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Abstract: Volcanic ash clouds can damage aircrafts during flight and, thus, have the potential to
disrupt air traffic on a large scale, making their detection and monitoring necessary. The new retrieval
algorithm VACOS (Volcanic Ash Cloud properties Obtained from SEVIRI) using the geostationary
instrument MSG/SEVIRI and artificial neural networks is introduced in a companion paper. It
performs pixelwise classifications and retrieves (indirectly) the mass column concentration, the cloud
top height and the effective particle radius. VACOS is comprehensively validated using simulated
test data, CALIOP retrievals, lidar and in situ data from aircraft campaigns of the DLR and the FAAM,
as well as volcanic ash transport and dispersion multi model multi source term ensemble predictions.
Specifically, emissions of the eruptions of Eyjafjallajökull (2010) and Puyehue-Cordón Caulle (2011)
are considered. For ash loads larger than 0.2 g m−2 and a mass column concentration-based detection
procedure, the different evaluations give probabilities of detection between 70% and more than 90%
at false alarm rates of the order of 0.3–3%. For the simulated test data, the retrieval of the mass
load has a mean absolute percentage error of ~40% or less for ash layers with an optical thickness
at 10.8 µm of 0.1 (i.e., a mass load of about 0.3–0.7 g m−2, depending on the ash type) or more, the
ash cloud top height has an error of up to 10% for ash layers above 5 km, and the effective radius
has an error of up to 35% for radii of 0.6–6 µm. The retrieval error increases with decreasing ash
cloud thickness and top height. VACOS is applicable even for overlaying meteorological clouds, for
example, the mean absolute percentage error of the optical depth at 10.8 µm increases by only up to
~30%. Viewing zenith angles >60° increase the mean percentage error by up to ~20%. Desert surfaces
are another source of error. Varying geometrical ash layer thicknesses and the occurrence of multiple
layers can introduce an additional error of about 30% for the mass load and 5% for the cloud top
height. For the CALIOP data, comparisons with its predecessor VADUGS (operationally used by the
DWD) show that VACOS is more robust, with retrieval errors of mass load and ash cloud top height
reduced by >10% and >50%, respectively. Using the model data indicates an increase in detection
rate in the order of 30% and more. The reliability under a wide spectrum of atmospheric conditions
and volcanic ash types make VACOS a suitable tool for scientific studies and air traffic applications
related to volcanic ash clouds.

Keywords: volcanic ash cloud; passive satellite remote sensing; artificial neural network; validation;
Eyjafjallajökull; Puyehue-Cordón Caulle; lidar; in situ; transport and dispersion model
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1. Introduction

A new volcanic ash retrieval using artificial neural networks (ANNs) and the Spinning
Enhanced Visible and Infrared Imager (SEVIRI) aboard the Meteosat Second Generation (MSG)
satellites is developed and presented; this algorithm is called VACOS (Volcanic Ash Cloud
Properties Obtained from SEVIRI) and builds upon its predecessor VADUGS (Volcanic Ash
Detection Using Geostationry Satellites [1]). The companion paper [2] describes the algorithm
development: Using a comprehensive set of volcanic ash optical properties [3], surface
emissivities [4–6] and atmospheric profiles of pressure, temperature, air density, concen-
trations of oxygen, water vapor, ozone, carbon dioxide and nitrogen dioxide, liquid and
ice water clouds, mostly derived from ECMWF model reanalyses, one-dimensional radia-
tive transfer calculations are performed with and without realistic volcanic ash clouds to
create training, validation and test data sets. These three simulated data sets contain the
volcanic ash cloud properties, i.e., geometrical vertical extent, mass volume concentration,
cloud top height, the brightness temperatures (BTs) of the infrared channels of SEVIRI
and various auxiliary quantities. The ash-free simulations are validated by comparing the
results of radiative transfer calculations of a specific date with the corresponding SEVIRI
measurements. Using the simulated data sets, four different ANNs are trained for the
pixelwise retrieval of the optical depth at 10.8 µm due to ash (τ10.8), the ash cloud top height
(in m, ztop), the effective particle radius (in µm, reff) and an overall classification in four
categories (ash-free and cloud-free; only meteorological clouds; only volcanic ash clouds;
both volcanic ash and meteorological clouds present). The ANN for classification returns a
normalized four-dimensional vector, where each component can be roughly interpreted as
the probability of the corresponding category. The four ANNs perform independently of
each other, but the retrievals of ztop and reff receive an estimate of τ10.8 as an input. This
approach allowed to use different training data sets and ANN settings for each retrieval.

This paper contains an analysis of the retrieval performance: A detailed validation
with respect to simulated test data sets is presented (Section 2) and the sensitivity of the
retrievals with respect to the volcanic ash cloud profile is given (Section 3). To demonstrate
the reliability of the new algorithm and to check its performance with respect to its prede-
cessor, various comparisons with other remote and in situ measurements (Section 4) and
model calculations were made (Section 5). The individual features of the final ANNs are
analyzed to make some inferences on the functioning of the algorithms (Section 6). Finally,
we give a conclusion and an outlook.

2. Performance on Simulated Test Data

The development of the VACOS retrieval is described in Piontek et al. [2]. In the
following, we systematically quantify the performance of the retrievals with respect to
volcanic ash cloud properties, presence of meteorological clouds (defined to include liquid
and ice water clouds) and geographic location. Therefore, the ANNs are applied to the test
data sets A (1,252,470 samples) or B (405,556 samples) from Piontek et al. [2], depending
on their training data set. The samples of the test data sets are the results of independent
radiative transfer calculations and can be compared to the situation for single pixels in
a SEVIRI image. The VACOS results are compared with these true values, providing
references for the error of the retrievals; those might be larger in reality due to more
complicated atmospheric conditions (e.g., additional aerosols such as mineral dust), cases
that have not been covered by the training data set (e.g., non-homogeneous ash clouds
or multiple ash layers, emitted sulfur dioxide) or slight differences between our radiative
transfer calculations and the reality (e.g., due to partial cloud covers, inaccuracies due to
the applied parameterizations for meteorological clouds). The error metrics mean absolute
percentage error (MAPE), mean percentage error (MPE), probability of detection (POD), false
alarm rate (FAR) and accuracy are used and described in Appendix A.
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2.1. Classification

The classification ANN returns a normalized four-dimensional vector with each com-
ponent interpreted as the probability of the corresponding category, see Table 1. Defining
that a sample is assigned to a given category if the corresponding component is >50%,
the accuracy is 92% with 0.012% of the samples remaining unclassified. These values de-
pend on the composition of the test data set with respect to the different categories, as they
are retrieved with different accuracy, see Table 1. Whereas clear sky, cloudy and ash-loaded
samples are correctly classified with probabilities of more than 90% each, samples with both
meteorological and ash clouds are correctly classified in only 49% of the cases. About 47%
of those samples were classified as ash only. Again, this might depend on the composition
of the test data; samples with thick ash clouds on top of comparably thin meteorological
clouds might be misclassified as ash only. Reducing the amount of these samples in the
test data set would significantly modify the results in Table 1. Nevertheless, VACOS is able
to detect the presence of ash in almost all cases even for this category, with only 4.1% of
the ash remaining undetected. Next, only the samples containing ash and meteorological
clouds are considered and separated according to the location of the meteorological clouds
as above or below the ash layer, where we define that above denotes that no meteorological
clouds are below the volcanic ash cloud bottom and below that no meteorological cloud
is above the ash cloud top. Samples with multiple meteorological clouds located both
above and below the ash layer are not included in either class. Again, note that we do
not differentiate between liquid and ice water clouds, although ice water clouds can be
expected to dominate for altitudes in the upper troposphere and liquid water clouds in
the lower troposphere, and although ice water clouds might damp the ash signal, e.g., in
BTD11–12. Furthermore, the dependence on the optical depth of the meteorological clouds
themselves is not investigated, although expected to be significant. Table 2 shows the
classification of the two subsets. Nearly all samples are classified as ash-containing if the
meteorological cloud is below, and astonishingly still ~85% if it is above. The amount
of correctly classified samples (i.e., both ash and meteorological cloud) is ~15% higher
for meteorological clouds below than above, whereas ~15% of the samples are classified
as containing only meteorological clouds if those are above but less than 1% if they are
below. This represents the well known fact that an optically thick meteorological cloud can
effectively hide a below-cloud volcanic ash layer from the satellite observation. More than
48% of the samples are classified as containing only ash, independently of the position of
the meteorological clouds. Motivated by the fact that the identification of cases with both
ash and meteorological clouds is not very reliable, but that ash is detected in the majority
of the situations, a binary ash flag Pash (i.e., ash or no ash) is introduced by adding the
probabilities of the two categories without ash (clear, clouds) and the two with ash (ash,
both), respectively. Now, if the resulting probability for ash is above 80%, we assume that
ash is present, otherwise not; the threshold is motivated in Section 2.3. The binary ash flag
will be used in the rest of the section. It has an accuracy of 99.5%, a POD of 98.6% and a
FAR of 0.008% for the simulated data.

Table 1. Results of the classification ANN with respect to the simulated test data in percent; four categories are differen-
tiated: ash-free and cloud-free (clear), only meteorological clouds (clouds), only volcanic ash (ash), both volcanic ash and
meteorological clouds (both); the true value is given in the left column, the corresponding number of samples and how they
are classified is given in the other columns.

Retrieval/%
Truth Samples Clear Clouds Ash Both
clear 560,713 99.7 0.3 <0.1 <0.1

clouds 287,740 5.6 94.3 <0.1 <0.1
ash 279,395 <0.1 <0.1 94.6 5.2

both 124,622 <0.1 4.1 46.8 49.2
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Table 2. Results of the classification ANN with respect to the simulated test data in percent; only samples with volcanic ash
and meteorological clouds are considered; above denotes that no meteorological clouds are below the volcanic ash cloud
bottom and below that no meteorological cloud is above the ash cloud top; the retrieval categories are the same as in Table 1.

Retrieval/%
Cloud Location Samples Clear Clouds Ash Both

above 21,833 <0.1 15.1 48.8 36.1
below 81,630 <0.1 0.3 48.0 51.6

2.2. Dependence on Volcanic Ash Cloud Properties, Meteorological Clouds and
Geographic Coordinates

Next we analyze the binary ash flag and the regression retrievals in detail. As met-
rics we calculate the accuracy for the binary ash flag, and MAPE and MPE for the re-
trievals of τ10.8, ztop and reff for simulated samples within certain intervals of the true
values τ′10.8, z′top or r′eff (in the rest of this work, primed quantities will always denote
the reference data, which might be the truth when using simulated data, or in situ mea-
surement/retrieval/model results in the other cases). As discussed in Piontek et al. [2],
τ′10.8 can be converted to a mass column concentration m′col using the mass extinction
coefficient at 10.8 µm, with a mean value of ~200 m2 kg−1. Thus, the investigated range
τ′10.8 ∈ [0.01, 10] corresponds approximately to m′col ∈ [0.05, 50]g m−2. m′col = 0.05 g m−2 is
quite low; typical mass loads are about one order of magnitude larger (Section 4). Figure 1
shows subsets with land and sea surfaces, and with and without meteorological clouds.
Figure 2 shows results for ash-containing samples with meteorological clouds above and
below the ash layer (as defined before). Test data set A is considered for the binary ash
flag when investigating the dependence on τ′10.8, otherwise only the ash-loaded samples
are used. For the retrieval of τ10.8 only the ash-loaded samples of test data set A are used,
and for the retrieval of ztop and reff the test data set B, which also contains only ash-loaded
samples [2]. Note that no prior selection is made based on whether or not ash is detected
in a sample using the binary ash flag or the retrieved τ10.8. The sample distribution for
test data set B is given in Figures 1h and 2h; generally, the distribution is similar for test
data set A with differences of <10%, except for the first bin which contains also the ash-free
samples when considering the accuracy with respect to τ′10.8.

