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Abstract: Volcanic ash clouds are a threat to air traffic security and, thus, can have significant societal
and financial impact. Therefore, the detection and monitoring of volcanic ash clouds to enhance the
safety of air traffic is of central importance. This work presents the development of the new retrieval
algorithm VACOS (Volcanic Ash Cloud properties Obtained from SEVIRI) which is based on artificial
neural networks, the thermal channels of the geostationary sensor MSG/SEVIRI and auxiliary data
from a numerical weather prediction model. It derives a pixel classification as well as cloud top height,
effective particle radius and, indirectly, the mass column concentration of volcanic ash clouds during
day and night. A large set of realistic one-dimensional radiative transfer calculations for typical
atmospheric conditions with and without generic volcanic ash clouds is performed to create the
training dataset. The atmospheric states are derived from ECMWF data to cover the typical diurnal,
annual and interannual variability. The dependence of the surface emissivity on surface type and
viewing zenith angle is considered. An extensive dataset of volcanic ash optical properties is used,
derived for a wide range of microphysical properties and refractive indices of various petrological
compositions, including different silica contents and glass-to-crystal ratios; this constitutes a major
innovation of this retrieval. The resulting ash-free radiative transfer calculations at a specific time
compare well with corresponding SEVIRI measurements, considering the individual pixel deviations
as well as the overall brightness temperature distributions. Atmospheric gas profiles and sea surface
emissivities are reproduced with a high agreement, whereas cloudy cases can show large deviations
on a single pixel basis (with 95th percentiles of the absolute deviations >30K), mostly due to different
cloud properties in model and reality. Land surfaces lead to large deviations for both the single
pixel comparison (with median absolute deviations >3K) and more importantly the brightness
temperature distributions, most likely due to imprecise skin temperatures. The new method enables
volcanic ash-related scientific investigations as well as aviation security-related applications.

Keywords: volcanic ash cloud; passive satellite remote sensing; artificial neural network; radiative
transfer calculation

1. Introduction

Large, explosive volcanic eruptions might happen relatively infrequently [1], but their
emissions can have massive impacts: volcanic ash can significantly interfere with critical,
ground-based infrastructure [2] and can damage aircraft or even cause engine failure [3].
Aviation incidents have been reported more than 1000 km from the volcanic ash source [4],
as potentially hazardous ash concentrations might not be visually observable by flight
crews [5]. In the case of the eruption of Eyjafjallajokull in 2010, major parts of the European
airspace were closed for extended periods of time [6], leading to estimated economic losses
of US$1.7 billion for the aviation industry [7].
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To mitigate the impact of future eruptions, satellite remote-sensing methods have been
developed to monitor volcanic ash clouds, using both polar orbiting and geostationary
passive optical imagers (e.g., [8]). Their results can be used to directly assess whether an
airspace is safe to be traversed by jet planes (according to thresholds stated by the Interna-
tional Civil Aviation Organization (ICAO) [9]), to investigate aerosol-cloud interactions [10]
or to calibrate/validate volcanic ash transport and dispersion models as applied by the
Volcanic Ash Advisory Centers [11-13]. The latter are the main providers of information on
atmospheric contamination by volcanic ash in the case of an eruption [9].

Active remote sensing instruments such as lidars provide highly resolved vertical
profiles of the aerosol load [14]. However, lidars have a limited spatial and temporal
coverage, e.g., the instrument aboard the polar orbiting Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CALIPSO) has a small footprint of 90m x 335m and a
16-day repeat cycle [15]. Ground instruments are fixed and airborne measurements are
performed only in exceptions (e.g., [6,16-21]). Therefore, none of those instruments is able
to provide global data as are necessary in the case of volcanic ash monitoring. In this respect,
geostationary radiometers, especially of the second generation, come in handy: such
instruments not only provide near-global coverage, but their infrared channels also allow
operation during day and night. Examples are the Geostationary Operational Environmental
Satellites (GOES) covering North and South America, the Meteosat Second Generation (MSG)
satellites for Europe and Africa and Himawari for Eastern Asia and Australia.

The difference between the brightness temperature at 11 pm (BT77) and 12 um (BTyp),
in short BTD11_13, can be negative for clouds consisting of small volcanic ash particles
(smaller than ~5 um [22,23]) and mixtures of volcanic ash and sulfuric acid (H,SO, [24,25]),
whereas for ice clouds BT'D11_1; tends to be positive [26]. Therefore, this quantity is often
used for volcanic ash detection. However, volcanic ash can be hidden by water or ice either
within the volcanic ash cloud or as separated clouds, as well as water vapor, especially if
the ash cloud itself is at low altitude [11,27]. Furthermore, large ash particles or opaque
plumes do not lead to a negative BTD11_1, [11,22]. False alarms might be produced by
mineral dust aerosol [28], which has similar spectral properties as volcanic ash [11,29,30],
or by non-vegetated, quartz-rich surfaces due to their emissivity [11,28].

As a consequence, more sophisticated detection schemes have been proposed: to
correct for the presence of water vapor, a BTDy1_1; threshold depending on BTy has
been suggested where the exact function depends on the atmospheric conditions [27]; this
resulted in retrievals of larger contaminated areas. Multiple threshold tests were proposed,
incorporating, for instance, also BTy y measurements (e.g., [31,32]) or simulated clear-sky
brightness temperatures BT1; and BTj, from numerical weather predictions (e.g., [31]).
Furthermore, it was shown that reflectances in the visible and the near-infrared as well
as their ratio can further help to separate volcanic ash clouds from water and ice clouds,
especially for optically thick plumes for which BT D111, tends to vanish (e.g., [33-35]).

As radiance measurements are affected not only by the volcanic ash cloud but also
by the atmospheric state, other meteorological clouds and the surface properties, it was
suggested to derive quantities that are closer linked to the target cloud’s properties. An
example is the ratio of effective absorption optical depths at different wavelengths, called
ratio, which can be approximately expressed by single scattering properties (e.g., [8,36,37]).
For the calculation of j ratios, clear sky properties have to be determined by radiative
transfer calculations. The combination of multiple § ratios of different infrared channels is
a good discriminator of volcanic and meteorological clouds [37]. A high spectral resolution
can allow for new detection schemes, either directly based on the functional behavior
of the brightness temperature spectra, thereby also enabling the separation of volcanic
ash from mineral dust (e.g., [29,30]), or by performing singular vector decompositions
with some vectors representing clear sky conditions, whereas others describe the volcanic
ash influence. A linear decomposition of a measurement with respect to these basis
vectors then reveals whether volcanic ash is present or not [38]. An alternative approach
is to detect sulfur dioxide (SO,) as a proxy for volcanic ash as both are often emitted
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simultaneously [39]. Although both detections can show reasonable spatial agreement,
they might differ in some cases [40], sometimes with more than 80% of the volcanic ash
remaining undetected [41]. This might be rooted in the presence of distinct volcanic ash
and SO, layers that get separated due to vertical wind shear [42].

To retrieve microphysical (especially the effective particle radius r.¢) and macro-
physical properties (optical depth T and mass column concentration ), brightness
temperatures (usually BTj1 and BTD11_1, or similar) have been precalculated for generic
atmospheric settings including only a volcanic ash layer and used as look-up tables
(e.g., [22,33,43]). More complex atmospheres were assumed to correct for water vapor,
based on either measurements of the surrounding of the volcanic ash clouds or radiative
transfer calculations (e.g., [27,43]). The optimal estimation method aims to minimize a cost
function (here principally an uncertainty weighted difference between an atmospheric state
vector and an a priori assumption, as well as an observation vector and corresponding
estimates), usually iteratively for non-linear problems, incorporating radiative transfer cal-
culations [37,44]. For example, Francis et al. [31] applied this approach to retrieve pixelwise
the ash layer pressure, mass loading ., and effective radius r.¢ based on observations at
10.8 um, 12 um and 13.4 pm, whereas Pavolonis et al. [37] used the same observations to
determine different § ratios, emissivities and temperatures, later on converting these to
microphysical properties. Retrievals can also be performed by making use of the surround-
ing ash-free area; e.g., Pugnaghi et al. [45] interpolated the radiances across a volcanic ash
plume between the edges to obtain an ash-free image. Combining the radiances measured
with and without ash, the transmittance of the ash plume could be calculated for different
wavelengths. Finally, the effective radius ¢ and the optical depth T were determined from
the transmittances using conversions from radiative transfer calculations. There are further
methods to determine the volcanic ash cloud top height zop. The brightness temperature
of opaque parts of a cloud can be assumed to approximately correspond to the ambient
temperature. A nearby temperature profile (e.g., using a numerical weather prediction
or a radiosonde measurement) can be applied to convert the brightness temperature into
an altitude [33,43,46]. During daytime, the difference in the cloud position as seen by
the satellite and the sun induced cloud shadow can be used to geometrically calculate
Ztop [33,43]. Stereoscopic instruments allow inferring ziop from the spatial shift between
the projection of a cloud in images retrieved under different viewing angles [33,38,43,47].
The carbon dioxide (CO;y) slicing method compares multiple channels around the CO;
absorption feature which have weighting functions peaking at different heights [48,49].

