Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (352)

Search Parameters:
Keywords = volatile sulfurous compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1212 KB  
Article
Fermentation Effect on Volatile Evolution of Plant-Based Dry-Cured Sausages
by José María Martín-Miguélez, Josué Delgado, Alberto González-Mohino and Lary Souza Olegario
Foods 2026, 15(2), 342; https://doi.org/10.3390/foods15020342 - 17 Jan 2026
Viewed by 213
Abstract
This study evaluates the effect of fermentation on the volatile composition of plant-based dry-cured sausages. The goal was to understand how different lactic acid bacteria (LAB) strains influence the aroma profile during ripening. Five experimental groups were tested, including uninoculated controls and sausages [...] Read more.
This study evaluates the effect of fermentation on the volatile composition of plant-based dry-cured sausages. The goal was to understand how different lactic acid bacteria (LAB) strains influence the aroma profile during ripening. Five experimental groups were tested, including uninoculated controls and sausages inoculated with selected LAB strains or a commercial starter. A total of 51 volatile compounds were identified and tracked over an 11-day fermentation period using HS-SPME-GC-MS. Results showed that LAB fermentation reduced compounds associated with off-flavors, such as aldehydes and sulfur compounds, and promoted the formation of volatiles responsible for pleasant aromas like buttery and fruity notes. Specific LAB strains, especially Lacticaseibacillus casei 116, showed strong potential in improving the volatile profile of plant-based meat analogs. These findings suggest that fermentation using selected LAB can enhance the sensory quality of plant-based sausages, helping them better mimic traditional meat products. Full article
Show Figures

Figure 1

20 pages, 4718 KB  
Article
Forward Osmosis for Produced Water Treatment: Comparative Performance Evaluation of Fabricated and Commercial Membranes
by Sunith B. Madduri and Raghava R. Kommalapati
Polymers 2026, 18(2), 197; https://doi.org/10.3390/polym18020197 - 10 Jan 2026
Viewed by 375
Abstract
Produced water (PW) generated from oil and gas operations poses a significant environmental challenge due to its high salinity and complex organic–inorganic composition. This study evaluates forward osmosis (FO) as an energy-efficient approach for PW treatment by comparing a commercial cellulose triacetate (CTA) [...] Read more.
Produced water (PW) generated from oil and gas operations poses a significant environmental challenge due to its high salinity and complex organic–inorganic composition. This study evaluates forward osmosis (FO) as an energy-efficient approach for PW treatment by comparing a commercial cellulose triacetate (CTA) membrane and a fabricated electrospun nanofibrous membrane, both modified with a zwitterionic sulfobetaine methacrylate/polydopamine (SBMA/PDA) coating. Fourier Transform Infrared Spectroscopy (FTIR) spectra verified the successful incorporation of SBMA and PDA through the appearance of characteristic sulfonate, quaternary ammonium, and catechol/amine-related vibrations. Scanning electron microscopy (SEM) imaging revealed the intrinsic dense surface of the CTA membrane and the highly porous nanofibrous architecture of the electrospun membrane, with both materials showing uniform coating coverage after modification. Complementary analyses supported these observations: X-ray Photoelectron Spectroscopy (XPS) confirmed the presence of nitrogen, sulfur, and chlorine containing functionalities associated with the zwitterionic layer; Thermogravimetric Analysis (TGA) demonstrated that surface modification did not compromise the thermal stability of either membrane; and contact-angle measurements showed substantial increases in surface hydrophilicity following modification. Gas chromatography–mass spectrometry (GC–MS) analysis of the Permian Basin PW revealed a chemically complex mixture dominated by light hydrocarbons, alkylated aromatics, and heavy semi-volatile organic compounds. FO experiments using hypersaline PW demonstrated that the fabricated membrane consistently outperformed the commercial membrane under both MgCl2 and Na3PO4 draw conditions, achieving up to ~40% higher initial water flux and total solids rejection as high as ~62% when operated with 2.5 M Na3PO4. The improved performance is attributed to the nanofibrous architecture and zwitterionic surface chemistry, which together reduced fouling and reverse solute transport. These findings highlight the potential of engineered zwitterionic nanofibrous membranes as robust alternatives to commercial FO membranes for sustainable produced water treatment. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