For the binary ash flag, high accuracies of 90–100% are found for usual ash clouds
(τ′10.8 > 0.1) and in absence of volcanic ash (left-most bin in Figure 1a1). The additional
presence of meteorological clouds decreases the accuracy: if they are above the ash layer the
difference is of the order of 20%, whereas the influence is much smaller when they are below.
This demonstrates that ash layers might often be hidden by the meteorological clouds
above. The accuracy is also close to 100% for z′top > 5 km, but decreases with decreasing
z′top. The latter might be partly connected to the impact of water vapor above the ash cloud,
as their column load above the ash layer increases with decreasing z′top. However, as the
accuracy decreases only slightly for z′top < 5 km compared to higher z′top in the absence of
meteorological clouds, the impact of water vapor appears to be limited. The presence of
meteorological clouds leads to a much worse performance, especially for z′top < 5 km and
if the meteorological clouds are above the ash layer, where the accuracy drops well below
50%. The dependence on r′eff is generally small, except when meteorological clouds are
present above, leading to a decreasing accuracy with ~90% for r′eff = 0.6 µm, but less than
60% for r′eff = 6 µm. The dependence on the surface (land/sea) is small.

For the regression ANNs, the MAPE generally decreases from roughly 100% for
τ′10.8 = 0.03 / z′top = 1 km to less than 30% for τ′10.8 = 10 / z′top = 18 km with increasing
τ′10.8 and z′top, and is up to 35% with respect to r′eff. In all cases, the MAPE is smallest
in the absence of meteorological clouds and largest in their presence, with significantly
larger errors for meteorological clouds above with respect to τ′10.8 > 0.3 and r′eff, and for
meteorological clouds below with respect to z′top. The MAPEs for land and sea surfaces are
again rather similar.
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Figure 1. Estimations of the accuracy of the binary ash flag (a), and MAPE and MPE for the retrievals of τ10.8 (b,c), ztop (d,e)
and reff (f,g) based on the simulated test data sets; the columns show the performance for different τ′10.8 (1), z′top (2) and
r′eff (3); for (a–c) the test data set A is used, for (d–g) test data set B [2]; for (b,c) only ash-loaded samples are considered;
the sample distribution of test data set B is shown in (h); different subsets are shown, i.e., only sea (black) or land (green)
surfaces, only samples with meteorological clouds (red) or without meteorological clouds (blue).
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Figure 2. Similar as in Figure 1: Estimations of the accuracy of the binary ash flag (a), and MAPE and MPE for the retrievals
of τ10.8 (b,c), ztop (d,e) and reff (f,g) based on the simulated test data sets; the columns show the performance for different
τ′10.8 (1), z′top (2) and r′eff (3); for (a–c) the test data set A is used, for (d–g) test data set B [2]; for (b,c) only ash-loaded samples
are considered; the sample distribution of test data set B is shown in (h); only samples with meteorological clouds above
(blue) and below (red) the volcanic ash layer are considered.
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On average, the retrieval of τ10.8 is biased towards high values for τ′10.8 < 0.25 (i.e.,
MPE > 0) and towards low values otherwise (MPE < 0); the MPE has values of −20 to
60% for τ′10.8 > 0.025. The MAPE has minima for τ′10.8 around 0.3 and 8; the first minimum
might be explained by the increased sample weights applied during training for τ′10.8 at
corresponding values [2]. For z′top < 10 km, the retrieved τ10.8 is underestimated with the
MPE being −50 to −100% for z′top < 4 km and 0 to −50% for 4 km < z′top < 10 km.

The retrieved ztop is generally overestimated, with MPEs up to 50% but below 20%
for τ′10.8 > 0.5 and below 10% for z′top > 4 km. The bias is larger for optically thin ash
clouds (e.g., τ′10.8 < 0.17) with meteorological clouds above, whereas nearly no bias is
apparent in the presence of meteorological clouds below. For z′top > 15 km, the retrieval
error of ztop slightly increases again; a physical reason might be that at high latitudes the
tropopause is located at similar heights, such that the disappearance or inversion of the
vertical temperature gradient makes the determination of ztop more difficult.

The retrieved reff is overestimated for all values of τ′10.8 and z′top; the MPE becomes >50%
for τ′10.8 < 0.05 and between 10% and more than 140% for z′top < 3 km, strongly depending
on the presence of meteorological clouds. For r′eff < 4 µm, the retrieved reff is overestimated,
and underestimated beyond; the MPE is generally between −20% and 20%.

Our simulated test data sets consist of samples which are calculated for specific geo-
graphical locations. The latitude/longitude coordinates are drawn randomly, but are equally
distributed with respect to the SEVIRI disc [2]; thus, more samples are located around 0°N,
0°E than at larger viewing zenith angles. The georeferenced test data are used to investigate
the dependence of the accuracy, POD and FAR of the binary ash flag on the geographical
position in Figure 3, and the MAPE and MPE of the regression ANNs in Figure 4. In all cases,
four different subsets are investigated: with meteorological clouds, without meteorological
clouds, with meteorological clouds above and below (as defined before). The samples are
arranged in boxes of 10°× 10°, except for the FAR in Figure 3c1,c2, which is given for 45°× 45°
boxes to accumulate enough samples given its small numerical value. The decreasing sample
density towards the edges of the plots can explain the worse retrieval performances at higher
viewing zenith angles. Thus, we focus on the central regions of ±40° around 0°N, 0°E.

The binary ash flag has a high accuracy and POD (both close to 100%) in the absence of
clouds except for the desert regions of Northern Africa and the Arabian peninsula, where both
metrics decrease by 1–2%, whereas the FAR rises to about 0.008%. This might be connected
to the surface emissivity of quartz-rich soils that can lead to a negative BTD10.8–12 [7]. In
the presence of clouds, the accuracy and POD remain close to 100% above Africa, especially
above the tropical forest and in proximity of the equator; otherwise the metrics decrease by
up to 3% and 10%, respectively. The decrease is even more pronounced if meteorological
clouds are above, which might be connected to the fact that the simulated samples are mostly
located above tropical Africa; thus, the ANNs are in this case mainly exposed to samples
of a very specific type. Meteorological clouds below are predominantly above the south
east Atlantic off the coast of Africa, where an extensive marine stratus deck at low altitudes
is usual [8]. The non-uniform distribution of the different sample types resembles reality,
as the occurrence of meteorological clouds in the radiative transfer simulation is based on
their presence in the ECMWF model [2]. To try to improve the performance of the ANNs
for the physically less common cases, one could increase their amount in the training data
set in the future, by specifically selecting those samples during the data set creation, or by
increasing their sample weight during the training. However, this would also distort the
underlying probability distributions, e.g., by artificially increasing the number of samples with
meteorological clouds above the ash layer above the Atlantic, the corresponding probability
would be higher for the training data set than in reality. A priori it is not clear whether this
would improve the overall performance of the algorithm. Note that other retrievals exhibited
similar properties as the binary ash flag, e.g., the ice cloud retrieval CiPS had the highest POD
above forest for cirrus clouds with an optical thickness up to 0.5, and at the same time a high
FAR above equatorial Africa as cirrus clouds often occur in this region (i.e., above tropical
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rainforests) and, thus, corresponding samples made up a significant part of the used training
data set [9,10].

The retrieval of τ10.8 has a MAPE of mostly 20–30%, independently of meteorological
cloud presence. Again there is a high MAPE of more than 60% above the Atlantic west of
southern Africa if meteorological clouds are above the ash. τ10.8 is generally underestimated
with MPEs of 0 to −20%, except if meteorological clouds are below the ash layer, which
leads to MPEs of 0–15%.

Figure 3. Estimations of the accuracy (a), the POD (b) and the FAR (c) for the binary ash flag for different geographical
coordinates and subsets without meteorological clouds (1), with meteorological clouds (2), with meteorological clouds
above (3) and below (4) a volcanic ash layer; the number of samples is given in (d); no metrics are shown if a grid cell
contains <100 (<50,000 for FAR) samples; mind the different color scales.

The retrieval of ztop shows a latitudinal dependence of the MAPE: it is 5–10% at
the equator, but rises towards the poles up to 20% at ±50°N. Similarly, the MPE rises
from ~0% around the equator to about 10%. A reason for the latitudinal dependence
of MAPE and MPE could be that the ANN might learn mainly the vertical temperature
profile at the tropics, as there the sample density in the training data is the highest. Since
the temperatures are generally lower towards the poles [11], the retrieved ztop from the
measured brightness temperatures using the tropical temperature profile is systematically
too high. Theoretically, this issue might be overcome by using a training data set of
samples equally distributed over the complete latitudinal range, again either by accordingly
increasing the amount of samples or the weight of the given samples. Then there should be
comparable focus on all the different temperature profiles. The ANN’s decision on which
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temperature profile to use could be based on the latitude, but also on, for instance, the time
of day and day of year, all of which are used as input data for VACOS. However, another
problem might be the decreasing height of the tropopause and the corresponding vertical
temperature inversion at higher latitudes, which makes it harder to deduce ztop from the
measured brightness temperatures for ash clouds above the tropopause. Differences in the
surface emissivity due to ice and snow surfaces [5] might also introduce errors in the most
poleward regions. The last two issues would not be solved by using a training data set
evenly distributed across latitudes.

Figure 4. As in Figure 3, but given are MAPE and MPE for the retrieval for τ10.8 (a,b), ztop (c,d) and reff (e,f) and the number
of samples (g) according to test data set B.
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The retrieval of reff is generally overestimated, with MAPEs at the equator around
15% if no meteorological clouds are present, and 20% on average in their presence. Again,
the error is higher above the Sahara in the absence of meteorological clouds.

2.3. Detection of Volcanic Ash

Volcanic ash can be detected using the following threshold rules: a sample is classified
as ash-containing if one of BTD12–10.8, τ10.8 or the probability for ash due to the binary ash
flag Pash is larger than a given threshold BTD12–10.8,thrs, τ10.8, thrs or Pash, thrs, respectively.
Notice that the first possibility is independent of VACOS. Figure 5 shows POD and FAR
for all three methods for different thresholds. Generally, by increasing the threshold the
POD as well as the FAR decrease. Thus, it is necessary to find a trade-off between both
properties. In case of doubt a higher POD is favored with regard to the relevance of ash
detection in aviation-security. As thin ash layers are harder to detect (Section 2), two
subsets are considered besides the full test data set: samples with τ′10.8 < 0.2 and τ′10.8 < 0.5.
Using BTD12–10.8 (e.g., [7,12,13]) with BTD12–10.8,thrs = 0 K gives a POD of 100% and a
FAR of about 10%. The former is due to the selection of ash samples in the simulated
data sets, i.e., only ash-loaded samples with BTD10.8–12 < 0 have been considered [2].
For BTD12–10.8,thrs = 1.58, the POD is ca. 70% and the FAR is about 0.25% for the full test
data set. For the subsets of lower τ′10.8, the POD is much lower, whereas the FAR remains
high. Using τ10.8, thrs leads to higher PODs compared to BTD12–10.8,thrs for all three sets of
test data, the curves move towards the upper left corner of Figure 5. Again the PODs are
smaller for lower τ′10.8. For example, τ10.8, thrs = 0.04 leads to a FAR of 1% and a POD of
98.7% (95.4%, 86.8%) for the full test data set (only τ′10.8 < 0.5, <0.2). Using Pash leads to an
even better performance in all subsets: up to roughly Pash, thrs = 0.8, the POD decreases
only slightly, whereas the FAR decreases by multiple orders of magnitude. Only for higher
Pash, thrs, the POD drops as well. For Pash, thrs = 0.8, the FAR is 0.008% and the POD is 98.6%
(95.5%, 88.2%) for the full test data set (only τ′10.8 < 0.5, <0.2).