A different approach is the application of artificial neural networks (ANNSs), which can
be considered as universal approximators for unknown functions [50]. Based on initial re-
search in the 1940s, this method has gained much attention and has significantly advanced
in recent decades [51]. It has been used for prediction, functional approximation and classi-
fication tasks for numerous problems of atmospheric sciences [52]. With respect to satellite
remote sensing, some examples are the retrieval of properties of water clouds [53,54],
ice clouds [55,56], ozone profiles [57], volcanic SO, [58-60] and surface reflectivity [61].
Often, the utilized training datasets either consist of collocated measurements of different
instruments [54-56] or are created using radiative transfer calculations [53,57,59-61]. One
of the major advantages of ANNSs is that, once they are trained, they are fast in application
compared to other methods using time-consuming radiative transfer calculations during
the retrieval. Gray and Bennartz [62] trained two ANNSs for the detection of volcanic ash
and SO,-rich ash, respectively, using Moderate Resolution Imaging Spectroradiometer (MODIS,
e.g., [63]) measurements. The training data were composed of MODIS images of different
volcanic eruptions with the target classification performed based on Hybrid Single Particle
Lagrangian Integrated Trajectory (HYSPLIT) simulations of the volcanic emissions. The input
data consisted of brightness temperature (differences) of channels between 7.3 pm and
12 pum. Picchiani et al. [64] trained separated ANNSs for volcanic ash detection and ash
mass loading ) retrieval from MODIS measurements. The training data consisted of
MODIS images from Etna eruptions with the target classification performed by applying
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the BTD11_12 < 0 criterion, whereas the target mass loading was determined by a look-up
table approach. The channels centered at 7.3 um, 11 pm and 12 pym were used as input. A
more detailed classification ANN was trained by Picchiani et al. [65], labeling ash above
sea and above meteorological clouds, meteorological clouds themselves and sea, ice and
land surfaces using MODIS data. The training data consisted of MODIS images from the
Eyjafjallajokull 2010 and Grimsvotn 2011 eruptions with the target classes derived from the
BTDi1_1 < 0 criterion, the MODIS land /sea mask, cloud products and BT, 13 (band 7) for
detection of ice surfaces. The input features include 14 MODIS channels in the visible and
infrared and a land/sea mask. The method was further developed by Piscini et al. [66],
training individual ANNs for the retrieval of the mass load .}, the effective radius 7.y, the
optical depth at 11 pm (177) and the SO, column concentration using MODIS observations.
Training data were MODIS images from the Eyjafjallajokull 2010 eruption with the target
values determined by other retrievals based on radiative transfer calculations, similar
to [64]. Initially, all MODIS channels were used as input features, with a pruning procedure
performed after the training to find the most important inputs. The ANN ansatz by Pic-
chiani et al. [64] and Piscini et al. [66] was compared to the look-up table and the volcanic
plume removal procedure, finding that the look-up table method can be more accurate, but
the ANN approach can be less sensitive to perturbations in the satellite measurements [67].
Zhu et al. [68] developed a method to retrieve volcanic cloud top heights ztp combining
a stacked denoising autoencoder for feature extraction followed by a least squares sup-
port vector regression to derive zip. The training data consisted of collocated Spinning
Enhanced Visible and Infrared Imager (SEVIRI, aboard MSG [69]) brightness temperatures and
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP, aboard CALIPSO [15]) derived
Ztop for volcanic ash clouds from the Eyjafjallajokull 2010 and Puyehue-Cordén Caulle 2011
eruptions. Adding vertical temperature profiles from European Centre for Medium-Range
Weather Forecasts (ECMWF) simulations further improved the retrieval performance.

The aforementioned volcanic ash algorithms used real satellite images as training
data, with target values coming either from other retrievals, other sensors or trajectory
models. In contrast, the algorithm Volcanic Ash Detection Utilizing Geostationary Satellites
(VADUGS), applying a single ANN for the retrieval of m, and ztp, was based on a fully
simulated training dataset. The input data consisted of the thermal infrared channels
of MSG/SEVIRI and auxiliary data such as a land/sea mask, the skin temperature and
the viewing zenith angle [70,71]. The ANN architecture followed the development of the
cirrus cloud retrieval Cirrus Optical Properties derived from CALIOP and SEVIRI Algorithm
during Day and Night (COCS, [55]), which was trained with collocated CALIOP and SEVIRI
measurements to retrieve cirrus optical depths and cloud top heights. Since 2015, VADUGS
runs operationally at the German weather service [72]. Although it produces reasonable
results upon visual inspection, a validation against simulated samples has shown that
the retrievals are reliable in certain subsets of the test dataset, but not in general [71].
An intercomparison of satellite products exhibited overall low correlations between the
retrieval of m., by VADUGS and other algorithms and found a strong underestimation
of ztop when compared with CALIOP results [73]. In addition, note that VADUGS was
developed focusing on the Eyjafjallajokull 2010 eruption as only the refractive index of the
corresponding volcanic ash was used for the training data [71]. However, the refractive
index can vary significantly for different volcanic ashes [74,75] and retrievals are sensitive
to it [22,76,77]. Technically, potential improvements can be derived from the development
of Cirrus Properties from SEVIRI (CiPS [78,79]), which is the successor of COCS. It is based
on a similar training dataset but uses a new ANN architecture and training procedure,
additional input features and updated CALIOP data. CiPS exhibited a better performance
compared to COCS and retrieved additional quantities, e.g., the ice water path.

Building upon VADUGS, a new algorithm called Volcanic Ash Cloud properties Obtained
from SEVIRI (VACOS) is developed and described in two papers (Figure 1). In Part 1
(this paper), a training dataset consisting of simulated MSG/SEVIRI measurements is
created using modeled atmospheric profiles and a climatology of the surface emissivity.
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A parameterization of the sea surface emissivity is applied that depends on the viewing
zenith angle and wind speed. To cover the variability of volcanic ash clouds, the extensive
set of volcanic ash refractive indices and optical properties from Piontek et al. [23] is used
together with a wide range of possible ash cloud top heights, geometrical thicknesses
and mass concentrations. This constitutes a major advantage compared to the previously
mentioned ANN-based volcanic ash retrievals, which were trained on satellite images of
only one [64,66], two [65,68] or seven [62] volcanic eruptions or used only a single volcanic
ash type [71]. Methodologically, we train four separated ANNSs for the classification and
the retrieval of the optical depth at 10.8 um (7108), ash cloud top height (ztp) and effective
particle radius (7¢) of the volcanic ash clouds. The ANNs have individual input features
and training datasets. Part 2 [80] contains a validation of the retrievals with respect to
simulated test datasets, a sensitivity study of the algorithms with respect to the vertical
mass profile of volcanic ash layers, case studies comparing the results of the new retrievals
with independent lidar and in situ measurements as well as model results and an analysis
of the working principles of the ANNSs.
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Figure 1. Scheme of the algorithm development and validation: (red) calculation of typical refractive indices (RIs) of

volcanic ashes (VAs) and the corresponding optical properties [23], (yellow) radiative transfer calculations to compose a

training dataset and (blue) training of different ANNs (both in this paper) and (green) validation against simulated test data

and other independent measurements and model results [80].

The rest of this paper is organized as follows. We introduce the observation instrument
MSG/SEVIRI (Section 2) and the predecessor retrieval VADUGS, including a short, general
description of ANNSs (Section 3). Next, the training dataset is sketched including its analysis
(Section 4), followed by the description of the new ANN, their input features and their
training (Section 5) as well as their application (Section 6). Finally, we give a conclusion
and an outlook (Section 7).