15 pages, 1417 KB  
Article
The Role of Reduced Surface Sulfur Species in the Removal of Se(VI) by Sulfidized Nano Zero-Valent Iron
by Stefan Peiffer, John Mohanraj, Kerstin Hockmann, Jörg Göttlicher, Mukundan Thelakkat and Bouchra Marouane
Minerals 2026, 16(1), 68; https://doi.org/10.3390/min16010068 - 9 Jan 2026
Viewed by 260
Abstract
Sulfidized nano zero-valent iron (S-nZVI) particles are known to stimulate the reductive removal of various oxyanions due to enhanced electron selectivity and electron conductivity between the Fe(0) core and the target compound. Sulfidation creates a number of reactive sulfur species, the role of [...] Read more.
Sulfidized nano zero-valent iron (S-nZVI) particles are known to stimulate the reductive removal of various oxyanions due to enhanced electron selectivity and electron conductivity between the Fe(0) core and the target compound. Sulfidation creates a number of reactive sulfur species, the role of which has not yet been investigated in the context of S-nZVI. In this study, we investigated the contribution of reactive sulfur species to Se(VI) reduction by S-nZVI at different molar S/Fe ratios (0, 0.1 and 0.6) and Se(VI) concentrations (0, 5 and 50 mg L−1). In the presence of S-nZVI, the rate of reduction was accelerated by a factor of up to ten. X-ray Absorption Near-Edge Structure (XANES) spectroscopy and surface-sensitive X-ray photoelectron spectroscopy (XPS) identified Se(0) as the predominant reduction product (~90%). The reduction reaction was accompanied by a loss of FeS and the formation of surface-bound Fe(II) polysulfide (FeSx) and S(0) species. Likewise, wet chemical extraction techniques suggested a direct involvement of acid volatile sulfide (AVS) species (surface-bound FeS) in the reduction of Se(IV) to Se(0) and formation of S(0). Mass balance estimates reveal that between 9 and 15% of the conversion of Se(0) originates from oxidation of FeS to FeSx. From these findings, we propose that surface-bound Fe sulfide species are important but previously overlooked reactants contributing to the reduction of oxyanions associated with S-nZVI particles, as well as in natural environments undergoing sulfidation reactions. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

16 pages, 728 KB  
Article
Influence of Yeast and Enzyme Formulation on Prosecco Wine Aroma During Storage on Lees
by Jessica Anahi Samaniego Solis, Giovanni Luzzini, Naíssa Prévide Bernardo, Anita Boscaini, Andrea Dal Cin, Vittorio Zandonà, Maurizio Ugliano, Olga Melis and Davide Slaghenaufi
Beverages 2026, 12(1), 8; https://doi.org/10.3390/beverages12010008 - 6 Jan 2026
Viewed by 442
Abstract
This study investigated the impact of two yeast strains (SP665 and CGC62) and glucanase enzyme treatments (A-D) on the secondary fermentation kinetics and aroma profile of sparkling Prosecco wines. The strains exhibited markedly different fermentation behaviors: SP665 induced rapid refermentation, reaching 8.5 bar [...] Read more.
This study investigated the impact of two yeast strains (SP665 and CGC62) and glucanase enzyme treatments (A-D) on the secondary fermentation kinetics and aroma profile of sparkling Prosecco wines. The strains exhibited markedly different fermentation behaviors: SP665 induced rapid refermentation, reaching 8.5 bar in 46 days, while CGC62 showed a slower fermentation rate, reaching 6.5 bar in 64 days. Despite these kinetic differences, basic enological parameters after refermentation and following three months of lees aging were similar for both strains. A total of 66 volatile compounds across various chemical families were identified and quantified. Principal component analysis (PCA) revealed that aging time (T1 vs. T2) was the main driver of variability (50.74% of total variance), with SP665 and CGC62 wines showing distinct profiles. At T1, SP665 wines had higher levels of acetate esters and norisoprenoids, while CGC62 wines were richer in volatile sulfur compounds (VSCs) and monoterpenoids. At T2, SP665 wines showed increased levels of carbon disulfide, higher alcohols, and ethyl butanoate, whereas CGC62 wines retained higher concentrations of varietal compounds and certain esters. The effect of glucanase enzymes varied depending on yeast strain and aging stage. Enzyme treatments, especially C (β-glucanase) and D, influenced the concentration of several aroma compounds, particularly in CGC62 wines, enhancing varietal aromas and esters. However, the impact on SP665 wines was more limited and emerged primarily after aging. Although differences in aroma composition were statistically significant, most changes were below olfactory perception thresholds. Overall, glucanase enzymes and yeast selection influenced aroma development, though their effects may have limited sensory relevance. Full article
(This article belongs to the Section Wine, Spirits and Oenological Products)
Show Figures