Figure 5. Estimations of the POD and the FAR for the detection of volcanic ash using BTD12–10.8 (connected by a red line),
τ10.8 (blue line) and the probability of the binary ash flag for ash Pash (green line), and a corresponding threshold (color of
marker, see colorbars); different subsets of the test data set [2] are used and encoded in the marker type, i.e., the full data set
(square), only samples with τ′10.8 < 0.5 (circle) and <0.2 (diamond); the x-axis is linear left of the black, dotted, vertical line
and logarithmic right of it.

Instead of subsets defined by the τ′10.8 as in Figure 5, one can also select sets according
to m′col: For τ10.8, thrs = 0.04, corresponding to 0.2 g m−2 when considering a mean mass
extinction coefficient at 10.8 µm of 200 m2 kg−1[2], and m′col ∈ [0.2, 1] g m−2, a typical
regime for distal volcanic ash clouds (Section 4), the POD is ca. 93% and the MAPE for
mcol roughly 40%, whereas m′col ∈ [1, 10] g m−2 leads to a POD of 99% and a MAPE of 26%.
For the ash-free samples, the FAR is about 1%.
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3. Sensitivity to Volcanic Ash Cloud Profiles

For the training data set, we made the ad hoc assumption of a single, homogeneous
volcanic ash layer with ztop up to 18 km, geometrical thicknesses up to 7.2 km and mcol up
to 30 g m−2 [2]. Here we consider the sensitivity of the brightness temperatures and the
ANNs on the ash cloud profile. In all cases we apply the refractive index of Eyjafjallajökull
ash [14], a log-normal particle size distribution with reff = 0.6 µm, a geometric standard
deviation s = 1.5 and a representative shape distribution of spheroids as considered in
Piontek et al. [3]. A thick ash cloud is assumed with mcol = 10 g m−2, corresponding
to τ10.8 = 2 for a mass extinction coefficient at 10.8 µm of 200 m2 kg−1. This order of
magnitude of mcol can be found in close proximity of a volcano (Section 5); for lower
mcol, the absolute impact of the investigated macrophysical properties on the brightness
temperatures is assumed to be smaller.

Using ECMWF ERA5 data for 2010 and the methods described in Piontek et al. [2],
a random set of 500 atmospheric and geographical conditions is chosen and used for the
calculation of the brightness temperatures for each cloud setting. Only cases without
meteorological but with volcanic ash clouds are investigated as meteorological clouds were
already shown to influence the retrievals significantly.

3.1. Multiple Ash Layers

To quantify the variability in the brightness temperatures due to multiple layers, we
compare a single layer with four different multi-layer structures, Figure 6a. All four setups
keep ztop and mcol fixed (i.e., the parameters that are retrieved by the ANNs). Layers #1
and #2 also keep the mass concentration c fixed and introduce a gap in the volcanic ash
cloud. Layers #3 and #4 keep the cloud bottom height fixed but increase c. The brightness
temperatures of the infrared channels of SEVIRI are simulated and the differences compared
to the single layer are calculated, Figure 6b. Layers #1 and #2 show that the brightness
temperature increases with a decreasing height for the lower ash layer; the differences
are generally positive, as more of the mass is in warmer parts of the atmosphere. For a
gap of 0.5 km the differences can be >0.5 K, but for a gap of 2 km the differences are even
>2 K, with outliers even >3 K. For the more condensed structures #3 and #4, the differences
are mostly between 0 K and −0.5 K and negative as more of the mass is in cooler parts of
the atmosphere. Figure 6c shows the relative differences in the retrievals with respect to
the true values. The median ztop retrieval is overestimated by ca. 3%, the retrieved reff
is underestimated by about 7%. In both cases is the influence of multi-layer structures
compared to single layers on the order of 1%. The median retrieved τ10.8 for a single layer
is about 20% higher than the true value. Again structure #2 leads to the largest difference:
here the median retrieved τ10.8 is about 10% lower than the true value. The structures #3
and #4 lead only to minor differences compared to the single layer.

3.2. Non-Homogeneous Ash Profiles

The assumption of a uniform ash layer [2] is often not fulfilled in reality, where vertical
ash mass profiles do not have discontinuities and might have a clear peak [15–17]; thus, a more
realistic description would be a normal distribution or the Π-sigmoid distribution (Appendix B
and [18]), which has the ability to approximate uniform and normal distributions as limiting
cases, Figure 7a. To quantify the influence of the cloud profile, different assumptions are
compared. A uniform cloud with a typical height of 8–9 km is assumed [2]; thus, the mean
height is 8.5 km and the standard deviation 0.289 km. These values are assumed for the other
distributions as well. For the Π-sigmoid distribution, the variables parameterizing the lower
and upper end of the cloud are varied (Π-sigmoid #1: 8.01 km and 8.99 km, #2: 8.05 km
and 8.95 km, #3: 8.1 km and 8.9 km). The continuous distributions are cut off at 7.5 km and
9.5 km; within this regime they are modeled by 100 sublayers of depth 0.02 km, each having a
mass volume concentration corresponding to mcol times the density of the normalized vertical
mass distribution at the mean height of the sublayer. The brightness temperatures of the
infrared channels of SEVIRI are simulated and the differences of the various profiles compared



Remote Sens. 2021, 13, 3128 12 of 36

to the uniform distribution are calculated, Figure 7b. The absolute differences are mostly
<0.1 K and, therefore, smaller or of the same order as the instrumental noise [19]. Outliers
are <−0.2 K. In some channels (e.g., BT8.7 or BT9.7) the differences for all profiles are mostly
negative, indicating that a more realistic cloud profile might lead to slightly lower brightness
temperatures. Applying the ANNs to the different profiles leads to negligible differences
(not shown).

Figure 6. Analysis of the impact of different ash layerings with (a) the normalized vertical cloud profiles for multiple layers,
(b) the BTD of different channels between a single mass layer and the layerings in (a), (c) the relative differences in the
retrievals of τ10.8, ztop and reff compared to the true values for the different layerings in (a); for each setup 500 simulations are
averaged (see text); the boxplot shows the median, first and third quartile (box) and the 5th and 95th percentile (whiskers).

3.3. Geometrical Ash Cloud Thickness

Although the geometrical cloud thickness is varied within the training data set, it is
not retrieved explicitly by the ANNs, and it is not clear whether they are able to derive
this information internally as a side product. Here we quantify the impact of this property
with respect to the brightness temperature and the retrieval results. Therefore, layers
with thicknesses of 0.5 km, 1 km, 2 km and 3 km are considered, with ztop = 9 km and
mcol = 10 g m−2 kept constant. The difference compared to the 1 km thick case are
considered, Figure 8a. As expected, thicker clouds have higher brightness temperatures as
more mass is in lower and warmer parts of the troposphere; the thinner layer leads to lower
brightness temperatures. The geometrical cloud thickness introduces a variability of the
brightness temperatures of−1 to 4 K. Figure 8b shows the results of the retrievals. Whereas
the impact of the cloud thickness is generally negligible for reff, an increased thickness
(and, therefore, decreased cloud base height) leads to smaller retrievals for τ10.8 and ztop.
The influence on the latter is only small (between −4% and 8%), but the former can exhibit
differences of more than 20% comparing cloud geometrical thicknesses of 0.5 km and 3 km.
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Figure 7. Analysis of the impact of different ash profiles with the same mean and standard deviation with respect to the
height of the center of the cloud, with (a) the different profiles and (b) the BTD of different channels between a uniform
vertical mass distribution and the other distributions in (a); for each setup 500 simulations are averaged (see text); the
boxplot shows the median, first and third quartile (box) and the 5th and 95th percentile (whiskers).

Figure 8. Analysis of the impact of different geometrical ash layer thicknesses, with (a) the BTD of different channels
between a layer with a thickness of 1 km and the other thicknesses, (b) the relative differences in the retrievals of τ10.8, ztop

and reff compared to the true values for the different layer thicknesses; for each setup 500 simulations are averaged (see
text); the boxplot shows the median, first and third quartile (box) and the 5th and 95th percentile (whiskers).

Comparing different volcanic ash clouds, geometrical layer thickness and multi-
layering represent the largest sources of error. The uncertainties introduced by those
properties with respect to the brightness temperatures are larger than the instrumental
noise [19] and are of the order of 30% for τ10.8, 5% for ztop and negligible for reff. The shape
of a single layer profile is negligible.

4. Comparisons with Independent Measurements

To prove the applicability of the retrievals to real data, we compare our results with
other in situ and remote sensing measurements as well as the outcome of the predecessor
VADUGS for selected scenes.

4.1. Puyehue-Cordón Caulle Eruption (2011)

Lidar measurements represent an excellent source for comparison since they pro-
vide accurate estimates for ztop and the vertical profile. Here we use data from the
CALIPSO/CALIOP [20] version 4.10 level 2 aerosol products, which include informa-
tion about volcanic ash layers in the stratosphere [21]. The extinction profiles of those
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layers were used to calculate their optical depth at 532 nm, which was converted to mcol
using a mass extinction coefficient of 690 m2 kg−1 [22,23]. ztop corresponds to the top of
the uppermost ash layer. Only ash samples with extinction quality control flag zero (initial
lidar ratio resulted in stable extinction retrievals, i.e., “unconstrained” retrievals) or one
(when the lidar ratio could be inferred directly from the data, i.e., “constrained” retrievals)
were used. For the unconstrained retrievals, a lidar ratio of 58 sr (median of the directly
retrieved lidar ratios) was used to update the ash optical depth to correct for the low bias
resulting from the use of the default lidar ratio of 44 sr for ash in CALIPSO version 4.10.
The final data set has a horizontal resolution of 5 km and a vertical resolution of 60 m.

The six scenes in consideration are listed in Table 3 and sketched in Figure 9; data are
plotted in Figure 10 (blue line). They show volcanic ash clouds from the Puyehue-Cordón-
Caulle eruption, starting at 4 June 2011. The flyovers took place above the southern Atlantic
ocean between 15 June 2011 and 18 June 2011 during day and night. ztop was 10–15 km and
mcol reached up to 1.5 g m−2; note that the uncertainty of the latter is roughly a factor of 2, see
Figure 10. reff is not derived from CALIOP data, but Bignami et al. [24] used MODIS data
to retrieve mean values of 4–6 µm within 300 km from the volcano. Due to sedimentation
processes reff should be smaller in the scenes considered here. Ishimoto et al. [25] retrieved
from IASI spectra at distances of ~1000 km for most samples reff < 0.5 µm. The silica content
was around 70 wt.% or slightly below [14,26,27].