2. MSG/SEVIRI

VACOS is tailored for the Spinning Enhanced Visible and Infrared Imager (SEVIRI) carried
by the geostationary Meteosat Second Generation (MSG) satellites. SEVIRI is a passive
12-channel imager, measuring radiation in the visible and infrared part of the spectrum.
The radiances in the different thermal channels are converted to brightness temperatures
(BT). For the retrieval, we consider only the seven infrared channels such that it can be
applied during day and night. Three of them are window channels (centered at 8.7 pm,
10.8 pm and 12 pm), two are strongly sensitive to water vapor (H,O, 6.2 um and 7.3 pm)
and another two (9.7 um and 13.4 um) to ozone (O3) and carbon dioxide (CO5), respectively.
The temporal resolution of SEVIRI is 15 min for the full disc and 5 min in rapid scan mode,



Remote Sens. 2021, 13,3112

6 of 29

which covers mainly Europe. The spatial resolution is 3km at nadir. The channels are
rather broad (spectral bands up to 2 um) and instrument specific [69]. Figure 2 shows a
red-green-blue composite of the SEVIRI disc. There are multiple MSG satellites deployed at
different coordinates. In the following, we focus on Meteosat-9/MSG2. From 11 April 2007
to 21 January 2013, it was located at 0°E as the primary operational satellite and covered
the prominent eruptions of Eyjafjallajokull 2010, Grimsvotn 2011 and the volcanic ash
clouds of Puyehue-Cordén Caulle 2011. From 9 April 2013 to 20 March 2018, it provided
the rapid scanning service at 9.5°E. As of 29 June 2020, it is located at 3.5°E as a back-up
spacecraft [81,82]. Note that other current or future imagers aboard geostationary satellites
have similar spectral channels, e.g., the Advanced Baseline Imager on GOES-R, the Advanced
Himawari Imager on Himawari-8/9, the Advanced Meteorological Imager on GEO-KOMPSAT-
2A, the Advanced Geosynchronous Radiation Imager on Fengyun-4A or the Flexible Combined
Imager on the Meteosat Third Generation satellites [83-86]. Thus, the method described
here can in principle be extended to those as well.

Figure 2. Overview red-green-blue composite of MSG/SEVIRI measurements for 15 July 2015 at
12:00 UTC.

3. VADUGS

The algorithm VADUGS (Volcanic Ash Detection Utilizing Geostationary Satellites) allows
pixelwise retrieval of volcanic ash cloud properties using SEVIRI measurements and
ANN:s [71]. ANNSs have been developed based on biological insights on the behavior of
the human brain. The feed-forward configuration is made up of multiple layers, with the
first one (called input layer) consisting of the input features, and the last one the output
layer. In between is an arbitrary number of so-called hidden layers. Hidden and output
layers consist of so-called neurons. Those are (usually non-linear) functions receiving
the weighted sum of the results of the previous layer’s neurons (or input features in the
case of the first hidden layer) as an argument. The weights between all pairs of neurons
of successive layers are different. They are chosen such that the n input features are
(approximately) mapped to the corresponding m target values; thus, an ANN is a function
mapping R" — R™. Using the backpropagation algorithm, the weights are determined in
an iterative procedure (called training) by changing their values such that the loss function
(a metric quantifying the difference between the output of the ANN for a set of input data
samples and the associated target outputs) is minimized. Thus, a training dataset is needed
for which the target values are known for all samples. The loss function evaluated on a
separate validation dataset is monitored during training to prevent overfitting, i.e., to avoid
learning the noise of the training dataset [51,52,87].

VADUGS is a single ANN with one hidden layer with 600 neurons. The input data
consist of the infrared brightness temperatures measured by SEVIRI, the skin temperature
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from ECMWEF and a land/sea mask and the viewing zenith angle. The output layer gives
Mo and ziop. Radiative transfer simulations were performed to calculate the brightness
temperatures for generic atmospheric settings, leading to a dataset of properly tagged
samples used for the training. For the simulations, realistic atmospheric conditions were
chosen based on ECMWEF reanalysis data; to cover seasonal variations, 12 UTC of the 15th
day for the months February 2010 to January 2011 was considered. Meteorological cloud
layers were incorporated based on the layer-resolved cloud fractions given by ECMWF
and parameterized as either liquid or ice water cloud (see also Section4.1.2). Single
homogeneous volcanic ash layers were simulated using the complex refractive index of
ash from the Eyjafjallajokull eruption 2010, spherical and spheroidal particle shapes and
two different lognormal particle size distributions [71].

4. Training Dataset

This section covers the creation of the new training dataset, including a description
of the input data of the radiative transfer calculations (Section 4.1) and the calculations
themselves (Section 4.2), a validation of the ash-free case (Section 4.3) and the selection of
training, validation and test subsets (Section 4.4).

4.1. Input Data

In the following, we describe different input data for the radiative transfer calculations,
their variability and the settings. More specifically, we discuss the surface emissivity
(Section 4.1.1), the vertical profiles of atmospheric clouds and gases (Section 4.1.2) and the
volcanic ash clouds (Section 4.1.3).

4.1.1. Surface Emissivity

For the surface emissivity, we use data from Zhou et al. [88-90]. Those were calculated
using measurements of the polar-orbiting IASI instrument over ten years (2007-06 to 2017-
05), covering the full globe. The emissivities were averaged over the ten years and for
each month. The final spatial resolution is 0.25° and the spectral resolution is 0.25cm !
for 645 to 2760cm ™! (roughly the wavelength range 3.6 to 15.5um). For sea surfaces,
the emissivity exhibits also a strong dependence on the viewing zenith angle 6,,, and
the wind speed wys: an increase of 0y,, reduces the emissivity, whereas an increase of
wws reduces the emissivity at small 6y,, but increases it at large 8y, [91-93]. The impact
can be on the order of 10%. Here, 0y,, is determined from the geographic coordinates
for MSG2, whereas the wind speed wys = v U? + V2 is based on the horizontal wind
speeds at 10m above the surface, U and V, as given by ECMWF (Section 4.1.2). We use
the calculations by Masuda [94] which incorporate the surface-emitted surface-reflected
radiation into the sea surface emissivity for different wavelengths A (3.7 um, 11 pm and
12 um), Byza (0 to 85°) and wys (0 to 15ms~1). We divide the calculated emissivities by the
value for 0y,, = wws = 0. Then, for each wavelength, a function of the form

f(evza/ Wws, A) = g(evza} /\) : h(gvza/ wws}/\) (1)

is fitted, with f describing the reduction of the emissivity relative to the case
Ovza = Wws = 0 at A and g and & being polynomials of sixth degree. g describes mainly the
dependence on 6y, 1 is the correction due to wys and f is interpolated among the three
wavelengths and constantly extrapolated beyond. For sea surfaces, the IASI-measured
emissivities are multiplied by f as the data of Zhou et al. [88-90] do not include the de-
pendence on 6y,, and wys explicitly. Note that Masuda [94] considered w.s at a height
of 12.5m. However, the difference to wys derived from ECMWF ERA5 data is assumed
to be negligible. During application, 0y, > 85° and wys > 15ms~! are set to these
limiting values.

Similar to water, the emissivity of land surfaces decreases with increasing 6y,,. How-
ever, the relations depend strongly on the soil type and the wavelength, and the results
vary between different experiments. For instance, significant decreases of the emissivity
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have been observed for sand: Labed and Stoll [95] found changes of ~6% for wavelengths
of 10.6 pm and 12 pm between 6,,, = 0° and 80°; Snyder et al. [96] reported differences up
to ~4% for 8 to 10 pm and ~2% for 10 to 14 pym between 60y,, = 10° and 53°; Sobrino and
Cuenca [97] measured decreases of ~3% between 0,, = 0° and 65° for a spectral band at 8
to 14 pym; Cuenca and Sobrino [98] found a reduction of ~5.8% between 6,4, = 0° and 60°
for a channel covering 8.2 to 9.2 um; McAtee et al. [99] indicated a decrease by up to ~8%
comparing 6y,, = 0° to 70° for the spectral range of 8 to 12 nm; Garcia-Santos et al. [100]
got a difference larger than 10% between 6,,, = 0° and 70° for a spectral band at 8.2 to
8.7 um. On the other hand, Sobrino and Cuenca [97] did not find a dependency of emissiv-
ity on 0y, for grass and Snyder et al. [96] mostly less than 1% for a sample of compost with
grass and leaves. In addition, for 6y, up to 30°, the changes in the emissivity are mostly
negligible [97,98,100]. Therefore, we neglect the dependence of the emissivity on 6y, for
land surface in the following.

4.1.2. Atmospheric Data

Every radiative transfer calculation needs an atmospheric state as input. We use
ECMWEF ERAS5 reanalysis data [101], in particular the skin temperature, temperature profile,
logarithm of surface pressure, 10m U and V wind components, specific humidity, ozone
mass mixing ratio, fraction of cloud cover, specific cloud liquid and ice water contents
and land/sea mask. Additionally, the total column water, water vapor and ozone are
included in the training dataset; those quantities are not needed for the radiative transfer
calculations, but they are used as input features for the ANNSs.