Figure 1

18 pages, 2095 KB  
Article
Comparative Evaluation of the Texture, Taste, and Flavor of Different Varieties of White Radish: Relationship Between Substance Composition and Quality
by Xinzhu Cai, Wanfu Hou, Li Zhang, Qingbiao Wang, Tianran Liu, Xiaoyan Zhao and Dan Wang
Foods 2026, 15(1), 103; https://doi.org/10.3390/foods15010103 - 29 Dec 2025
Viewed by 372
Abstract
A systematic understanding of the overall flavor and taste characteristics across different white radish varieties is still lacking. This study selected six white radish varieties and analyzed their texture, taste, and flavor profiles. The results showed that JYHX had excellent hardness and chewiness, [...] Read more.
A systematic understanding of the overall flavor and taste characteristics across different white radish varieties is still lacking. This study selected six white radish varieties and analyzed their texture, taste, and flavor profiles. The results showed that JYHX had excellent hardness and chewiness, and CKJRM had the highest brittleness. The total sugar content of XY418 was the highest, and the sweetness was the most prominent. The umami and bitterness of CKXY and XY477 contributed significantly. A total of 43 volatile compounds were detected by gas chromatography–mass spectrometry (GC-MS), and CKFM12 had the highest content of sulfur-containing compounds. Dimethyl trisulfide and erucin were the key substances for the characteristic flavor of white radish. In this study, the texture, taste, and flavor characteristics of several white radish varieties and their potential biochemical components (cell wall substances, amino acids, volatile compounds) were comprehensively compared and analyzed for the first time. These findings provide a scientific basis for targeted quality evaluation, flavor improvement, and variety selection based on specific cooking applications and processing needs. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

16 pages, 3600 KB  
Article
Evolution of Physicochemical Properties and Volatile Organic Compound Profiles in Pre-Cooked Braised Chicken During Storage
by Hewei Shi, Lichuang Cao, Yaxin Bai, Yu Wang, Sihao Liu, Lishui Chen, Jiansheng Zhao, Shaohua Meng and Junguang Li
Foods 2026, 15(1), 91; https://doi.org/10.3390/foods15010091 - 29 Dec 2025
Viewed by 272
Abstract
This study aimed to characterize the physicochemical, structural, and volatile compound changes in commercially sterilized pre-cooked braised chicken (PBC) during storage at 25 °C, using analyses conducted every 30 days from 30 to 180 days. Assessed parameters included microstructure, color, texture, pH, malondialdehyde [...] Read more.
This study aimed to characterize the physicochemical, structural, and volatile compound changes in commercially sterilized pre-cooked braised chicken (PBC) during storage at 25 °C, using analyses conducted every 30 days from 30 to 180 days. Assessed parameters included microstructure, color, texture, pH, malondialdehyde (MDA) content, Ca2+-ATPase activity, and volatile organic compounds (VOCs). Significant quality changes occurred during storage. Specifically, the L* value decreased, and the a* value increased, while hardness, springiness, chewiness, and Ca2+-ATPase activity declined. pH increased from 6.01 to 6.59, and MDA content rose from 10.16 to 23.42 nmol/g. 91 VOCs were identified by gas chromatography-ion mobility spectrometry (GC-IMS), comprising 13 alcohols, 18 aldehydes, 18 ketones, 3 acids, 9 esters, 12 hydrocarbons, 6 aromatics, and 12 others. VOC profiles shifted dynamically: key aldehydes and ketones decreased initially, then increased, whereas alcohols, esters, hydrocarbons, and sulfur-containing compounds increased, then decreased. Prolonged storage significantly deteriorated the quality and altered the flavor profile, providing insights for PBC storage. Full article
(This article belongs to the Section Meat)
Show Figures