Table 3. Investigated CALIPSO flyovers in June 2011 with timespan, coordinates of start and endpoint, number of samples
and track number according to Figure 9.

Day Start Time/UTC End Time/UTC Start Coordinates End Coordinates Samples Track Number

15 June 2011 18:30 18:40 −55.7°N, −59.8°E −40.4°N, −66.0°E 300 1
16 June 2011 15:51 16:05 −48.8°N, −24.4°E −39.3°N, −27.7°E 162 2
16 June 2011 17:29 17:43 −60.9°N, −42.7°E −44.6°N, −50.7°E 187 4
17 June 2011 03:00 03:13 −40.6°N, −27.7°E −62.0°N, −37.8°E 251 5
17 June 2011 14:55 15:10 −44.4°N, −12.1°E −37.3°N, −14.4°E 82 3
18 June 2011 02:04 02:18 −35.4°N, −12.2°E −64.4°N, −25.9°E 199 6

Figure 9. Overview of the CALIPSO transits (green) as described and numbered in Table 3 with the corresponding VACOS
retrievals of τ10.8 (red colors) and the cirrus flag of CiPS (blue); Figure (a,b) are made up of three stripes each, showing the
VACOS and CiPS retrievals at the times of the corresponding CALIPSO transits; thus, the retrievals of the three stripes in
each plot correspond to three different times.

We compare the CALIOP measurements with the results of the ANNs applied to
SEVIRI images at close times. The coordinates given by CALIPSO are corrected such that
the light path of the SEVIRI measurements penetrates the top of the ash cloud (parallax
correction). The regression retrievals are shown on a single pixel basis (faint red), and after
a mean filter of 5× 5 pixels was applied (red); the classification result is shown only on
a single pixel basis. τ10.8 is converted to mcol using a mean mass extinction coefficient at
10.8 µm of 152 m2 kg−1, which holds for silica contents of 70 wt.% and reff = 0.6 µm [2].
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Additionally, the retrievals of volcanic ash by VADUGS and of cirrus clouds by CiPS [9,10]
are shown in Figure 10. The MAPE and MPE for the retrievals of mcol and ztop are given in
Table 4, the PODs using mcol and Pash and different thresholds are given in Figure 11.

Figure 10. Pixel classification (ash) and retrievals of mcol (derived from τ10.8), reff and ztop as determined using CALIOP (blue),
VADUGS (green) and VACOS (red) for volcanic ash clouds of the Puyehue-Cordón Caulle eruption 2011 above the Atlantic on
15–18 June 2011, see Table 3; the times above the plots indicate the start of measurement of the SEVIRI image used; the VACOS
regression results are averaged on 5× 5 pixels with the 1× 1 pixel result shown in faint red, whereas the for the classification
the single pixel result is shown; the upper uncertainty of mcol by CALIOP is indicated in faint blue; the ash classification shows:
clear skies (green), meteorological clouds (blue), volcanic ash (red), ash and meteorological clouds (orange); a cirrus cloud flag
(ice) and, if applicable, the ice water path (IWP) are derived using CiPS (black); the cirrus flag shows: cirrus (black), no cirrus
(white); the latitude refers to the position of CALIPSO; note that vertical axes are scaled differently in the plots.



Remote Sens. 2021, 13, 3128 16 of 36

Table 4. Comparison of the retrievals VADUGS and VACOS against CALIOP data; different subsets depending on m′col
from CALIOP are considered; the MAPE and MPE for the retrieval of mcol and ztop are calculated; the retrieval is analyzed
after application of a 3× 3 pixels (px) and 5× 5 px uniform filter.

mcol ztop

Algorithm MAPE MPE MAPE MPE
full data set (1181 samples)

VADUGS 123% 70% 75% −74%
VACOS (1 px) 190% 93% 19% −14%
VACOS (9 px) 111% 43% 18% −14%

VACOS (25 px) 112% 49% 18% −14%
only m′col ≥ 0.2 g m−2 (875 samples)

VADUGS 62% 12% 71% −70%
VACOS (1 px) 56% −24% 18% −14%
VACOS (9 px) 47% −20% 18% −14%

VACOS (25 px) 45% −20% 18% −14%

Figure 11. Estimations of the POD of volcanic ash using mcol and Pash of VACOS (connected by red and blue lines,
respectively) and mcol of VADUGS (green line), and a corresponding threshold; different subsets of the test data (Table 3),
are used and encoded in the marker type, i.e., the full data set (square), only samples with target m′col ≥ 0.2 g m−2 (circle).

Again the mass load due to CALIOP (i.e., the “true” value) is denoted m′col. For
m′col ≥ 0.2 g m−2, the retrieval of mcol using VADUGS has a MAPE of 62% and a MPE
of 12%, indicating a slight overestimation; this is visible in Figure 10 for 15 June 2011
at 18:30 UTC or 16 June 2011 at 17:30 UTC, although the VADUGS results are mostly
within the uncertainty interval of the CALIOP data. VACOS has a smaller MAPE of 56%,
but underestimates mcol due to a MPE of −24%. Remember that VACOS is more complex
than VADUGS, consisting of four instead of only one ANN, using more input features,
with each ANN having three compared to just a single hidden layer (although with 100
instead of 600 neurons per hidden layer) [1,2]. As a consequence, VACOS has significantly
more trainable parameters and has the potential to learn more complex functions, such
that their pixelwise application can lead to rather abrupt jumps in the retrievals; this can
be seen, for instance, at 18 June 2011, 02:15 UTC in Figure 10 and the corresponding track
6 in Figure 9b. Thus, the VACOS retrievals are also calculated after the application of a
3× 3 and a 5× 5 pixels uniform averaging, which leads to a further reduction of MAPE
(47% and 45%, respectively) and MPE (−20% each). Note that this MAPE is similar to the
values found for the simulated test data. Whereas the reduction in the errors is of the order
of 10% when comparing the unfiltered results with the results after an averaging over
3× 3 pixels, the further decrease is only on the order of a few percent when considering
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5× 5 pixels. Note that averaging over even larger areas might worsen the retrieval of
fine structured ash clouds, e.g., thin plumes close to the volcanic vent; therefore, this is
not done here. Considering the full CALIOP data set leads to significantly higher errors
than for the subset with m′col ≥ 0.2 g m−2, showing that the retrieval of thin ash layers is
much harder. VADUGS has a MAPE of 123% and a MPE of 70%. VACOS has higher errors
before averaging the results, but performs better after averaging over 3× 3 pixels, with a
MAPE of 111% and a MPE of 43%. Averaging over 5× 5 pixels slightly increases the errors.
The reason might be that small mcol are often located at the edges of ash clouds, where
the averaging over larger areas includes ash-free pixels. The retrieval of ztop is mostly
independent of the subset and the averaging for both VADUGS and VACOS. MAPE and
absolute MPE of VADUGS are 70–75%. Although VADUGS is able to retrieve the correct
heights in some cases (especially when mcol ≥ 1 g m−2), it often strongly underestimates
ztop; compare, for instance, 16 June 2011 at 15:45 UTC in Figure 10. VACOS retrieves ztop
with a MAPE < 20%, but also slightly underestimates the true height as indicated by a
MPE of −14%. The retrieved reff exhibits large variations with values between 0.6 µm (the
lower end of the training data regime [2]) and 4 µm; thus, they are smaller than the values
retrieved by Bignami et al. [24] close to the volcano, but significantly larger than the results
by Ishimoto et al. [25]. Note that the lowest reff are retrieved for the highest mcol (e.g., at
16 June 2011, 17:30 UTC). As the errors of reff decrease with increasing τ10.8 (as shown in
Section 2), the retrieved reff is most reliable for thick clouds. The small reff also supports
the choice of the mass extinction coefficient at 10.8 µm above.

The classification ANN indicates the presence of volcanic ash especially for thick ash
layers, whereas thinner layers are often misclassified as meteorological clouds. The POD
using Pash of the resulting binary ash flag and using mcol of VADUGS and VACOS (compare
Section 2.3) are given for different thresholds in Figure 11. For VACOS, the averages
over 5× 5 pixels are used for mcol and the single pixel result for Pash. VACOS performs
slightly worse than VADUGS with respect to volcanic ash detection using mcol. Setting
mcol, thrs = 0.2 g m−2 leads to a POD of 65–75% for VACOS; for mcol, thrs = 0.1 g m−2, the
POD is around 80%. Both values are significantly smaller than for the simulated test data
set, which indicates that there are differences between the simulated data set and data
collected in reality. However, note that the different performances of VADUGS and VACOS
can be explained in part by the retrievals MPEs: VADUGS overestimates mcol whereas
VACOS underestimates it. Correcting this would lead to a decrease of the POD of VADUGS
and to an increase for VACOS. Furthermore, the assumed mass extinction coefficient at
10.8 µm for the transformation of τ10.8 to mcol has an impact for VACOS: using a smaller
value increases mcol due to VACOS and consequently also the POD. The performance of
the binary ash flag is significantly lower here as compared to the simulated test data and
the results using the retrieved mcol, independently of the threshold; Pash, thrs = 0.5 leads to
a POD around 60%. This indicates that the use of mcol for detection is more reliable than
the classification ANN in this situation. The FAR has not been quantified here, but Figure 9
shows mostly large-scale structures representing the ash clouds, and only in some scenes
are tiny patches with significant τ10.8 which are not connected to the ash clouds and might
be false detections. Thus, we assume the FAR to be reasonably low.

Two scenes, 15 June 2011 at 18:30 UTC and 18 June 2011 at 02:15 UTC, contained
cirrus clouds underneath the ash layer, with ice water paths up to 20 g m−2 and 40 g m−2,
respectively. In both cases the cirrus has a moderate impact on the retrieved ztop, but the
retrieved reff is significantly increased in the presence of the cirrus clouds; meanwhile,
the retrieved τ10.8 drops to zero, especially at 18 June 2011, 02:15 UTC. This shows that it
seems recommendable to always evaluate VACOS results alongside cirrus retrievals.

4.2. Eyjafjallajökull Ash Cloud (17 May 2010)

Following the 2010 eruption of the Eyjafjallajökull, the Deutsches Zentrum für Luft-
und Raumfahrt (DLR, the German aerospace center) and the Facility for Airborne At-
mospheric Measurements, United Kingdom (FAAM) independently performed airborne
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in situ and lidar measurements of the volcanic ash clouds [15,16,28]. Here we consider
measurements from 17 May 2010, when both aircraft simultaneously investigated the
same ash cloud above the North Sea [17]. The VACOS retrieval of τ10.8 and the cirrus
mask of CiPS are given for an example scene, Figure 12b, showing that the ash and
ice clouds are well separated. VACOS can be compared to volcanic ash detections by
Schumann et al. [15] for a scene two hours later, using BTD10.8–12 with a threshold of −1 K
for detection and applying a low-pass filter (Figure 15 in [15]). Both methods exhibit similar
distributions of the optically thickest ash clouds, e.g., patches above the North Sea, west of
Norway and above Iceland. However, VACOS finds additional, extended ash clouds with
τ10.8 ≤ ~0.05 above Germany and Norway. The ash cloud investigated by DLR and FAAM
as well as the flight trajectories of the two aircraft are sketched in Figure 12a.

Figure 12. VACOS retrieval of τ10.8 at 17 May 2010, 16:00 UTC; shown is (a) the North Sea between the Netherlands and
England, and (b) north-western Europe up to Iceland; blue areas are covered by cirrus clouds according to CiPS [9]; panel
(a) also shows the flight tracks of the DLR Falcon aircraft (with different parts of the track in black, yellow, blue and violet)
and the FAAM aircraft (green) [15,16].