Data of three arbitrary, recent years are collected: 2010, 2013 and 2015. For each
year, the 15th day of each month is considered. Compared to the data used for VADUGS,
we have an increased vertical resolution (137 instead of 91 model levels) and temporal
resolution (1 h instead of only 12 UTC [102]).

Figure 3 shows exemplarily the variability of the skin temperature. The daily mean
skin temperature exhibits an annual variability of ~20 K in central Europe, whereas skin
temperature within a single day might vary about 10K in central Europe but ~40K in
Northern Africa. This stresses the necessity to cover the full yearly as well as daily vari-
ability of the atmospheric state in a sufficient temporal resolution. Figure 3c shows the
differences in daily mean skin temperature between 2010 and 2015 for a single day. These
can lead to temperature differences of roughly —10 to 10K, which is why we base our
calculations on data of three different years. Furthermore, the high temporal resolution
allows to capture the full daily cycle of the atmospheric properties. Figure 4 shows that a
coarser resolution of, e.g., 6 h might miss a part of the skin temperature variability. When
considering a location close to a longitude of 0°E, the 6h resolution can reproduce the
minima and maxima in the daily course of the skin temperature. However, when con-
sidering a larger longitude, this might change as the sun is in zenith at a different time
with respect to UTC. For instance, at 20°N, 30°E, the local minimum is ~3 K lower than the
temperature at 0 UTC, while, at 20°N, 55°E, the local maximum is ~3 K higher than the
temperature at 12 UTC. Thus, the hourly resolution helps to create a training dataset that
enables the resulting retrieval to work at all longitudes at all times of day, as required by a
geostationary sensor.

Based on the ECMWEF data, the atmospheric state is composed similarly to the method
of Bugliaro et al. [71], i.e., vertical temperature profile, skin temperature, wind speed at
10 m altitude and densities of gaseous water (H,O) and ozone (O3). Oxygen (O;) and carbon
dioxide (CO,) are derived from the air density using constant mixing ratios of 0.20948 [103]
and 0.0004 [104], respectively, whereas, for nitrogen dioxide (NOy), the mixing ratios stem
from a chemical transport model with 72 model levels and a latitudinal and longitudinal
resolution of 2° and 2.5°, respectively, simulating November 2012 to October 2013; the daily
average of the 15th of each month was used [105,106]. Those five gases are required to
perform corresponding radiative transfer calculations [107]; especially H,O, CO; and O3
have strong absorption features in the thermal infrared MSG/SEVIRI channels [108].
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Figure 3. Differences in the skin temperature (from ECMWEF ERAS5): between the maxima and minima of the daily means of

the 15th of each month in 2010, i.e., the annual variability (a); between the maxima and the minima of the 15 May 2010, i.e.,

the daily variability (b); between the daily means of 15 May 2010 and 2015 at 12:00 UTC, i.e., the inter-annual variability (c).

The blue dots mark the locations shown in Figure 4.
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Figure 4. Daily course of the skin temperature (from ECMWEF ERADS) for five different locations (see marker in Figure 3); the
yellow columns represent the temperatures at 0, 6, 12 and 18 UTC.

Meteorological clouds are extracted from ECMWF data as well; however, the maxi-
mum random overlap rule of ECMWEF cannot be implemented in a one-dimensional (1D)
radiative transfer model. Thus, using the cloud fractions for each layer, a random set of 1D
clouds is created. No partial cloudiness is considered and vertically adjacent cloud layers
are assumed to overlap as much as possible (for details, see [71]). For liquid water clouds,
the parameterizations by Bugliaro et al. [109] and Hu and Stamnes [110] are used to create
the 7 profiles and the optical properties, respectively. For ice water clouds, the parameter-
ization by Wyser [111] and the rough-aggregate habit [107] with the parameterization by
Heymsfield et al. [112], Yang et al. [113], Baum et al. [114] are applied for 7. and the optical
properties, respectively. Note that the composed atmospheres are fully consistent, i.e., the
vertical temperature and gas profiles match the cloud profiles (i.e., humidity saturation
at the correct altitudes). The atmospheres, in turn, match the surface emissivities and the
viewing zenith angles. This distinguishes our approach from radiative transfer calculations
by Krebs et al. [115] or Vazquez-Navarro et al. [116], who also created comprehensive
simulated datasets of MSG/SEVIRI observations, but combined atmospheric profiles with
random cloud layers, constant surface emissivities and arbitrary viewing zenith angles. In
the case of the VADUGS training data, atmospheric profiles and clouds were consistent,
but not the viewing zenith angles [71].

4.1.3. Volcanic Ash Clouds

Volcanic ash clouds exhibit a significant amount of variability. The volcanic ash cloud
top height zi,, depends on the intensity of the eruption: whereas weak eruptions emit ash
only up to a few hundred meters [117], affecting mainly the direct surrounding of the vent,
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Eyjafjallajokull 2010 injected volcanic ash at heights of 3 to 10 km above sea level [118],
Puyehue-Cordén Caulle 2011 injected ash up to 15km high [38,119]. Even heights > 25 km
are possible [120,121], although much rarer [1]. The cloud height also depends on the
atmospheric conditions [122] and changes during the ash cloud’s lifecycle, e.g., the height
decreases due to gravitational settling [10]. Thus, in the following, zip € [0.3,18] km
is considered.

The vertical mass profile can be quite complicated, especially for aged clouds, e.g., with
a non-uniform distribution and multiple layers [6,18,123]. As SEVIRI offers only limited
possibilities for sounding, we consider only the simplest profile of a single, homogeneous
layer (as in [71,124]). In addition, the vertical extent zex; shows a large variability from
some hundred meters up to some kilometers [6,18]. Marenco et al. [18] proposed zext =
\@mcol, meas/ Cmax, meas With 7] meas being the measured mass load and cmax, meas the
measured peak mass concentration, arguing that this leads (together with the assumption of
a homogeneous layer with the concentration ¢ being cmax, meas/ V2)toa good representation
of real ash clouds for radiative transfer. Another approach based on plume rise calculations
for stable stratified atmospheres suggests zext = 0.4ztop for the depth [125,126] and has
been applied to volcanic ash cloud retrievals [33,43,127]. The latter relation is also assumed
for VACOS. Thus, after choosing ziop, the vertical extent is zext € [100 m, O.4zt0p].

For the mass volume concentration c, typical values depend again on the eruption
strength and the ash cloud’s lifecycle, as sedimentation and dispersion may lead to a
thinning of the cloud. Przedpelski and Casadevall [128] estimated 2 gm~> from inspec-
tions of KLM 867’s engines after encountering an ash cloud of Redoubt Volcano in 1989.
Weber et al. [19] reported in situ measured concentrations of the Eyjafjallajokull 2010 ash
plume of 500 to 2000 pg m 3 at distances of 15 to 60 km from the vent. Marenco et al. [18]
found from lidar data mean concentrations of 300 to 650 pg m~3 with maxima of 800 to
1900 pgm 2 above Great Britain on 14-17 May, about 1400km from the source.
Schumann et al. [6] measured in situ averages of 105 to 283 ng m 3 with maxima (of 10s
mean values) of 282 to 830 ug m 2 above the North Sea on 17 May, roughly at a distance of
1760 km from the vent. With respect to aviation, three regimes of ash contamination are dif-
ferentiated: low contaminations for concentrations < 2mg m~3, medium contaminations for
concentrations of 2 to 4mg m~2 and high contaminations for concentrations > 4mgm~3 [9].

In the following, mass column concentrations of 0 (no ash) to 30gm 2 are considered.

. . . _3 30gm 2
Thus, after choosing zext, the mass volume concentration is ¢ € [0gm 3 2sm |; for a
Zext

typical cloud thickness of zext = 1km, this would cover mass volume concentrations up to
30 mgm~3, covering all three contamination regimes according to ICAO.

Volcanic ashes themselves can also differ significantly with respect to chemical com-
position, particle size and shape. Here, we consider the comprehensive set of optical
properties covering the variability of all three properties described by Piontek et al. [23].
The refractive indices of volcanic ashes, as shown in Figure 5, were calculated by averaging
the refractive indices of different components of volcanic ash (i.e., minerals and glasses)
according to typical petrological compositions; the last depends on the silica content x;,
which was varied from 45 to 75 wt.%, and the ratio between volcanic glass and minerals,
fglass, Which varied between x5/100 wt.% and 1. Focusing on distal ash, the porosity of
volcanic ash [21] is neglected.