Graphical abstract

27 pages, 1223 KB  
Article
Controlling Off-Odors in Plant Proteins Using Sequential Fermentation
by Manpreet Kaur, Charlotte Gray and Sheryl Barringer
Foods 2026, 15(1), 39; https://doi.org/10.3390/foods15010039 - 23 Dec 2025
Viewed by 570
Abstract
Off-odors produced by volatile compounds remain a major barrier to consumer acceptance of plant-based proteins. This study presents a novel two-stage fermentation strategy to effectively reduce undesirable volatiles in eight plant proteins. A sequential fermentation process was developed using Lactobacillus plantarum in Stage [...] Read more.
Off-odors produced by volatile compounds remain a major barrier to consumer acceptance of plant-based proteins. This study presents a novel two-stage fermentation strategy to effectively reduce undesirable volatiles in eight plant proteins. A sequential fermentation process was developed using Lactobacillus plantarum in Stage 1 and a traditional yogurt culture, Streptococcus thermophilus, Lactobacillus delbrueckii subsp. Bulgaricus and Lactobacillus acidophilus, in Stage 2. This method was applied to solutions of 9% soy, pea, chickpea, mung bean, faba bean, rice, barley-rice, and hemp proteins. Volatile profiles were analyzed via Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) and sensory evaluation before and after fermentation. The two-stage fermentation resulted in significant deodorization, with 95–99% reduction in key odorants such as hexanal, 2-pentylfuran, methoxypyrazines, and sulfur compounds across all proteins. The sequential approach significantly outperformed a one-stage fermentation. Allulose enhanced L. plantarum activity while strawberry preserves supported traditional yogurt culture performance. Non-fermentable additives such as pectin, xanthan gum, and oil had minimal effects on volatiles. The proposed fermentation method offers an effective, scalable, and clean-label solution for mitigating off-odors in plant-based proteins. By leveraging microbial metabolism and formulation synergies, this strategy provides a foundation for developing more palatable plant-based dairy alternatives. Full article
Show Figures

Figure 1

18 pages, 4562 KB  
Article
Composite Modified Clay Mineral Integrated with Microbial Active Components for Restoration of Black-Odorous Water
by Rui Ni, Qian Yang, Bingyang Wang, Gezi Li, Jianqiang Zhao, Houkun Zhang, Xiaoqiu Zhang, Wei Fang, Dong Xu, Hui Gong, Guoliang Bai and Bolin Li
Sustainability 2026, 18(1), 33; https://doi.org/10.3390/su18010033 - 19 Dec 2025
Viewed by 335
Abstract
Black-odorous water pollution presents a serious threat to aquatic ecosystems and severely hinders the sustainable development of the ecological environment, as conventional remediation technologies often fall short in achieving the simultaneous removal of multiple pollutants. In this study, a novel composite remediation agent [...] Read more.
Black-odorous water pollution presents a serious threat to aquatic ecosystems and severely hinders the sustainable development of the ecological environment, as conventional remediation technologies often fall short in achieving the simultaneous removal of multiple pollutants. In this study, a novel composite remediation agent was developed by integrating microbial active components with modified clay minerals—sodium-modified zeolite (Na-Z) and magnesium–aluminum–lanthanum layered ternary hydroxides loaded onto sulfuric acid-modified bentonite (Mg-Al-La-LTHs@SBt)—through gel-embedding immobilization. This integrated system enabled the synergistic remediation of both overlying water and sediment pollutants. The modified clay minerals exhibited strong adsorption capacity for nitrogen and phosphorus compounds in the overlying water. Under 25 °C conditions, the composite agent achieved removal efficiencies of 58.14% for ammonium nitrogen (NH4+-N) and 88.89% for total phosphorus (TP) while significantly reducing sedimentary organic matter and acid volatile sulfide (AVS). Notably, the agent retained substantial remediation efficacy even under low-temperature conditions (5 °C). High-throughput microbial community analysis revealed that the treatment enriched beneficial phyla (e.g., Proteobacteria) and beneficial genera (e.g., Thiobacillus) and suppressed sulfate-reducing groups (e.g., Desulfobacterota), promoting favorable nitrogen and sulfur transformations. These results provide a robust material and methodological basis for efficient, synergistic restoration of black-odorous water and the sustainable development of water resources. Full article
(This article belongs to the Topic Water-Soil Pollution Control and Environmental Management)
Show Figures