Schumann et al. [15] provided in situ measurements with a time resolution of 1 s for
the altitude and 10 s for the mass volume concentration. To derive the latter they made
two different assumptions on the refractive index of the volcanic ash (case L: 1.59 + 0.0 i,
case M: 1.59 + 0.004 i; at 630 nm), leading to an upper and a lower estimate of the mass
concentration. A third case (H: 1.59 + 0.008 i) was evaluated by Schumann et al. [15],
but based on their full analysis they expected the true value to be between case L and M.
Ball et al. [29] measured for the refractive index of Eyjafjallajökull ash at a wavelength
of 650 nm a real part of 1.554± 0.01 and an imaginary part of 0.00085± 0.00069, which
would support case L. Schumann et al. [15] pointed out that the imaginary part of the
refractive index was the major source of uncertainty. The effective radius was estimated to
be 0.65–1.05 µm [15]. Considering altitude and mass concentration shows that the aircraft
enters the ash cloud from above at 15:50 UTC, reaches a minimum altitude around 16:35
UTC (yellow in Figure 12), and rises afterwards until it leaves the ash cloud again at ca.
17:00 UTC (blue in Figure 12), see Figure 13. Data of the two transits (from above and
from below) are treated separately; the corresponding measured vertical mass profiles as
well as their linearly interpolated and over 200 m averaged profiles are shown in Figure 14.
Although different parts of the ash cloud are probed during the two flight legs, the vertical
mass profiles are relatively similar, indicating a horizontally homogeneous ash distribution
(over distances in the order of ~50 km). However, vertically the ash cloud has a highly
variable mass profile. Ash cloud top and bottom height are roughly at 6.3 km and 3.3 km,
respectively. Integrating the vertical mass profiles of Figure 14 and averaging mcol of the
two flight legs gives 0.52 g m−2 and 2.13 g m−2 for the lower (L) and upper (M) estimate,
respectively. The DLR data are shown in the left panel of Figure 13.
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Figure 13. Pixel classification (ash) and retrievals of mcol (derived from τ10.8), reff and ztop as measured in situ by DLR (blue,
left panel [15]), derived using an airborne lidar by FAAM (blue, right panel [16]), VADUGS (green) and VACOS (red) for an
Eyjafjallajökull ash cloud above the North Sea at 17 May 2010; the VACOS regression results are averaged on 5× 5 pixels
with the 1× 1 pixel result plotted in faint red, whereas only the single pixel result is shown for the classification; also
VACOS retrievals of reff and ztop for mcol < 0.1 g m−2 are plotted in faint red; for the in situ data, only mean values or upper
and lower estimates are given; for the lidar-derived data, the upper and lower uncertainty of mcol is indicated in faint blue;
the ash classification shows: clear skies (green), meteorological clouds (blue), volcanic ash (red), ash and meteorological
clouds (orange); the altitudes of the aircrafts are given (grey dashed).

Figure 14. Vertical mass profiles of the volcanic ash cloud as measured by Schumann et al. [15] during two flight legs (see
text) indicated by the color (blue, red); based on different assumptions, there is an upper estimate (M, bold colors) and a
lower estimate (L, faint colors) of the in situ measurements; 10 s averages are given as dots, derived 200 m means are shown
as lines.

From Marenco et al. [16] the lidar-derived mass profiles are used, which have a
vertical resolution of 45 m and a temporal resolution of 60 s, corresponding to a horizontal
resolution of 9 ± 2 km at typical aircraft speeds. The uncertainty of the masses is given
by a factor of two [16]. We calculate mcol by integrating the vertical mass profile, whereas
we define ztop as the height where the mass volume concentration (median over 315 m,
i.e., 7 height levels) exceeds 50 µg m−3; averaging kernel and mass concentration threshold
are based on visual inspection of the mass profiles. In situ measurements performed in
April and May 2010 by the FAAM led to reff of ca. 0.5–2 µm [28]. The FAAM data for
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the flight at 17 May 2010 are shown in the right panel in Figure 13. Just as the DLR,
the FAAM aircraft dipped into the ash cloud several times; to avoid incomplete mass
profiles, measurements of mcol and ztop are discarded if the FAAM aircraft is <500 m above
ztop or if the aircraft is below 5 km.

Apart from different instrumentation and processing for the in situ measurements [17],
the flights by DLR and FAAM followed fundamentally different strategies: the DLR air-
craft remained in an self-contained area well within the ash cloud, hence the relatively
constant mcol, whereas the FAAM entered and left the ash-containing area multiple times,
see Figure 12a. Still, the data from both measurements shows some similarities, Figure 13.
The lower estimate of mcol from DLR is generally in good agreement with the maxi-
mum best estimate mcol due to the FAAM, whereas the upper estimate from DLR and
the maximum of the uncertainty of mcol by the FAAM are both around 2 g m−2. The
lower estimate of reff is similar for DLR and FAAM, but the upper estimate differs by
roughly 1 µm; differences in the ash particle size distributions were also reported by
Turnbull et al. [17]. ztop from DLR agrees with the largest estimate derived from FAAM
data, but the latter varies between roughly 4 km and 7 km, again indicating that a more
diverse area of the ash cloud was sampled.

For the VACOS and VADUGS retrievals, a parallax correction is implemented, i.e., co-
ordinates are considered such that the light path crosses the coordinates of the DLR and
FAAM aircraft at a height of 6 km and 5 km, respectively, and penetrate the observed ash
clouds. The heights correspond roughly to the measured ztop of DLR/FAAM. The SEVIRI
images with a time resolution of 15 min are processed and the temporally closest image is
chosen for each measurement; the SEVIRI line acquisition time is considered. The FAAM’s
mean aircraft velocity of ~146 m s−1 (on ground) and a SEVIRI pixel size of roughly 6.8 km
times 3.2 km (at 54°N, 1.5°E) indicate that it takes the aircraft generally about 47 s to cross a
pixel in north–south direction and 22 s in east–west direction. As the FAAM data has a time
resolution of 60 s, a minimum averaging of 1× 3 SEVIRI pixels is necessary to compare
the satellite retrievals to the FAAM data, assuming the aircraft moves only in east–west
direction. Based on the results of Section 4.1, an averaging over 5× 5 pixels is considered
here. As reff due to DLR and FAAM data is around 1 µm, a mass extinction coefficient at
10.8 µm of 200 m2 kg−1 is assumed [2]; note that this conversion factor is applied in the rest
of this work when dealing with Eyjafjallajökull ash clouds. VACOS retrievals of reff and
ztop are shown in faint red if mcol < 0.1 g m−2, as the former are ill-defined in the absence
of ash clouds. The resulting retrieval data is given in Figure 13.

Considering the DLR case (left panel in Figure 13) we find that the VACOS mcol
lies at the lower end of the uncertainty interval of the DLR measurement with rela-
tively low variability. ztop varies between 5.5 km and 8.5 km, which includes the value
found from the DLR data. For the most parts, reff lies well between the estimates by
Schumann et al. [15]. The classification ANN flags the whole ash cloud correctly.

The FAAM measurements (right panel in Figure 13) and the VACOS retrievals for mcol,
ztop and reff are generally in agreement. VACOS slightly underestimates the mass load
with mcol ≈ 0 g m−2 compared to the FAAM value of ~0.1 g m−2 before 14:00 UTC (and
consequently derives too high estimates for reff and ztop), but retrieves similar mcol around
0.6 g m−2 as the FAAM later on. VACOS retrieved reff and ztop show plateaus around
0.9 µm and 5 km, respectively, at 14:30 to 14:45 UTC as well as 15:45 to 16:30 UTC. At other
times, e.g., around 14:20 or 15:20 UTC, there are coincident increases of reff and ztop, which
can be attributed at least partially to thin ash clouds with mcol < 0.3 g m−2 at the edges of
the ash clouds; thus, these retrievals can be assumed to be unphysical. Other peaks in reff
and ztop, e.g., around 15:00 UTC, appear although there is a significant amount of volcanic
ash (i.e., VACOS retrieves mcol ≥ 0.4 g m−2). The classification correctly classifies the major
parts of the ash encounters.

Although the comparisons of VADUGS retrievals with the CALIOP results in the
case of the Puyehue-Cordón Caulle ash cloud showed a good agreement, VADUGS seems
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hardly applicable in the present case: mcol and ztop are strongly underestimated in both
comparisons and at all times.

4.3. Eyjafjallajökull Ash Plume at Vent (11 May 2010)

The concentrations that have been compared up to now are rather low. Here the
retrieval ability closer to the vent is investigated. Researchers from the University of Iceland
used a piston-driven aircraft to probe the outer parts of the ash plume of Eyjafjallajökull
in 2010 at distances of 45–60 km from the vent [30]. Plume heights of 3–4.3 km have been
reported [30,31], and at 11 May 2010, mass volume concentrations of 0.5–2 mg m−3 [30].
Assuming a geometrical thickness of 1–2 km, this corresponds to mcol being 0.5–4 g m−2

for the fringes of the ash plume; in the center of the plume the values should obviously
be higher. Note that Weber et al. [30] reported the boundary of the ash plume to be
inhomogeneous, with ash cloud puffs of diameter 0.5–2 km. These small scale structures
are not resolvable by SEVIRI [2].

As an example we consider a scene at 11 May 2010, 14:00 UTC, Figure 15. The Eyjafjal-
lajökull ash plume moves southwards from the vent and is surrounded by different cloud
fields (a). The cirrus cloud retrieval CiPS [9,10] shows ice water clouds collocated with the
ash plume up to some hundred kilometers from the vent. With roughly 1–6 g m−2, the ice
water path (b) is rather low (e.g., compared to the retrievals in Figure 10), and the cirrus
clouds are located at 9–11 km height (c), i.e., above the heights given by Weber et al. [30].
Weber et al. [30] also report that the top of the ash plume above the sea appeared white,
whereas it was darker below, and significant ice contents have been found in volcanic ash
plumes before [32–34]. The additional ice content might spoil the volcanic ash retrieval in
this scene (compare Section 4.1). Note that although it was shown that aerosol layers below
cirrus clouds have only a small impact on CiPS [10], the volcanic ash plume in this scene is
by no means negligible (f). Therefore, the CiPS retrievals have to be treated with caution
as well. The ash plume is detected by VADUGS (d), but with mcol ≈ 0.03 g m−2 it under-
estimates the mass load by one to two orders of magnitude compared to Weber et al. [30].
The classification due to VACOS (e) shows the (mostly pure) ash plume moves southwards
and then bends eastwards. A visual comparison of the classification results with (a) in-
dicates that too few pixels might be classified as clear sky (green). The VACOS retrievals
of mcol (f), ztop (g) and reff (h) are shown for pixels with τ10.8 > 0.02. mcol (f) shows the
plume with decreasing values downwind. The upper end and the center of the ash plume
show values around 3 g m−2 and larger, the edges values of the order 1 g m−2; this is in
agreement with the in situ measurements by Weber et al. [30]. Downwind the plume bends
eastwards. The ash has dispersed and mcol is ca. 0.5–1 g m−2. The retrieved ztop (g) has
values of 10–12 km close to the vent, which is much larger than the literature values. When
the plume bends eastward, ztop retrievals drop to 5–6 km. Similarly, we find large reff
(h) around 3 µm close to the volcano and then a sudden drop to values around 1 µm. In
all three cases the sudden change in the retrievals happens at the edge of the retrieved
cirrus cloud, compare (b) and (f), indicating that the presence of the cirrus cloud might
lead to the overestimation of mcol, ztop and reff. Apart from the impact by the cirrus cloud,
the retrievals also have some inherent limitations that might lead to inaccuracies close to
the vent: the ash properties used in the training data correspond rather to those of aged
ash clouds than to fresh ash (e.g., only small particles without porosity are considered) and
typical gas emissions (e.g., water vapor, sulfur dioxide) have not been included [2].
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Figure 15. Retrieval results for the Eyjafjallajökull eruption at 11 May 2010, 14:00 UTC with Iceland outlined in the top of
the plots; (a) false color overview composite from SEVIRI data, from CiPS (b) cirrus ice water path and (c) cloud top height,
(d) mcol from VADUGS, and from VACOS (e) the classification (color code as in Figure 10), (f) mcol, (g) ztop and (h) reff.