The microphysical properties were chosen based on a literature review: a log-normal
particle size distribution (Equation (7) in [23]) was assumed with 7 € {0.6,1.8,3,4.5,6}
and geometric standard deviations s € {1.5,2.0}. Pro- and oblate spheroids were assumed
in equal parts, with the aspect ratio following a modified log-normal distribution (Equation
(9) in [23]) with median aspect ratio €y = 1.5 and a spread o, = 0.45. Using Mie theory
and the T-matrix method [129], the optical properties were derived for wavelengths of 5 to
15 um, as shown in Figure 6.
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Figure 5. Real (a) and imaginary (b) parts of the complex refractive indices of the volcanic ash types derived by
Piontek et al. [23]. Different glass fractions fy),ss are denoted by the color. For visibility reasons, different silica contents x,
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To exclude outliers as potentially unphysical volcanic ashes, only a selection of ash
types is used for the training below (see Figure 6). Therefore, the standard deviation
0 (7eg, ) of the mass extinction coefficient at 10.8 um, k1 g, of all volcanic ashes is calculated.
Next, the mass extinction coefficient kgyja (s, ) at 10.8 pm for Eyjafjallajokull ash from
Deguine et al. [75] is determined for the same microphysical properties 7., s and shape [23].
Finally, we keep only those volcanic ashes that are 1¢ close to the Eyjafjallakokull ash, i.e.,
that fulfill ’kl().g — kgyja (Tef, s)‘ < 0(7eft,s). Overall, 57% of the ash types pass this test.
Figure 6 shows that for re = 0.6 pm mostly ashes of low x; are excluded, whereas for
Teff = 1.8 um mainly high xs are dismissed. For the other 7., the selection is relatively
balanced with respect to x;.

4.2. Radiative Transfer Calculations

To create the input files of the radiative transfer calculation, the algorithm RTSIM [71]
randomly picks uniformly distributed times among those covered by the ECMWEF data
(Section 4.1.2), coordinates with respect to the SEVIRI disc and compiles the corresponding
surface properties and atmospheric, cloud and ash profiles; meteorological clouds can
be created in ~51% of the cases. For each set of input parameters, four calculations are
performed if possible: clear-sky conditions; only meteorological clouds; only volcanic ash
clouds; meteorological and volcanic ash clouds. The ash cloud parameters (i.e., Ztop, ¢, T10.8
and r.¢) and the simulated brightness temperatures together enter the training data.

1D radiative transfer calculations of the thermal infrared brightness temperatures as
measured by SEVIRI are performed using libRadtran version 2.0.3 [130,131] and the C-
version of the Discrete Ordinate Radiative Transfer Solver (DISORT [132,133]) with 16 streams.
The Cluster for Advanced Research in Aerospace (CARA) of the Deutsches Zentrum fiir Luft-
und Raumfahrt (DLR) is used, allowing the calculation of 1000 samples with 7 simulated
brightness temperatures each on a single node within approximately 100s.

To account for gas absorption, a method by Buehler et al. [134] is used in the implemen-
tation by Gasteiger et al. [135], called REPTRAN. It performs radiative transfer simulations
at representative wavelengths within a given spectral interval (on average 3 and typically
<10) and calculates a weighted sum of them as an approximation of the integral of the
top of atmosphere radiance over a satellite channel’s spectral response function/a narrow
spectral band. The representative wavelengths and the weights were determined such that
the approximation for the integrated top of atmosphere radiance has an error < 1%, using a
training dataset of simulated top of atmosphere radiances with a high spectral resolution
covering a large variety of atmospheric states. Four different parameterizations are avail-
able: channel (optimized for SEVIRI's spectral channels), coarse (band width of 15ecm™1),
medium (5cm™1!) and fine (1cm™1). channel uses the least number of spectral sampling
points and is fastest. However, Gasteiger et al. [135] pointed out that the applicability of the
parameterization might cease if a significant spectral variability is introduced which has
not been considered in their training dataset. For instance, surface emissivity was assumed
wavelength-independent by Gasteiger et al. [135]. In our simulations, surface emissivity
shows a strong spectral variability, especially for sand [88]. Furthermore, the refractive
index of the volcanic ash, which has imaginary values between 0 and about 1.4 (Figure 5),
was assumed wavelength-independent and between 0.001 and 0.1 by Gasteiger et al. [135].

To select accurate parameterizations, we performed test calculations of the brightness
temperatures for the REPTRAN modes channel, coarse, medium and fine. Cases with and
without meteorological clouds/volcanic ash were considered with the ash cloud parameters
as described in Section 4.1.3 and an example ash with the refractive index of Eyjafjallajokull
ash from Deguine et al. [75], a log-normal size distribution with 7o = 0.6pum, s = 1.5
and the previously described shape distribution. In total, for each parameterization,
500 atmospheric states were simulated with each up to four cloud states as described
above. The differences to the fine calculations are shown in Figure 7, assuming that those
represent the most accurate approximation to a line-by-line calculation. This is supported
by the fact that the spread decreases when considering a higher-resolution approximation
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(except for BTy 7). Median differences for channel are the largest for all channels but BTy 7.
This might reflect the fact that BTy 7 is sensitive to ozone, which is mainly present in the
stratosphere and, thus, might hide the impact of the additional spectral variability due
to the surface emissivity and the volcanic ash refractive index. Outliers reach absolute
differences >2 K (not shown). In some cases (e.g., BTy 2 and BT1g ), the differences between
coarse and medium are rather small, such that the lower resolution parameterization is
applied. Overall, we conclude to use the channel parameterization for BTy 7; coarse for BT,
BTlo_g and BTlZ.O; medium for BT7.3, BTg] and BT13_4.
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Figure 7. Brightness temperature differences for radiative transfer calculations of different REPTRAN parameterizations.
The considered test dataset is described in the text. The boxplot shows the median, first and third quartile (box) and the 5th
and 95th percentile (whiskers).

4.3. Test of the Ash-Free Training Data

The presented method is not expected to reproduce observations on a single pixel
basis as, for example, spatial resolution is too coarse, averaged surface emissivities are used
and the ECMWF model might not represent reality, especially clouds, accurately enough.
However, the aim of the setup is to create a dataset that statistically approximates the
reality. To validate this, 49,701 simulations without ash for 15 July 2015 at 12:00 UTC were
performed, randomly scattered over the SEVIRI disc and compared with the corresponding
SEVIRI measurements (see Figure 2). If RTSIM created no clouds in the atmosphere,
the cloud-free simulation was used, otherwise the simulation containing clouds. The
distributions of the simulated and the corresponding measured brightness temperatures
should be similar, and thereby would indicate that RTSIM creates atmospheric profiles and
libRadtran derives brightness temperatures that generally approximate reality, although
individual samples might deviate from the measurements. Thus, simulations can then be
viewed as a strong training dataset.

Figure 8 shows a two-dimensional histogram for the full dataset of measured against
simulated BTjpg. Most samples are located close to the identity, with slightly more points
above the identity than below, i.e., the simulation tends to overestimate the brightness
temperature. Single points show large differences up to about 80 K between simulation
and measurements, probably when the simulation is cloud-free and reality shows a high
cold ice cloud. Figure 9 shows the median and the 95th percentile of the absolute difference
between the simulated and the measured brightness temperatures. Different subsets are
considered: (a) all samples as well as land and sea samples for clear conditions; (b) clear
and cloudy samples for sea surfaces; (c) viewing zenith angle 0., separated by 40° and
55° for clear conditions over sea; (d) viewing zenith angle 6., separated by 40° and 55° for
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clear conditions over land. Clear conditions are determined by the fact that no cloud layers
were created by RTSIM and that the total cloud cover by ECMWFE is below 25%; of course,
observations might still contain meteorological clouds. The statistical distributions of the
measured and simulated brightness temperatures (and brightness temperature differences
BTDg7_108 and BTD1pg_12,0) are shown as histograms in Figure 10. Figure 11 shows as
an example the distribution of BTjog for the subsets of clear sky land/sea samples and
clear/cloudy samples of sea surfaces.
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Figure 8. BT} g measured by MSG/SEVIRI against corresponding RTSIM and libRadtran results for
the corresponding coordinates.
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Figure 9. The 95th percentile (cross) and median (diamond) of the absolute deviation between the simulated brightness

temperatures and the corresponding MSG/SEVIRI measurements; considered is the full dataset (all) (a) as well as subsets,

i.e., (a) land and sea for cloud-free samples (i.e., no cloud layers simulated, total cloud cover < 0.25), (b) clear and cloudy

(i.e., at least one cloud layer simulated and total cloud cover > 0.25) for sea surfaces and (c) different 6y,, above sea and

(d) land.
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Figure 10. Distributions of the brightness temperature in different MSG/SEVIRI channels as measured from space and as
simulated using RTSIM and libRadtran, separated into 50 bins.
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Figure 11. Distributions of BTy g as measured by MSG/SEVIRI and as simulated using RTSIM and libRadtran: (a) sea and
land surfaces for clear sky conditions; (b) sea surfaces for clear and cloudy conditions.