Figure 1

13 pages, 399 KB  
Article
Comprehensive Evaluation of Physicochemical Parameters in Retail Chicken Meat
by Ángela Serrano Ayora, Carmen Avilés-Ramírez, Rosa M. García-Valverde and Andrés L. Martínez Marín
Foods 2025, 14(24), 4276; https://doi.org/10.3390/foods14244276 - 12 Dec 2025
Viewed by 519
Abstract
The aim of the present study was to characterize the chemical and quality traits of retail chicken meat in Spain. A total of 39 breast (Pectoralis major) samples were collected from large stores across three seasons in 2024 (13 samples per [...] Read more.
The aim of the present study was to characterize the chemical and quality traits of retail chicken meat in Spain. A total of 39 breast (Pectoralis major) samples were collected from large stores across three seasons in 2024 (13 samples per season). All samples were consistently sourced from the same 13 suppliers, that collectively account for more than 70% of Spain’s broiler production. Based on retail label claims, samples were grouped as either ‘non-certified’ (no claims; 7 samples per season) or ‘certified’ (certified claims regarding distinctive dietary and slaughter age practices; 6 samples per season). Proximate composition, quality traits (pH, color, water-holding capacity, texture, oxidative stability), and the profiles of fatty acids (FAs) and volatile organic compounds (VOCs) were analyzed. Meat from the certified group had a higher protein content (22.37% vs. 20.62%; p < 0.01) and lower thawing (3.22% vs. 6.59%; p < 0.001) and cooking losses (14.09% vs. 24.64%; p < 0.01). Certified meat was also darker (lower L*: 48.48 vs. 52.59; p < 0.05) and exhibited a more intense yellow color (higher b*: 18.66 vs. 4.22, hue angle: 87.63 vs. 66.59, and chroma: 18.71 vs. 4.62; all p < 0.001). The intramuscular fat of certified meat contained less monounsaturated FAs (34.72% vs. 40.32%; p < 0.001) and more polyunsaturated FAs (28.82% vs. 23.55%; p < 0.001). Eight of the thirteen nutritional indices derived from the FAs profile were more favorable in the certified group. A total of 171 VOCs were identified, with sulfur compounds being more abundant in certified meat (0.94% vs. 0.67%; p < 0.05). In conclusion, retail chicken meat grouped according to commercial labeling possesses a distinct chemical and quality profile. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

28 pages, 2584 KB  
Article
Whole-Genome Analysis of PGP Endophytic Bacillus subtilis 10-4: Unraveling Molecular Insights into Plant Growth and Stress Resilience
by Oksana Lastochkina and Liudmila Pusenkova
Int. J. Mol. Sci. 2025, 26(24), 11904; https://doi.org/10.3390/ijms262411904 - 10 Dec 2025
Viewed by 663
Abstract
The endophytic bacterium Bacillus subtilis 10-4 is a potent bioinoculant, previously shown to enhance growth and resilience to abiotic/biotic stresses across various crops. However, the genetic basis underlying these beneficial traits remains unexplored. In this study, a whole-genome analysis of B. subtilis 10-4 [...] Read more.
The endophytic bacterium Bacillus subtilis 10-4 is a potent bioinoculant, previously shown to enhance growth and resilience to abiotic/biotic stresses across various crops. However, the genetic basis underlying these beneficial traits remains unexplored. In this study, a whole-genome analysis of B. subtilis 10-4 was performed to gain the molecular determinants of its plant-beneficial effects. The Illumina MiSeq-based assembly revealed a genome of 4,278,582 bp (43.5% GC content) distributed across 19 contigs, encoding 4314 predicted protein-coding sequences, 42 tRNAs, and 6 rRNAs. This genomic architecture is comparable to other sequenced B. subtilis strains. The genomic annotation identified 331 metabolic subsystems with a total number of 1668 functions, predominantly associated with amino acid (281) (16.9%) and carbohydrate (247) (14.9%) metabolism. In silico genomic analysis uncovered a diverse repertoire of genes significant for plant growth and stress resilience. These included genes for colonization (i.e., exopolysaccharide production, biofilm formation, adhesion, motility, and chemotaxis), nutrient acquisition (i.e., nitrogen, phosphorus, iron, potassium, and sulfur metabolisms), and synthesis of bioactive compounds (auxins, salicylic acid, siderophores, gamma-aminobutyric acid, vitamins, and volatiles) and antimicrobials. The latter was supported by identified biosynthetic gene clusters (BGCs) for known antimicrobials (100% similarity) bacilysin, bacillaene, subtilosin A, and bacillibactin, as well as clusters for surfactin (82%), fengycin (80%), and plipastatin (46%), alongside a unique terpene cluster with no known similarity. Additionally, genes conferring abiotic stress tolerance via glutathione metabolism, osmoprotectants (e.g., proline, glycine betaine), detoxification, and general stress response were identified. The genomic evidence was consistent with observed plant growth improvements in laboratory assays (radish, oat) and a field trial (wheat) upon 10-4 inoculation. Thus, the findings elucidate the genomic background of B. subtilis 10-4’s beneficial effects, solidifying its potential for utilization as a bioinoculant in sustainable crop production under changing climate accompanied by multiple environmental stresses. Full article
(This article belongs to the Special Issue Plant Responses to Microorganisms and Insects)
Show Figures