5. Comparison with a Model Ensemble

To check the general performance of VACOS on large scales, the retrievals are com-
pared with the results of a volcanic ash transport and dispersion model. Note that the
model is an approximation of the reality as, for instance, inaccuracies in the volcanic ash
source term or the meteorological conditions are transferred to the ash distribution. Thus,
the scope of this section is to quantify the agreement of the spatial distribution of volcanic
ash clouds and to compare the order of magnitude of mcol.

Here the multi model multi source term ensemble by Plu et al. [35] is used. They
simulated the Eyjafjallajökull eruption at 13–19 May 2010 and the area from Iceland in the
north-west to Italy in the south-east. We consider scenes every six hours. Four models
were used: the atmospheric Lagrangian transport model FLEXPART, the Eulerian chemical
transport model MATCH and the chemical transport models MOCAGE and WRF-Chem,
considering in varying ways phenomena such as atmospheric transport and mixing, gravi-
tational settling, wet and dry deposition, and chemical reactions. An a posteriori source
term is used, determined using a FLEXPART-based optimal estimation model and esti-
mates of mcol from satellite data, as well as upper and lower bounds for the source term
based on the uncertainties of the optimal estimation result. All models spin-up for at least
3 days, their results are vertically integrated and averaged on a 0.2°× 0.2° grid, as only the
large-scale distribution of ash is of interest here. The ensemble result m′col is the median of
all simulations.

VACOS and VADUGS retrievals of mcol are averaged on the same grid. Instead of the
simple uniform averaging of the retrieval results performed in Section 4, the following
accumulation rule is applied to alleviate the impact of (a) the different spatial resolutions,
(b) possible temporal and spatial shifts between model and satellite retrieval and (c) false
satellite detections: a grid cell at time t is assumed to be ash-contaminated if at least a
fraction fthrs of all pixels within the cell and within the time [t− 15 min, t + 15 min] exceeds
a threshold of mcol, thrs; then the estimate of mcol is the mean of this fraction of the pixels.
For VADUGS, fthrs = 0.5 and mcol, thrs = 0.1 g m−2 is used. For VACOS, three different
settings are applied: the same as for VADUGS; fthrs = 0.5 and mcol, thrs = 0.2 g m−2;
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fthrs = 0.9 and mcol, thrs = 0.2 g m−2. Grid cells covered by cirrus clouds according to the
retrieval COCS [36] are discarded.

Three example scenes are shown in Figure 16. The model ensemble shows thick
volcanic ash plumes close to the Eyjafjallajökull with m′col ≥ 10 g m−2, and ash clouds
with m′col < 1 g m−2 extending over large parts of Europe. VADUGS detects only very
limited ash clouds, which correspond spatially to the thickest parts of the simulated ash
clouds but with a lower mcol. However, in some cases it does not detect ash directly at the
volcano, although a prominent plume is simulated. VACOS detects more ash contamination,
especially also the plumes in the direct surroundings of the vent, and retrieves higher mcol
for them compared to VADUGS. Still, the model ensemble often produces larger ash-
loaded areas in the surroundings of the volcano than retrieved by VACOS. At greater
distances VADUGS hardly retrieves any ash, whereas VACOS regularly finds ash clouds
above central Europe. For instance, in Figure 16b3 volcanic ash is found above the
Atlantic north of Scotland, south-east England and at the Atlantic coast of France; then,
the ash cloud bends towards north-east and continues over central France and central
Germany with concentrations around 0.2–0.3 g m−2. The model ensemble produces a
similar distribution, but the ash cloud heads further south after the bending, continuing
above the Mediterranean sea (panel a3). Similar offsets between the model and the VACOS
retrieval are also visible comparing the other two scenes; in both cases there are faint ash
clouds that are detected further east by VACOS than they are simulated by the model
ensemble. This indicates that the model is less reliable at large distances, e.g., above central
Europe, which might also influence the following comparisons, but at the same time it
confirms that the satellite retrievals over here are plausible and reliable.

Figure 17 shows the POD and the FAR for the different retrievals and accumulation
rules with respect to different subsets of the model ensemble. Furthermore, offsets up to
100 km are taken into account, i.e., an ash-loaded grid cell of the simulation is considered
detected if the retrievals find ash within the given radius, and a retrieved ash-loaded
cell is considered a false alarm if no ash is modeled within the same radius. VADUGS is
found to have the smallest POD and FAR, whereas both metrics are larger for VACOS but
decrease for more conservative accumulation and threshold rules. Increasing the offset
distance leads to significant increases in POD, whereas the decrease of FAR is mostly
rather small. When increasing m′col, thrs, the POD as well as the FAR increase. The latter is
explained by samples with m′col < m′col, thrs but mcol > mcol, thrs, existing either because of
overestimation by the retrievals, or in the case of the subset with m′col, thrs = 0.2 g m−2 due
to mcol, thrs = 0.1 g m−2, such that samples with correctly retrieved mass loads in between
those two values lead to false alarms. Considering m′col ≥ 0.01 g m−2 and an offset of
100 km leads for VADUGS to a POD of ~30% and a FAR of 0.02%, whereas VACOS (with
mcol, thrs = 0.2 g m−2, fthrs = 0.5) has a POD of close to 60% at a FAR of about 2%. The PODs
increase by ~20% for m′col ≥ 0.1 g m−2 and by 25–30% for m′col ≥ 0.2 g m−2. In the latter
case, the POD of VACOS is nearly 90% and the FAR is 2–3%.



Remote Sens. 2021, 13, 3128 24 of 36

Figure 16. mcol (red) according to the median of a model ensemble (a), VACOS (mcol, thrs = 0.1 g m−2 and 0.2 g m−2,
fthrs = 0.5; b and c) and VADUGS (mcol, thrs = 0.1 g m−2, fthrs = 0.5; d) for three scenes (1: 13 May 2010, 00:00 UTC;
2: 14 May 2010, 00:00 UTC; 3: 15 May 2010, 12:00 UTC); for the model mcol < 0.01 g m−2 is not shown; cirrus presence
according to COCS is indicated (blue).
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Figure 17. Estimations of the POD and the FAR for the detection of volcanic ash using mcol of VACOS (connected by red,
blue and violet lines) and of VADUGS (green line) applying different thresholds and accumulation rules (see text); different
thresholds for the model data are used, e.g., only samples with m′col ≥ 0.01 g m−2 (a), ≥0.1 g m−2 (b) or ≥0.2 g m−2 (c) are
classified as ash-containing; only pixels in absence of cirrus clouds are used, ca. 66,000 in total; different offset distances
between the model and the satellite data are considered and indicated by the marker color (see text).

Table 5 gives the MAPE and MPE for the retrieval of mcol for VADUGS and VACOS,
different accumulation and threshold rules and different subsets of the modeled data, not
considering any distance offsets. For m′col ≥ 0.01 g m−2 the MAPE is around 100% and
the MPE is −96% for VADUGS, whereas for VACOS the MAPE is higher (106–138%) and
the MPE is less negative (−26 to −83%), i.e., the underestimation is smaller compared to
VADUGS. However, considering only grid cells that are classified as ash-contaminated by
the model and the retrieval, i.e., m′col and mcol ≥ 0.2 g m−2, the MAPE and MPE of VADUGS
change to 65% and −60%, respectively. Using the same accumulation and threshold
(mcol, thrs = 0.1 g m−2, fthrs = 0.5) for VACOS leads to a MAPE of only 57% and a MPE of
0%; thus, the retrievals of VACOS are in better agreement with the model results than those
of VADUGS, indicating that VACOS is more reliable for these mass concentrations.

Table 5. Comparison of the mcol retrieval of VADUGS and VACOS against the model ensemble median; MAPE and MPE
of different subsets depending on m′col from the model ensemble and mcol from the satellite retrieval are considered; for
VACOS a mass extinction coefficient at 10.8 µm of 200 m2 kg−1 is considered for the conversion of τ10.8 to mcol; different
accumulation rules and thresholds are used for the satellite retrievals; pixels with cirrus cloud presence are excluded.

Algorithm Accumulation Rule m′col ≥ 0.01 g m−2 m′col ≥ 0.2 g m−2 m′col and mcol ≥ 0.2 g m−2

(mcol, thrs; fthrs) Samples MAPE MPE Samples MAPE MPE samples MAPE MPE

VADUGS 0.1 g m−2; 0.5 222,932 99% −96% 63,595 94% −94% 6201 65% −60%

VACOS 0.1 g m−2; 0.5 221,663 138% −26% 63,363 79% −56% 26,200 57% 0%

VACOS 0.2 g m−2; 0.5 221,633 127% −52% 63,357 87% −62% 21,331 60% 12%

VACOS 0.2 g m−2; 0.9 221,663 106% −83% 63,363 94% −76% 12,006 68% 25%

6. Unraveling the Black Box: How Do the ANNs Work?

In this section, we aim to shed light upon the working principles of our ANNs.
Therefore, we first perform additional radiative transfer calculations for different ash
cloud settings to investigate how the brightness temperatures (differences) depend on
the ash cloud properties and show examples on how to deduce those properties from
different combinations of channels. Second, we analyze the importance of the different
input features of the ANNs with respect to their performance and connect these results
with the conclusions drawn from the simulations.

A single, homogeneous ash layer of geometrical thickness 1 km without meteoro-
logical clouds is assumed; mcol is varied to be 0.1–1000 g m−2 and ztop is 3–12 km above
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ground. The volcanic ash has the refractive index of Eyjafjallajökull ash [14], a log-normal
size distribution with reff =0.6 µm, 3 µm and 6 µm, s = 1.5 and a representative shape
distribution of spheroids as considered by Piontek et al. [3]. The brightness temperatures of
the infrared channels of SEVIRI are simulated for the different ash clouds 500 times for dif-
ferent atmospheric settings and geographical locations in 2010 with the methods outlined
in Piontek et al. [2]; finally, the median is determined. Figure 18 shows the dependence of
the brightness temperatures on mcol. Panel (a) shows (for ztop = 9 km and reff = 0.6 µm)
that the brightness temperature decreases with increasing mcol. Clearly visible are the
atmospheric window channels (BT8.7, BT10.8, BT12), which exhibit a S-curve behavior with
plateaus for mcol < 0.1 g m−2 and mcol > 100 g m−2. The water vapor channels (BT6.2,
BT7.3) reach saturation at higher mcol. The absolute changes in brightness temperature are
largest for the atmospheric window channels, about half as large for BT7.3, BT9.7, BT13.4
and smallest for BT6.2. The reason is that all brightness temperatures are around 240 K
for a thick ash layer (e.g., mcol = 100 g m−2) which dominates over all other atmospheric
constituents, whereas in the absence of an ash layer the brightness temperature depends on
the impact of the atmospheric gases on the different channels. Panel (b) shows the results
for BT10.8 for reff ∈ {0.6, 3, 6}µm and ztop ∈ {3, 6, 9, 12} km. It shows that with increasing
ztop the asymptotic value of BT10.8 at large mcol decreases (from roughly 280 K to 220 K),
as the opaque ash layer completely hides the surface and the top of atmosphere brightness
temperature is mostly determined by the atmospheric temperature at ztop, which decreases
with increasing ztop within the troposphere. The influence of reff is smaller and mainly
visible in the intermediate regime (i.e., for mcol ∈ [1, 30] g m−2), where BT10.8 is smallest
for reff = 3 µm and largest for 6 µm. This can be understood from the size dependence of
the mass extinction coefficient, which is largest for reff = 3 µm and smallest for 6 µm with
respect to the three considered reff [2]. Note that both an increase in ztop and in mcol leads
to a lower BT10.8.