Atmospheric gases, meteorological clouds and the surface properties are the main
aspects that determine the quality of the simulations. Water vapor is mainly visible in
BT, and BTy 3, with the latter being sensitive at least down to the mid-troposphere [69].
Their brightness temperature distributions in Figure 10 show a good agreement, and, even
on a single pixel basis, the deviations are small, with median absolute deviations mostly
below 1K. The effect of H,O on the atmospheric window channels BTg 7, BT19g and BTy,
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is small [108,136]. However, the single pixel deviations of the window channels are larger
than those of BTy and BT73 when considering only clear sky samples, indicating that
other effects dominate the former. O3 and CO, mainly impact BTy 7 and BTj3 4, respectively.
Their distributions in Figure 10 generally agree well up to a small peak on the right side
that is not fully reproduced. However, as this minor peak is also present in the distributions
of the window channels, it can be expected to stem from the surface properties, particularly
from land surfaces that produce multiple peaks. The single pixel median absolute deviation
for all samples is generally around 2 K.

Meteorological clouds impact the atmospheric window channels. Individual pixel
deviations are remarkable: the median absolute deviation of cloudy samples is ~6K,
with the 95th percentile of the absolute deviation even beyond 30 K. This indicates that
the largest deviations in Figure 8 could be caused by the occurrence of meteorological
clouds, for instance, if they are present in reality but missing in the simulation, or if
the there are significant differences in the cloud top heights. The size of the smaller
deviations might be related to inaccuracies in the cloud properties, e.g., the cloud top
height, the liquid and ice water content derived from the ECMWEF model or 7. derived
from parameterizations. In addition, clouds are described differently in the 1D radiative
transfer calculations than in nature, which has an impact especially in the case of partial
cloudiness, and a random element is applied for the creation of the cloud layers [71].
However, the resulting brightness temperature distributions in Figures 10 and 11 agree
with the SEVIRI measured distributions.

The surface properties (emissivity and skin temperature) influence the atmospheric
window channels as well. As pointed out above, their brightness temperature distributions
show a good agreement (Figure 10). The distributions of BTy g for sea surfaces and clear
sky pixels roughly agree, whereas for land surfaces two peaks of similar height are visible
with the right flank of the simulated distribution shifted towards lower temperatures
(Figure 11a). The single pixel comparison exhibits generally low median absolute devi-
ations (<2 K) for clear sky sea surfaces, but the deviation is larger for land than for sea.
Considering the 6y,.-dependence for sea surfaces, the median absolute deviation is largest
for 55° < 6y,a, which might be related to the strong 0,,,-dependence of the water surface
emissivity for large viewing zenith angles. On the contrary, for land surfaces, the median
absolute deviation is largest for 0y,, < 40°. This seems reasonable as the 6y,,-dependence
is smaller for land surfaces than for water surfaces. Furthermore, a higher 6, leads to
a larger gas column along the optical path, thereby effectively hiding deviations due to
inaccurate surface properties.

The surface emissivity is a climatology over 10 years, whereas the actual emissivity
in the present scene might slightly deviate, e.g., due to wetter or dryer surfaces, more
or less vegetation, etc. [89]. Could this cause the deviations observed for land surfaces?
Neglecting all atmospheric effects, we can estimate the deviation of the surface emissivity
corresponding to the deviation in the simulated brightness temperatures using Planck’s
law. For the wavelength A, let the measured brightness temperature BT), p, be related to an
emissivity €, p, and the simulated one BT, ¢ to €, 5. Their ratio r is

I €As _ exp(c/)\/BT)\,m) -1
€xm  exp(c/A/BT)s)—1

@

with ¢ = 0.0145m K [108]. For BT} ,, between 263K and 303K and BT, ,, — BT, = +4K,
the difference |1 — r| is ca. 0.1, 0.08 and 0.07 for A of 8.7 pm, 10.8 pm and 12 pm, respectively.
For BTg7, such deviations are possible, as the spread in emissivities of typical surfaces is
large in the corresponding spectral regime (sand has emissivities down to 0.7, whereas
water and vegetated surfaces have values close to 1). Around 10.8 pm and 12 um, the
differences in typical surface emissivities are <0.05 [88,89]. Therefore, it seems unlikely that
an error in the surface emissivity is the single cause for the differences in the brightness
temperatures above land surfaces, as their median absolute deviation in the three window
channels are similar.
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Another possible reason might be inaccuracies in the skin temperature. For instance,
it is known that ECMWF underestimates skin temperatures for land at daytime and
overestimates during night: Trigo et al. [137] found errors of the order of 2 to 5K, especially
for semiarid regions (North Africa, Sahara and Namibia), and Johannsen et al. [138] found
in parts underestimations in the order of 5K for the Iberian peninsula when comparing
ECMWEF data with satellite retrievals. The ECMWF data and the surface emissivity have
a spatial resolution of 0.25°, corresponding to roughly 28 km at the SEVIRI sub-satellite
point. However, SEVIRI itself has a resolution of 3km at nadir. Due to this difference,
small-scale features and sudden changes in the surface type (e.g., at coastlines) can lead
to inaccuracies.

To sum up, the comparison indicates that gas profiles are reproduced correctly on a
single pixel basis, similar to sea surfaces in the absence of clouds. For cloudy samples, the
measured and simulated brightness temperature distributions agree well, but considering
individual pixels we find notable deviations. Land surfaces lead to deviations for both,
single pixels (<4K) and the brightness temperature distributions. Especially the good
agreement of the distributions of BTDg7_198 and BTDgg—_120 highlights that relative
deviations within single spectra are small, with only a minor positive bias for BT D1y g_12.0.
Thus, we conclude that the simulations can be used as a training dataset.

4.4. Training, Validation and Test Data

We performed simulations for ~30 million samples. Then, two selections are made:
First, for ash-loaded samples, only those that have BT D1pg_12 < 0 are kept. This threshold
criterion is typical for volcanic ash detection and has been used for VADUGS as well [71]. It
reduces the amount of samples with overlapping signals from meteorological and volcanic
ash clouds, thereby effectively making the classification task slightly simpler for the ANNs.
Second, the selection of ash types similar to Eyjafjallajokull ash is applied to reduce the
complexity of the training datasets. From the remaining data, two sets are formed: the
full dataset (Dataset A) and a subset containing only the ash-loaded samples (Dataset
B). Dataset A is used for the ANNSs for classification and the retrieval of Ty, i.e., the
algorithms that are applied to all satellite measurements. Dataset B is used for the ANNs
of ztop and g, which are only applied to ash-loaded pixels. Dataset A and B are randomly
grouped into a training (70%), a validation (20%) and a test (10%) dataset, as shown in
Table 1. Training and validation datasets are used for the training of the ANNSs; the test
dataset is used to characterize the final algorithms in Piontek et al. [80]. Distributions of
the target values in the training datasets are sketched in Figure 12. Note that they are not
uniformly distributed due to the selections performed as well as the usage of different
volcanic ash types.

Table 1. Information on the different simulated datasets.

Dataset Description Samples Ash Fraction
Training A clear + ash 8,725,531 32.1%
Validation A clear + ash 2,493,719 32.1%
Test A clear + ash 1,252,470 32.3%
Training B only ash 2,798,004 100.0%
Validation B only ash 800,117 100.0%

Test B only ash 405,556 100.0%
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Figure 12. Distributions of: (a) Tiog in Training A; (b) ztop in Training B; (c) 7g in Training B. In (a), only non-zero values

are shown.

5. Training of the ANNs

For the ANNSs, TensorFlow version 1.14.0 [139,140] and Keras version 2.3.1 [141] are
used. Individual ANNSs are trained for the classification, the retrieval of volcanic ash-
induced optical depths at 10.8 pm (7108), cloud top heights (ztop, in meters) and effective
particle radii (7o, in micrometers). The classification ANN differentiates four categories:
clear sky; only meteorological clouds; only volcanic ash clouds; both meteorological and
volcanic ash clouds.