Figure 1

24 pages, 4123 KB  
Review
A Review of Simultaneous Catalytic Removal of NOx and VOCs: From Mechanism to Modification Strategy
by Zhongliang Tian, Xingjie Ding, Hua Pan, Qingquan Xue, Jun Chen and Chi He
Catalysts 2025, 15(12), 1114; https://doi.org/10.3390/catal15121114 - 30 Nov 2025
Cited by 2 | Viewed by 925
Abstract
Simultaneous catalytic elimination of nitrogen oxides (NOx) and volatile organic compounds (VOCs) represents a promising technology for addressing the synergistic pollution of fine particulate matters of <2.5 μm diameter (PM2.5) and O3. Nevertheless, it has been maintaining [...] Read more.
Simultaneous catalytic elimination of nitrogen oxides (NOx) and volatile organic compounds (VOCs) represents a promising technology for addressing the synergistic pollution of fine particulate matters of <2.5 μm diameter (PM2.5) and O3. Nevertheless, it has been maintaining significant challenges in practical implementation, particularly the inherent mismatch in temperature windows between NOx reduction and VOCs oxidation pathways, coupled with catalyst poisoning and deactivation phenomena. These limitations have hindered the industrial application of bifunctional catalysts for the removal of concurrent pollutant. This review systematically explored the fundamental mechanisms and functional roles of active sites in controlling synchronous catalytic processes. The mechanism of catalyst deactivation caused by multiple toxic substances has been comprehensively analyzed, including sulfur dioxide (SO2), water vapor (H2O), chlorine-containing species (Cl*), reaction by-products, and heavy metal contaminants. Furthermore, we critically evaluated the strategies of doping regulation, nanostructure engineering and morphology optimization to enhance the performance and toxicity resistance of catalysts. Meanwhile, emerging regeneration techniques and reactor design optimizations are discussed as potential solutions to improve the durability of catalysts. Based on the above critical aspects, this review aims to provide insights and guidelines for developing robust catalytic systems capable of controlling multi-pollutants in practical applications, and to offer theoretical guidance and technical solutions to bridge the gap between laboratory research and industrial environmental governance applications. Full article
(This article belongs to the Special Issue Advances in Environmental Catalysis for a Sustainable Future)
Show Figures

Graphical abstract

24 pages, 3268 KB  
Review
Study on the Mechanism and Modification of Carbon-Based Materials for Pollutant Treatment
by Lingyi Meng, Zitong Shao, Wenqi Li, Jianxiong Wang, Changqing Hu, Guangqing Yang and Yan Shi
Materials 2025, 18(23), 5345; https://doi.org/10.3390/ma18235345 - 27 Nov 2025
Viewed by 635
Abstract
The implementation of ultra-low emission standards in the steel industry imposes higher demands on flue gas purification. Carbon-based materials, leveraging their porous structure and surface activity, demonstrate high adsorption potential for treating heavy metal ions, sulfur- and nitrogen-containing compounds, and volatile organic pollutants. [...] Read more.
The implementation of ultra-low emission standards in the steel industry imposes higher demands on flue gas purification. Carbon-based materials, leveraging their porous structure and surface activity, demonstrate high adsorption potential for treating heavy metal ions, sulfur- and nitrogen-containing compounds, and volatile organic pollutants. However, their application is constrained by a limited selective adsorption capacity. This paper systematically analyzes the mechanisms by which carbon-based materials treat water, air, and soil pollutants; investigates their physical and chemical degradation patterns; and summarizes practical physicochemical modification pathways. Research indicates that modification techniques can effectively overcome performance limitations of carbon-based materials, enhance pollutant adsorption efficiency, and provide new insights for the engineering application of multi-media pollution synergistic control and environmental remediation technologies. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Graphical abstract

