and, indirectly, the mass column concentration of volcanic ash clouds during day and night. A large set of realistic one-dimensional radiative transfer calculations for typical atmospheric conditions with and without generic volcanic ash clouds is performed to create the training dataset. The atmospheric states are derived from ECMWF data to cover the typical diurnal, annual and interannual variability. The dependence of the surface emissivity on surface type and viewing zenith angle is considered. An extensive dataset of volcanic ash optical properties is used, derived for a wide range of microphysical properties and refractive indices of various petrological compositions, including different silica contents and glass-to-crystal ratios; this constitutes a major innovation of this retrieval. The resulting ash-free radiative transfer calculations at a specific time compare well with corresponding SEVIRI measurements, considering the individual pixel deviations as well as the overall brightness temperature distributions. Atmospheric gas profiles and sea surface emissivities are reproduced with a high agreement, whereas cloudy cases can show large deviations on a single pixel basis (with 95th percentiles of the absolute deviations > 30 K), mostly due to different cloud properties in model and reality. Land surfaces lead to large deviations for both the single pixel comparison (with median absolute deviations > 3 K) and more importantly the brightness temperature distributions, most likely due to imprecise skin temperatures. The new method enables volcanic ash-related scientific investigations as well as aviation security-related applications. Full article
Show Figures

Graphical abstract

20 pages, 10527 KiB  
Article
Mt. Etna Paroxysms of February–April 2021 Monitored and Quantified through a Multi-Platform Satellite Observing System
by Francesco Marchese, Carolina Filizzola, Teodosio Lacava, Alfredo Falconieri, Mariapia Faruolo, Nicola Genzano, Giuseppe Mazzeo, Carla Pietrapertosa, Nicola Pergola, Valerio Tramutoli and Marco Neri
Remote Sens. 2021, 13(16), 3074; https://doi.org/10.3390/rs13163074 - 5 Aug 2021
Cited by 29 | Viewed by 5145 | Correction
Abstract
On 16 February 2021, an eruptive paroxysm took place at Mt. Etna (Sicily, Italy), after continuous Strombolian activity recorded at summit craters, which intensified in December 2020. This was the first of 17 short, but violent, eruptive events occurring during February–April 2021, mostly [...] Read more.
On 16 February 2021, an eruptive paroxysm took place at Mt. Etna (Sicily, Italy), after continuous Strombolian activity recorded at summit craters, which intensified in December 2020. This was the first of 17 short, but violent, eruptive events occurring during February–April 2021, mostly at a time interval of about 2–3 days between each other. The paroxysms produced lava fountains (up to 1000 m high), huge tephra columns (up to 10–11 km above sea level), lava and pyroclastic flows, expanding 2–4 km towards East and South. The last event, which was characterised by about 3 days of almost continuous eruptive activity (30 March–1 April), generated the most lasting lava fountain (8–9 h). During some paroxysms, volcanic ash led to the temporary closure of the Vincenzo Bellini Catania International Airport. Heavy ash falls then affected the areas surrounding the volcano, in some cases reaching zones located hundreds of kilometres away from the eruptive vent. In this study, we investigate the Mt. Etna paroxysms mentioned above through a multi-platform satellite system. Results retrieved from Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), starting from outputs of the Robust Satellite Techniques for Volcanoes (RSTVOLC), indicate that the 17th paroxysm (31 March–1 April) was the most intense in terms of radiative power, with values estimated around 14 GW. Moreover, by the analysis of SEVIRI data, we found that the 5th and 17th paroxysms were the most energetic. The Multispectral Instrument (MSI) and the Operational Land Imager (OLI), providing shortwave infrared (SWIR) data at 20/30 m spatial resolution, enabled an accurate localisation of active vents and the mapping of the areas inundated by lava flows. In addition, according to the Normalized Hotspot Indices (NHI) tool, the 2nd (17–18 February) and 7th (28 February) paroxysm generated the largest thermal anomaly at Mt. Etna after April 2013, when Landsat-8 OLI data became available. Despite the impact of clouds/plumes, pixel saturation, and other factors (e.g., satellite viewing geometry) on thermal anomaly identification, the used multi-sensor approach allowed us to retrieve quantitative information about the 17 paroxysms occurring at Mt. Etna. This approach could support scientists in better interpreting changes in thermal activity, which could lead to future and more dangerous eruptions. Full article
Show Figures

Graphical abstract

19 pages, 6626 KiB  
Article
Tropospheric Volcanic SO2 Mass and Flux Retrievals from Satellite. The Etna December 2018 Eruption
by Stefano Corradini, Lorenzo Guerrieri, Hugues Brenot, Lieven Clarisse, Luca Merucci, Federica Pardini, Alfred J. Prata, Vincent J. Realmuto, Dario Stelitano and Nicolas Theys
Remote Sens. 2021, 13(11), 2225; https://doi.org/10.3390/rs13112225 - 7 Jun 2021
Cited by 18 | Viewed by 4270
Abstract
The presence of volcanic clouds in the atmosphere affects air quality, the environment, climate, human health and aviation safety. The importance of the detection and retrieval of volcanic SO2 lies with risk mitigation as well as with the possibility of providing insights [...] Read more.
The presence of volcanic clouds in the atmosphere affects air quality, the environment, climate, human health and aviation safety. The importance of the detection and retrieval of volcanic SO2 lies with risk mitigation as well as with the possibility of providing insights into the mechanisms that cause eruptions. Due to their intrinsic characteristics, satellite measurements have become an essential tool for volcanic monitoring. In recent years, several sensors, with different spectral, spatial and temporal resolutions, have been launched into orbit, significantly increasing the effectiveness of the estimation of the various parameters related to the state of volcanic activity. In this work, the SO2 total masses and fluxes were obtained from several satellite sounders—the geostationary (GEO) MSG-SEVIRI and the polar (LEO) Aqua/Terra-MODIS, NPP/NOAA20-VIIRS, Sentinel5p-TROPOMI, MetopA/MetopB-IASI and Aqua-AIRS—and compared to one another. As a test case, the Christmas 2018 Etna eruption was considered. The characteristics of the eruption (tropospheric with low ash content), the large amount of (simultaneously) available data and the different instrument types and SO2 columnar abundance retrieval strategies make this cross-comparison particularly relevant. Results show the higher sensitivity of TROPOMI and IASI and a general good agreement between the SO2 total masses and fluxes obtained from all the satellite instruments. The differences found are either related to inherent instrumental sensitivity or the assumed and/or calculated SO2 cloud height considered as input for the satellite retrievals. Results indicate also that, despite their low revisit time, the LEO sensors are able to provide information on SO2 flux over large time intervals. Finally, a complete error assessment on SO2 flux retrievals using SEVIRI data was realized by considering uncertainties in wind speed and SO2 abundance. Full article
(This article belongs to the Special Issue Multi-Sensor Remote Sensing Data for Volcanic Hazards Monitoring)
Show Figures

Graphical abstract

Back to TopTop