VADUGS directly retrieved o, whereas VACOS derives Ty g as this quantity is more
closely related to the observational data as SEVIRI measures radiances. It can be converted
into m, using k1pg. The wavelength 10.8 pm was chosen (as in [66]) as it corresponds
to one of the SEVIRI channels, is in the atmospheric window, is less influenced by H,O
and volcanic SO, emissions (compared to 8.7 pm, see [29]) and experiences relatively large
extinctions (compared to 12 1um). The ANNSs for the classification and 7 g are trained
with the full training dataset (Dataset A in Table 1), whereas the ANNSs for ziop and 7
are trained only with ash-containing samples (Dataset B). The input features (in Table 2)
contain the seven infrared brightness temperatures from SEVIRI, including BTjpg and
BTj, that are often used for volcanic ash detection [24,25], as well as BTg 7 [31]. Prata and
Grant [33] showed that BTDg7_1» can be even more negative than BTD1g 1. As water
vapor can hide the volcanic ash [27,43], BTy » and BT7 3 are included, which are sensitive to
water vapor [69]. Similarly, BTg7 and BTj3 4 are included to treat O3 and CO, [69]. From
ECMWE, the skin temperature is included as a reference for the temperature profile, as well
as estimates of the total column water, water vapor and ozone to account for the influence
of gases and meteorological clouds on the satellite measurements and thereby to extract the
impact of the volcanic ash. Latitude and longitude allow the ANNs to learn the geography
to some extent and latitudinal dependencies of the atmospheric profile. The land /sea-mask
partly encodes the very different emissivities [88,89] as well as differences of the atmosphere
and cloud layers above land and sea. Day of year and hour of day are included to consider
seasonal and diurnal variations in the atmospheric properties, respectively. Their sine
and cosine are used to avoid discontinuities (e.g., between 31 December and 1 January or
24:00 and 0:00) and make the encoding unambiguous [78]. The satellite viewing zenith
angle is included to correct slant observations, leading to longer optical paths through the
atmosphere for higher 6y,,. 71 is included as an input feature for the ANNs of zop and
teff to make use of the previously retrieved information. Finally, the “clear” brightness
temperatures BTg 7 o, BT108, or and BTy i are given as input. Those correspond to the
brightness temperatures that would be measured in absence of the volcanic ash clouds (but
with meteorological clouds if present) to quantify the surroundings [27,31,45].
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Table 2. Model settings and input features for the ANNs retrieving the classification, Tiog, Ztop and 7.g. ¢ denotes the

standard deviation. The ANN architectures are given as lists of neurons per layer, with the first number giving the amount

of input neurons, the second number the amount of neurons in the first hidden layer and the last number the amount of

output neurons.

Classification T10.8 Ztop Teff
Model setting
Input/output standardization X X X X
LeCun normal distributed initialization X X X X
Add Gaussian noise to input (¢ = 0.1) X X
Architecture 19-100-100-100-4 19-100-100-100-1 23-100-100-100-1 23-100-100-100-1
Activation function (hidden neurons) tanh tanh tanh tanh
Activation function (output neurons) softmax linear linear linear
Loss function cross entropy mean squared error mean squared error mean squared error
Sample weighting X
Nadam training algorithm X X X X
Epochs trained 60,000 2000 2000 2000
Feature (unit/range)
BTg.» (K) X X X X
BT7.3 (K) X X X X
BTg7 (K) X X X X
BTy7 (K) X X X X
BTlO.S (K) X X X X
BTys (K) X X X X
BTi34 (K) X X X X
Skin temperature (K) X X X X
Binary land /sea mask X X X X
Total column water vapor (kg m~2) X X X X
Total column water (kg m~2) X X X X
Total column ozone (kg m~2) X X X X
Latitude (—90 to 90°) X X X X
Longitude (—180 to 180°) X X X X
Sine of day of year X X X X
Cosine of day of year X X X X
Sine of hour of day X X X X
Cosine of hour of day X X X X
Cosine of satellite zenith angle X X X X
Ty0.8 (retrieved) X X
BTg.7,a1r (K) X X
BTig3s,cir (K) X X
B T12, clr X X X

Input and output data are standardized. As 119 g is the result of a previous retrieval
and BT) (, is estimated from the surrounding satellite measurements for application
to real data (Section 6), those values are prone to errors. Therefore, the ANNs for zop
and 7 apply a Gaussian noise with standard deviation of 0.1 on the input layer during
training. Each ANN consists of three hidden layers with 100 neurons each. This choice
is motivated by Strandgren et al. [78], who investigated different ANN structures when
developing CiPS, i.e., a retrieval similar to VACOS but for cirrus clouds. They found the
best performance for their most complex ANN, having three hidden layers with 64 neurons
each. The output layers of our ANNSs have a single neuron for regressions or four neurons
for the classification. Note that the ANNs now have roughly twice as many trainable
parameters as VADUGS: For example, an ANN with 19 inputs, 3 x 100 hidden neurons and
a single output has 22,301 parameters, whereas the VADUGS architecture with 17 inputs,
1 x 600 hidden neurons and 2 outputs has 12,002 free parameters. The hidden layers
use the hyperbolic tangent as activation function, while the output layer uses a linear
function for regressions and a softmax function for classification [142]. The last allows the
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classification ANN to produce a normalized four-dimensional output vector, where each
component can be roughly interpreted as the probability of the corresponding category.
All neurons use bias neurons and are initialized by a LeCun normal distribution [87]. The
mean squared error is utilized as loss function for regressions and the categorical cross
entropy for classifications [142]. For the training of classification, ziop and 7 retrievals,
all samples are weighted equally (with 1) when calculating the total loss of a batch of
samples. For the ANN of 1y g, the following sample weighting with respect to the true
T108 is applied to increase the importance of the few samples with small 1j05 (e.g., less
than 3% of the samples in the training subset of Dataset A have Tjpg < 0.6) in comparison
to the many ash-free and very ash-loaded samples:

0< Ti0s <0001 : 03
0.001 < 7105 <02 : 5
02 < Tpg <05 : 3
05<T0s<1 : 001
1<T9g : 0.001

The weight for 1198 < 0.001 is introduced to reduce the focus on very low concentra-
tions that might be hardly retrievable anyway. With the weights for 0.001 < 795 < 0.5 the
focus on usual concentrations is increased. To avoid a general overestimation due to the
many samples with large 1103 (see Figure 12), lower weights for 1i0g > 0.5 are applied.
The numerical values are determined by testing different settings. The Nadam (short for
Nesterov-accelerated Adaptive Moment Estimation) algorithm is applied during the training
with recommended parameters (learning rate = 0.001, 8; = 0.9 and = 0.999 [143,144]),
with batch sizes of 1000. For regressions, the learning rate is reduced by a factor 100 every
500 epochs, with 2000 epochs in total, reaching a minimum of the loss function evaluated
on the validation dataset, with the loss function remaining constant for several hundred
epochs. For the classification ANN, the learning rate is reduced once after 500 epochs
and training is stopped after 60,000 epochs, as accuracy (assuming a threshold of 0.5 for
the four categories) calculated for the validation dataset decreases by <0.065% in the last
10,000 epochs.

Reality (i.e., atmospheric and volcanic ash properties) is very complex and variable
and has only been approximated by the simulated data. A possible pitfall of this approach
is that ANNs might overfit with respect to both the simulated training and the validation
data. For example, some of the first ANNs we created here were trained successfully
considering the simulated datasets, but revealed weaknesses when applied to real satellite
data, such as misinterpretation of meteorological clouds as volcanic ash or wrong retrievals
for thin ash clouds. To overcome these issues, we applied different selections with respect
to the simulated datasets when training the final ANNs and introduced Gaussian noise
layers and sample weightings as outlined above.