Figure 18. Median brightness temperature of different SEVIRI channels averaged for 500 simulations (see text); (a) brightness
temperatures for an ash cloud with ztop = 9 km and reff = 0.6 µm for different mcol, (b) BT10.8 for different ztop and reff.

Figure 19 shows combinations of different brightness temperatures and brightness
temperature differences for the same simulations. The size of the markers encodes mcol.
Markers of constant ztop and reff but different mcol are connected by black, blue and violet
lines for reff =0.6 µm, 3 µm and 6 µm, respectively, whereas the linestyle denotes ztop.
Additionally, points of constant mcol, reff and variable ztop are connected by red lines,
and points of constant mcol, ztop and variable reff by green lines. Thus, Figure 19 shows
whether the variation of different parameters leads to similar behaviors with respect to
certain brightness temperatures (differences). Panel (a) shows BT10.8 against BTD10.8–12;
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this combination has often been studied [37,38]. For mcol < 3 g m−2 an increase in mcol
(along the black lines) reduces BT10.8–12 and BTD10.8–12; the latter is related to the spectral
dependence of the mass extinction coefficient of volcanic ash [3]. An increase in ztop
(along the red line) also reduces BT10.8 and leads overall to a similar change in this two-
dimensional phase space, i.e., the black and the red curves are parallel and lie on top of each
other. However, for mcol > 3 g m−2 the directions of these curves deviate as BTD10.8–12
vanishes if the ash cloud becomes opaque in the thermal infrared; thus, mcol and ztop can
be distinguished. In (c), BT13.4 and BT12−13.4 are combined. Here the black and the red
curve proceed in different directions already for mcol < 1 g m−2 and allow the separation
of the influence of mcol and ztop: Increasing either of the two quantities reduces BT13.4,
but increasing ztop changes BT12 and BT13.4 similarly, thus BTD12−13.4 shows only minor
changes. Yet, increasing mcol leads to a reduction of BTD12−13.4, which is ~20 K in the
absence of volcanic ash due to the impact of carbon dioxide (see Figure 18), but vanishes as
the ash cloud becomes opaque. In principle, the same behavior is visible for reff = 3 µm
in (b) and (d), but the curves corresponding to different ztop are located closer together.
Note that for reff = 6 µm (violet curve) BTD10.8–12 is positive independent of mcol for
ztop = 9 km [3,38].

Figure 19. Combinations of the medians of different brightness temperatures and brightness temperature differences,
calculated from 500 simulations for each volcanic ash cloud (see text); mainly two different reff are used: 0.6 µm (a,c,e,g) and
3 µm (b,d,f,h); mcol is given by the size of the markers; markers with constant ztop and reff but different mcol are connected
by black, blue and violet lines for reff =0.6 µm, 3 µm and 6 µm, respectively; the linestyle encodes ztop; points of constant
mcol, reff and variable ztop are connected by red lines, and points of constant mcol, ztop and variable reff by green lines.

The variation of brightness temperatures (differences) due to reff is shown by the green
lines as an example. In (a) and (c), reff cannot be determined easily as it is entangled with
mcol and ztop. Therefore, we consider BT8.7, BT9.7 and BT10.8, which are located at the typical
absorption peak of volcanic ash and which are influenced differently depending on the
particle size [3]. Panel (e) shows BT10.8 against BTD8.7−10.8. Here reff = 0.6 µm mostly leads
to BTD8.7−10.8 < 0, in contrast to reff =3 µm and 6 µm (except for mcol < 1 g m−2, but even



Remote Sens. 2021, 13, 3128 28 of 36

there the reff can be separated). Panel (g) shows BTD9.7−13.4 on the y-axis. The blue curve
for reff = 3 µm is convex, whereas the violet curve for reff = 6 µm is concave. A threshold at
roughly −1.5 K with respect to BTD9.7−13.4 would allow to separate the different reff except
for mcol > 30 g m−2. To summarize, it is possible to disentangle the physical quantities
mcol, ztop and reff using the MSG/SEVIRI channels in the thermal infrared and exploiting
the dependence of the mass extinction coefficient of volcanic ash on the wavelength and
the particle size as well as the relatively constant impact of other atmospheric gases (e.g.,
carbon dioxide).

The actual working principles of ANNs are hard to determine. However, one can
try to quantify the importance of the individual input features for each ANN and thereby
deduce which physical principles are exploited and which functions might be implemented
internally. Neglecting those features and retraining the ANNs might also allow to simplify
the algorithms [39,40]. We define two metrics: The first, Mx, is the relative contribution of
the xth input neuron to the total weight between the input layer and the first hidden layer,
defined as

Mx =

√
∑m

j=0 w2
x,j

∑n
i=0

√
∑m

j=0 w2
i,j

(1)

for an input layer of n neurons, a first hidden layer of m neurons and the connecting weights
wi,j [10]. The expectation is that the weights of unimportant features will vanish during
training such that they have no impact on the calculation of the ANNs. However, in case
of multiple hidden layers it might be possible that the impact of a feature significantly
changes in the subsequent layers. Therefore, we consider a second metric: the relative
change in loss, Kx, when a feature is set to zero (simulating wx,j = 0 for all j ∈ [1, m]) for
the complete test data set, i.e.,

Kx =
Lx − L0

L0
(2)

with L0 being the loss (here the mean squared error for regressions and the categorical
cross entropy for the classification) for the full test data set, whereas Lx is the loss for the
test data set when setting the xth input to zero. When dropping an unimportant feature
Lx should not change significantly, no matter whether it has vanishing weights already
between the input and the first hidden layer or deeper in the network. However, dropping
an important feature that is necessary for the calculation of the ANN will lead to a worse
performance and, therefore, a larger loss Lx.

Figure 20 shows Mx and Kx for all four ANNs and their input features. The two
metrics quantitatively lead to different results. Whereas Mx shows for all features always
at least a small value, Kx produces relatively large contrasts; thus, using Kx it becomes
more obvious whether an input is important or not. However, qualitatively both methods
lead to similar pictures: For example, for the classification both metrics (a, b) indicate BT10.8
to be the most important of all brightness temperatures. Compared with the results of the
other ANNs also the total column water and the total column water vapor appear to be
important, and finally the viewing zenith angle.

For the τ10.8 retrieval (c, d) only ash-loaded samples are considered, with BT12 being
the most important channel. Furthermore, BT8.7, BT10.8 and BT13.4 are prominent in both
metrics. This is in agreement with the conclusions drawn from Figure 19. Compared to
the retrievals of ztop and reff also the total column water and water vapor have significant
impact on Kx (d); they might be used to take the corresponding atmospheric constituents
into account. For the ztop retrieval, Mx (e) implies BT8.7, BT9.7, BT10.8 and BT13.4 to be the
most important brightness temperatures, and furthermore τ10.8 and surprisingly the day
of year variables have large metrics. However, generally the contrast is not very large
between the features. Kx (f) however points out BT9.7, BT13.4 and τ10.8. The importance
of BT13.4 is again in agreement with the conclusions from Figure 19. The large values for
τ10.8 show that the performance of the ztop algorithm heavily depends on the accuracy
of the τ10.8 retrieval. For the reff retrieval, Mx (g) slightly highlights BT8.7, BT12, BT13.4.
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From the auxiliary features the latitude, the cosine of the viewing zenith angle, τ10.8 and
the ash-free temperatures BT8.7, clr, BT10.8, clr and BT12, clr stand out. Again, the contrast
between features is overall small. Using Kx (h) leads roughly to the same result but stresses
the leading channels BT8.7, BT12, BT13.4 even more. The importance of these channels for
the derivation of reff was also visible in Figure 19.

Figure 20. Two estimations of the feature importance: the relative contribution to the total weight at the 1st hidden layer
(Mx; a,c,e,g) and the relative change in loss (Kx; b,d,f,h) (see text for definition) for all four ANNs and all input features,
including the viewing zenith angle (θvza), the hour of day (HOD) and the day of year (DOY); the loss function used for Kx is
is the mean squared error for regressions and the categorical cross entropy for classification; bars are alternately colored
blue and light blue for better readability.

Let us focus on Kx (b, d, f, h) now: From the auxiliary input features the total column
water vapor and the total column water play a minor role in the retrieval of τ10.8 and a larger
one for the classification; for height and effective radius retrievals they are unimportant.
The latitude appears to be important mostly for the ztop retrieval and the classification,
and the skin temperature only for the classification. The land/sea mask, the total column
ozone, the longitude, the day of year and the hour of day are rather negligible in all cases.

The metric Mx was also derived for the input features of the cirrus cloud retrieval
CiPS, which also consisted of several ANNs to derive, e.g., the cirrus optical depth or
the cloud top height, trained using collocated SEVIRI and CALIOP measurements [10].
Comparing the results CiPS and VACOS shows similarities, e.g., in both cases the brightness
temperatures play a dominant role, but the day of year and surface classifications are rather
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negligible. A noteworthy difference is that whereas the ztop retrieval of CiPS mainly
depends on latitude (as maximum cirrus cloud top height strongly depends thereon; thus,
a statistical effect), our results show only a smaller dependence on this quantity.

Generally, the metrics support the observations made before in Figure 19, with the
brightness temperatures having the major impact, whereas the auxiliary data seem to be
of minor importance (even the skin temperature). The low values for the geographical
coordinates imply that the ANNs do not learn the geography of the Earth as visible
from SEVIRI. Similarly, the low values for the land/sea mask show that even this rough
classification of the Earth’s surface remains unregarded. The low values for the times (day
of year, hour of day) indicate that the ANNs do also not learn seasonal or diurnal variations.
Reasons why the ANNs do not internalize those more evolved concepts might be a too
small training data set, or they are just not helpful enough as the central physical quantities
are rather obtained in the observations. For example, although the atmospheric state
undergoes a seasonal variation, volcanic ash clouds are independent of them as volcanic
eruptions can take place at any time of year. The hint that the ANNs do not learn the map
indicates that the method might be applicable to other regions of the Earth (e.g., using
GOES or Himawari satellites).