6. Notes on the Application

To perform the VACOS retrieval, the ANNSs are applied in two steps: First, the
classification ANN is used to detect volcanic ash. Alternatively, 71¢ g is retrieved to find ash
clouds; reasonable thresholds are found in [80]. Second, 7ef and ziop are retrieved for all
ash-containing pixels. In order to apply the ANNS, the input features as given in Table 2
have to be composed. For the training, 719g and BT) ., at wavelength A are simulated
and, therefore, exact. However, for the application on satellite data, the input feature
Ty0.8 is obtained from the retrieval result of the corresponding ANN, whereas BT) , is
estimated from the SEVIRI images. We assume that the ash clouds are spatially limited and
the highest BT) in the close surrounding of a specific pixel corresponds to the value that
would be measured in absence of the volcanic ash cloud [115]. Therefore, for each pixel, the

maximum BT, within a radius of 12 pixels is determined, denoted BT;2 P¥. similar pixel
areas were considered by Krebs et al. [115]. Assuming a pixel size of 3 km, a surrounding
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of at least 36 km would be considered, which is sufficient for ash plumes close to the
volcano [19]. At greater distance, ash clouds can become wider [6]; thus, an additional step
is implemented. The SEVIRI disc is split in 10 x 10 boxes and the maximum of BT}\2 P of

all presumably ash-free pixels, i.e., pixels with

12 px 12 px

BTlO.S pm BT12.0 um >0 ®)
is determined within each box, called BTXef . Now, for each pixel in the box, the brightness
temperature difference is checked: if Equation (3) is not fulfilled, which indicates that
volcanic ash still influences the measurement, the replacement

(BT\*P* + BTy) /2 — BT)*P* @)

is conducted. This last step is repeated twice in case Equation (3) remains unfulfilled. The

final BT}\2 P*is used as an approximation for BT .. A uniform filter of size 5 x 5 pixels is
applied for both BT) ., and the retrieved 1103 (see [80]). Similarly, the total column water
vapor and total column water are taken from an external source, e.g., a model, and might
be arbitrarily wrong. However, the training dataset includes for a specific atmospheric
profile samples with and without meteorological clouds (if those are theoretically possible
due to the ECMWEF data), both with the same total column quantities. Thus, the ANNs
learn a certain robustness with respect to inaccuracies of the total column water and total
column water vapor. This is different for the total column ozone and skin temperature,
which are also obtained externally. The preferred source is ECMWEF ERAS as this was also
used to create the training data.

The results of the ANNSs can be treated in different ways. The classification result can
either be used directly or a binary ash flag (i.e., ash or no ash) can be calculated by adding
the probabilities of the two ash-free and the two ash-containing categories, respectively.
Using the retrieved ziop and zext = 0.4zop [125,126], one can derive an estimate for the
geometrical thickness [127]. The retrieved Tjpg can be converted into m., using kiog;
typical values for different xs; and r.¢ are given in Table 3 as derived from all data in
Figure 6. Generally, kqg g increases with increasing x; when r.¢ = const., except for ashes
with a 7o = 0.6 pm, where the opposite is the case. For xs = const., kyg g is largest in the
case ot = 1.8 1um and decreases with increasing .. In practice, to determine kqg g, one
needs to know r.¢ and x;. The former can be approximated by satellite retrievals, the age
of an ash cloud or the distance to its source. The latter can be estimated using previous
knowledge about the volcanic source or laboratory analyses of volcanic ash samples when
considering past eruptions. If none of this information is given, one can simply assume
k10 = 200m? kg ! which produces roughly the mean 1., considering the extremal values
140 m? kg’l and 328 m? kg’l of the mean kg g in Table 3.

Table 3. Mean mass extinction coefficients at 10.8 um (k19 g) and their standard deviations for different volcanic ashes

(from [23]) given in m? kg~!. Subsets of different effective radii r.¢ and silica contents xs are considered.

xs/wt.% reff/um
0.6 18 3.0 4.5 6.0
45 229+9 279 +23 228 +15 173+ 6 140 £10
50 210+ 14 290 £ 25 241+17 1815 146 £ 10
55 19418 305 4= 28 255419 190 -4 152+ 11
60 178 + 20 310 +31 263 £21 195+5 155 £12
65 164 £22 314 +33 271424 20145 159 £ 12
70 152 £24 3214+ 34 282 426 208 &5 164 +13
75 144 + 26 328 + 35 292 + 28 215+5 169 £13
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For the visible spectrum, mass extinction coefficients of 690 m? kg~! at A = 532 nm [145]
and 637 m? kg ! for A = 355nm [146] were found for Eyjafjallajokull volcanic ash. As the
refractive index exhibits only a small variability in the visible spectrum with respect to
the chemical composition [75,147], these mass extinction coefficient estimates can also be
assumed to be representative for other types of volcanic ash. Thus, the optical depth of a
volcanic ash cloud is roughly 3.3 times larger in the visible spectrum when comparing to a
typical k10 g of 200m? kg~ at 10.8 um. Finally, combining ., and zex: allows estimating
the average mass volume concentration c.

VACOS can be applied quickly: processing a full MSG/SEVIRI image (3712 x 3712 pix-
els) on an ordinary desktop personal computer (using a single core of an Intel Core i5-6600
CPU at 3.30 GHz) with an off-the-shelf, uncustomized version of TensorFlow, each ANN
needs ~70s, excluding input/output processing. Performance could be increased by re-
stricting the retrieval, e.g., only 719 g could be retrieved for the full disc to detect volcanic
ash, whereas zop and 7 could be determined for ash-contaminated pixels only. Thus, it is
possible to use VACOS operationally.

7. Conclusions

The new retrieval algorithm VACOS (Volcanic Ash Cloud properties Obtained from SE-
VIRI) is introduced. It derives a pixel classification, cloud top height, effective particle
radius and (indirectly) the mass column concentration, each of which is done individually
by a shallow artificial neural network. The artificial neural networks receive seven bright-
ness temperatures of the infrared channels of the geostationary instrument MSG/SEVIRI
as well as auxiliary data from ECMWFE. Using MSG/SEVIRI allows for a comparably high
temporal and spatial resolution of the retrievals. Focusing on the infrared spectrum al-
lows the application at day and night. After the time-consuming creation of a radiative
transfer simulated training dataset and the training itself, artificial neural networks are
fast [64,78], have good generalization skills [52] and a high robustness with respect to
perturbations [67,68]. The training dataset is of main importance for the development of
artificial neural networks. Here, we perform one-dimensional radiative transfer calcula-
tions for a large set of typical atmospheric conditions with and without generic volcanic
ash clouds. The radiative transfer’s input data are described and the central aspects dis-
cussed, in particular pointing out the strong dependence of surface emissivities on the
surface type and the viewing zenith angle, the significant variability of the atmospheric
state between different years and the need for a high temporal resolution to also cover its
diurnal variability. A special focus is put on the representation of the volcanic ash clouds.
Macrophysical properties are reviewed, and microphysical and optical properties are re-
ceived from Piontek et al. [23]. The usage of a large set of refractive indices representing
different volcanic ash types with respect to their silica content and glass-to-crystal ratio
is a major difference to most other artificial neural network-based volcanic ash retrievals
using passive imagers: they either rely on a single or a handful of volcanic ash refractive
indices or use training datasets consisting of only a few different volcanic ash clouds. We
perform a validation of the ash-free radiative transfer calculations by comparing those
with real MSG/SEVIRI measurements for a specific scene. An overall agreement of the
statistical distributions of the brightness temperatures is found, showing that the composed
atmospheric and surface data are representative for the real world. Comparing simulations
and measurements on a single pixel basis, we find indications that atmospheric gas profiles
and sea surface emissivities are reproduced with a high agreement. For cloudy samples,
the measured and simulated brightness temperature distributions agree, but considering
individual pixels significant deviations are found (with 95th percentiles of the absolute
deviations >30K), most likely introduced by a random element in the implementation
of the maximum-random overlap configuration in a one-dimensional atmosphere and
possible different locations of clouds in the model and reality. Land surfaces lead to large
deviations, for single pixels (with median absolute deviations >3 K) as well as for the
brightness temperature distributions, likely due to inaccurate skin temperatures. Finally,
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we describe the architecture of the different artificial neural networks and their technical
setup, input features, training and application.

Our work can be extended in different directions: the validation of the ash-free
simulations shows that the representation of land surfaces is not fully realistic and could
be improved, e.g., by using other model results or satellite retrieved skin temperatures.
Volcanic ash plumes close to the vent often carry SO, [39,42] or ice water [148-150], both
of which are neglected for reasons of simplicity. Other aerosols are also noteworthy;,
especially mineral dust which has similar refractive indices as volcanic ash due to their silica
contents [11]. Including both in the training data, it might be possible to train an algorithm
to separate volcanic ash from dust. The artificial neural networks could be improved by
using additional input data, e.g., model-based vertical temperature profiles [68] or extremal
or average brightness temperatures of the surrounding of a pixel [78]. The latter would
require the simulation of extended areas, i.e., images of volcanic ash clouds in different
atmospheric and surface settings, which would also enable the use of convolutional neural
networks for image recognition [151]. As other geostationary passive imagers have similar
spectral channels as MSG/SEVIRI [69,83,85,86], the algorithm might be transferable to
these instruments [152]. A thorough validation of VACOS is presented in a companion
paper [80]. An operational application by the German weather service (DWD) is ongoing.

To conclude, the new volcanic ash retrieval allows detecting and monitoring volcanic
ash clouds above Europe, Africa and the Atlantic with high spatial and temporal resolu-
tion, enabling volcanic ash-related scientific investigations as well as aviation security-
related applications.
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