7. Conclusions

In a companion paper, we introduced a new algorithm to retrieve volcanic ash proper-
ties, i.e., a pixel classification, the cloud top height (ztop), the effective particle radius (reff)
and (indirectly from the optical depth at 10.8 µm, τ10.8) the mass column concentration
(mcol) from MSG/SEVIRI data using artificial neural networks; it is called VACOS (Vol-
canic Ash Cloud properties Obtained from SEVIRI [2]). The input data encompass the seven
brightness temperatures of the imager’s channels in the thermal infrared and additional
data from ECMWF. VACOS allows spatially and temporally highly resolved retrievals of
volcanic ash clouds independent of daylight.

For the validation, VACOS is compared to independent measurements. With respect
to CALIOP retrievals of the Puyehue-Cordón Caulle ash clouds (2011), VACOS shows quite
a large variability on a single pixel basis. A regional average over 5× 5 pixels reduces this
variability and leads to lower deviations between mcol of VACOS and the lidar retrieval:
the mean absolute percentage error (MAPE) of mcol decreases to 45% and the MAPE of ztop
is 18% when considering only samples with a lidar retrieval of mcol ≥ 0.2 g m−2. Therefore,
this averaging is recommended for future applications of the new algorithm. The VACOS-
derived mcol is in good agreement with the CALIOP measurements in most, but not all,
cases. Deviations are generally within the uncertainties of the reference data. ztop and reff
by VACOS have the correct order of magnitude but exhibit significant scattering, with ztop
being slightly underestimated (having a mean percentage error of −14%), whereas reff
lies within the regime constrained by literature values. The four category classification of
VACOS detects the volcanic ash clouds with the highest mass loads, but ash layers with
mcol less than ~0.4 g m−2 are often misclassified as meteorological clouds (which includes
liquid and ice water clouds). Similarly, SEVIRI images indicate that clear sky might be too
often misclassified as cloudy, but here dedicated retrievals of meteorological clouds should
provide help. Additionally considering a cirrus retrieval also shows that thick ice clouds
have the potential to completely hide the volcanic ash or distort their retrieval; thus, we
also recommend to consider VACOS results always together with a cirrus cloud retrieval to
avoid misinterpretations.

As another reference, airborne lidar and in situ data of an Eyjafjallajökull ash cloud
(2010) are used as obtained during two different measurement campaigns by FAAM and
DLR, respectively. The various measurement results for mcol, ztop and reff agree well,
considering that different instrumentation was used and different parts of the ash cloud
were probed. Main differences are a higher upper estimate of mcol according to the DLR
(roughly 2 g m−2 compared to mostly around 1 g m−2) and a higher upper limit for reff
in the FAAM data (2 µm compared to 1 µm); ztop estimates are up to ~6 km in both cases.
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For the most part, the VACOS retrievals of mcol and reff lie within the uncertainty intervals
of the airborne measurements, whereas ztop from the new retrieval scatters around the
reference values with deviations in the order of 1–2 km. Concurrent overestimations of ztop
and reff can be explained by low mcol in some cases, but not generally. The classification
algorithm correctly detects the ash cloud.

Results of a volcanic ash transport and dispersion multi model multi source term
ensemble simulating the eruption of Eyjafjallajökull (2010) are used to analyze the per-
formance of VACOS on large scales. Different accumulation rules are investigated when
regridding the satellite retrievals. Example scenes indicate that the model results and
the VACOS retrievals are in good agreement close to the volcano, but that there are dis-
placements of the ash clouds at larger distances, e.g., for ash clouds above continental
Europe; those might be caused by inaccuracies in the model calculations. As a consequence,
distance offsets up to 100 km are considered. The model ensemble covers a larger inter-
val of possible mcol than VACOS: mcol can be an order of magnitude larger in the model
calculations than in the VACOS retrieval in a surrounding of some 100 km around the
vent, whereas it can be more than one order of magnitude smaller at distances of >1000 km.
Considering only samples with mcol ≥ 0.2 g m−2 according to both the model ensemble
and VACOS results in a MAPE of ~60% for mcol of VACOS.

To further quantify the performance of VACOS, a simulated test data set similar to
its training data is used. The four category classification classifies correctly more than
94% of the simulated cases, except when both volcanic ash and meteorological clouds
are present, which reduces the amount of correct classifications to ~50%. Simplifying
classification results to a binary ash flag results in a probability of detection (POD) of close
to 100%. The retrievals of τ10.8, ztop and reff have mostly MAPEs of 10–100%. For τ10.8,
the MAPE is ~40% or less for ash layers with a true τ10.8 of 0.1 (corresponding to mcol of
0.3–0.7 g m−2) or more; the retrieval error of ztop is up to ~10% for ash layers above 5 km;
and reff has an error of up to 35% for true radii of 0.6–6 µm. The performance increases
with increasing τ10.8 and ztop of the ash layers. Thus, the greatest errors occur for the
thinnest and lowest ash clouds, for which the MAPE can even exceed 100%. No significant
differences exist between underlying land and sea surfaces, in contrast to the presence
of meteorological clouds (particularly if they are located above the ash layer), which can
increase the MAPE by up to one order of magnitude and decrease the POD by a factor
of two. Analysis of the geographical dependence shows that deserts lead to a decreased
performance for clear sky cases, e.g., the accuracy of the binary ash flag slightly decreases
(ca. 1%), whereas the MAPE for reff increases. An increased performance of the binary ash
flag is observable in the presence of clouds above areas that are typically cloudy, i.e., where
many cloudy samples are included in the simulated (training and test) data sets. The
retrievals of τ10.8 and reff show increased MAPEs with increasing viewing zenith angle,
whereas the MAPE of ztop increases with the absolute latitude. Using further simulated test
data sets, the dependence of the retrievals with respect to the ash layer(s) is investigated.
The (unretrieved) geometrical layer thickness and the presence of multiple layers might
introduce errors of about 30% for τ10.8, 5% for ztop, but are negligible for reff.

Volcanic ash detection can be performed using the binary ash flag or τ10.8/mcol and
corresponding thresholds. Using the simulated data shows that the detection ability of
the binary ash flag is better than the one using τ10.8, and both outperform the usage of the
brightness temperature difference between the channels centered at 10.8 µm and 12 µm;
using for mcol a threshold of 0.2 g m−2 and considering only ash layers with 0.2–1 g m−2

leads to a POD of more than 90% and a false alarm rate (FAR) of ca. 1%. For the CALIOP
data, higher PODs can be found when using mcol compared to the binary ash flag; a similar
threshold as before leads to a POD of ~70%. Using the model results as reference data, we
find for similar thresholds PODs of 20–85% and FARs of 0.3–3%, which strongly depend on
the accumulation rule and the allowed distance offsets. Note that the model result is not a
perfect representation of reality; therefore, POD and FAR should be regarded as metrics
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quantifying the agreement of model and retrieval results rather than performance metrics
attributed exclusively to VACOS.

VACOS is also compared to its direct predecessor VADUGS. The latter exhibits a
better detection performance on the CALIOP data and has a smaller FAR for the model
data, but it also misses significantly more modeled ash clouds than VACOS, especially also
ash plumes close to the vent. Whereas the mcol retrieval of VADUGS performs similar to
VACOS for the CALIOP data, it underestimates mcol compared to the airborne lidar and in
situ findings. The VADUGS retrieval of ztop is reliable only for ash clouds with mcol of the
order 1 g m−2 or larger. Overall, VADUGS seems much more sensitive to specific cases than
VACOS. In the end, we consider the importance of different input features of the VACOS
retrievals, showing that they are mostly dependent on the SEVIRI brightness temperatures,
and partly also on the viewing zenith angle as well as total column water and water vapor
estimates from ECMWF. Longitude, land/sea-mask and times have negligible impact on
the output.

In the future it would be desirable to further analyze the retrieval performance also
with respect to mineral dust. As volcanic ash and mineral dust share similar optical
properties due to the common high silica content, it is likely that VACOS might misclassify
dust as volcanic ash [7,41,42]. In this case, it would be interesting to see if VACOS could be
used to retrieve dust cloud properties as well. The aviation industry considers similar risks
for volcanic ash and for dust, hence a combined retrieval seems advantageous. Furthermore,
VACOS has been tailored for Meteosat-9/MSG2. The usage of the retrieval algorithm with
the currently operational MSG satellite as well as the satellites in other operation modes (i.e.,
rapid scan mode, Indian Ocean data coverage) should be investigated. As other infrared
imagers aboard geostationary weather satellites such as GOES-R [43], Himawari-8/9 [44]
and Fengyun-4A [45] share similar channels with MSG/SEVIRI one could also investigate
the transferability of VACOS to those instruments. The error of the VACOS retrievals
decreases when a local average is calculated. To expand on this idea, further processing of
the retrieval map seems desirable, e.g., to cluster ash-containing pixels and quantify the
resulting ash patches, or even track them in time. Possible fields of application of VACOS
include the Volcanic Ash Advisory Centers, the intercomparison with other volcanic ash
retrievals (as in [46]), calibrating and validating volcanic ash transport and dispersion
models [35,47–49] and flight planning for future in situ measurements [15]. Due to the high
spatial and temporal resolution, it can be used to track individual ash clouds to investigate
their lifecycle on timespans of days to weeks. In combination with information on liquid
and ice water clouds, aerosol-cloud interaction could be analyzed.

In summary, VACOS is well characterized and shown to be reliably applicable under
different atmospheric conditions and for various kinds of volcanic ash clouds. It can be
utilized for atmospheric research as well as for air space monitoring with respect to volcanic
ash. Operational use by the German weather service (DWD) as a follow-on of VADUGS
is planned.
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Appendix A. Metrics

Different error metrics are used in this work, derived from a set of n pairs of retrieved
values ri and corresponding true values ti. The mean squared error MSE is defined as

MSE =
1
n

n

∑
i=1

(ri − ti)
2. (A1)

The mean absolute percentage error MAPE is calculated by

MAPE =
100
n

n

∑
i=1

∣∣∣∣ ri − ti
ti

∣∣∣∣. (A2)

The mean percentage error MPE is

MPE =
100
n

n

∑
i=1

ri − ti
ti

. (A3)

To quantify the performance of a boolean retrieval we consider the probability of detection
POD and the false alarm rate FAR (also probability of false detection [50])

POD =
Ntp

Ntp + N f n
(A4)

FAR =
N f p

N f p + Ntn
(A5)

with Ntp being the number of true positives (here meaning that the retrieval signals the
presence of volcanic ash, which is really present), N f p the false positives (presence of ash is
signaled although none is present), Ntn the true negatives (absence of of ash is signaled
and none is present) and N f n the false negatives (absence of ash is signaled although it is
present). The performance of multi-category classifications is described by the accuracy
given as the number of correctly classified samples divided by the total number of samples.
For two categories, the accuracy simplifies to

accuracy =
Ntp + Ntn

Ntp + N f p + Ntn + N f n
(A6)

and if no negative samples are present, i.e., Ntn = N f p = 0, the accuracy equals the POD.
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Appendix B. Π-Sigmoid Distribution

The Π-sigmoid distribution was introduced by Alivanoglou and Likas [18] and is
defined as the difference of two sigmoid functions, i.e.,

Π(x) =
1

b− a

(
1

1 + e−λ(x−a)
− 1

1 + e−λ(x−b)

)
(A7)

with a and b > a parameterizing the positions of the rise of the corresponding sigmoid,
and λ > 0 describing their steepness. The expectation value is (a + b)/2 and for the the
standard deviation σ holds

σ2 =
b3 − a3

3(b− a)
− a2 + b2

4
− ab

2
+

π2

3λ2 . (A8)
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