18 pages, 5206 KB  
Article
Revealing the Flavor Characteristics of Beiwudu Hulatang Using Electronic Nose, Electronic Tongue Combined with GC-IMS and Sensory Analysis
by Jing Yan, Heng Wang, Zhenxia Cao, Bing Yang, Wanli Zhang, Minnan Liu, Fazheng Ren and Lishui Chen
Foods 2025, 14(23), 4054; https://doi.org/10.3390/foods14234054 - 26 Nov 2025
Viewed by 494
Abstract
Beiwudu Hulatang, a traditional Chinese culinary delicacy, is valued for its complex flavor profile; however, its characteristic aroma compounds and the determinants of sensory quality remain insufficiently studied. This study evaluated the flavor characteristics of four commercial samples and one laboratory-made sample of [...] Read more.
Beiwudu Hulatang, a traditional Chinese culinary delicacy, is valued for its complex flavor profile; however, its characteristic aroma compounds and the determinants of sensory quality remain insufficiently studied. This study evaluated the flavor characteristics of four commercial samples and one laboratory-made sample of Beiwudu Hulatang using gas chromatography–ion mobility spectrometry (GC-IMS), electronic nose (E-nose), electronic tongue (E-tongue), and sensory evaluation. The results of E-tongue analysis indicated that bitterness and saltiness were the dominant taste attributes. E-nose analysis demonstrated strong responses to sulfur-containing compounds, alcohols, and alkanes, indicating their significant contribution to the overall aroma. A total of 60 volatile compounds were identified by GC-IMS, with ethers, alcohols, and terpenes being the most abundant chemical groups. Among these, 13 key aroma compounds were screened as discriminative markers (OAV > 1, VIP > 1) by integrating the odor activity value (OAV) and orthogonal partial least squares-discriminant analysis (OPLS-DA). The Pearson correlation analysis further revealed that sensory attributes, particularly aroma and overall acceptability, were positively correlated with propanal, heptaldehyde, and 1,8-cineol, and negatively correlated with linalool and limonene. Overall, this study provides a systematic characterization of the flavor profile of Beiwudu Hulatang and establishes a scientific basis for its quality standardization and flavor-oriented product development. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

24 pages, 7612 KB  
Article
Insights into Physicochemical Characteristics, Flavor Development, and Microbial Succession During the Natural Fermentation of Sichuan-Style Black Soybean Soy Sauce
by Yutian Xie, Shenglan Liao, Youming Li, Xianbin Wang, Yunhao Lu, Qixu Fu, Qiang He, Yuanlong Chi and Zhenghong Xu
Foods 2025, 14(23), 4049; https://doi.org/10.3390/foods14234049 - 26 Nov 2025
Viewed by 1048
Abstract
Sichuan-style black soybean soy sauce is a traditional fermented condiment renowned for its complex and regionally distinctive flavor profile. This study systematically investigated the physicochemical properties, flavor compounds, and microbial succession during six months of natural fermentation to elucidate the mechanisms underlying its [...] Read more.
Sichuan-style black soybean soy sauce is a traditional fermented condiment renowned for its complex and regionally distinctive flavor profile. This study systematically investigated the physicochemical properties, flavor compounds, and microbial succession during six months of natural fermentation to elucidate the mechanisms underlying its unique flavor formation. Results showed that the amino acid nitrogen level increased to a peak of 1.37 g/100 mL before stabilizing at 1.01 g/100 mL, accompanied by a continuous rise in total acidity (0.69–2.75 g/100 mL). A total of 132 volatile compounds were identified, with esters (e.g., hexanoic acid, methyl ester, hexadecanoic acid, and methyl ester), alcohols (e.g., (E)-2-hepten-1-ol and trans-2-undecen-1-ol), and aldehydes (e.g., benzaldehyde and benzeneacetaldehyde) serving as key differentiating components. Nine taste-active (TAV ≥ 1) and 22 odor-active (ROAV ≥ 1) compounds were recognized as major flavor determinants, among which methional (ROAV = 4.77–119.05), 1-octen-3-ol (ROAV = 40.68–149.35), and 4-ethyl-2-methoxyphenol (ROAV = 4.70–36.26) were dominant contributors imparting sauce-like, mushroom-like, and smoky-clove notes, respectively. Microbial succession revealed a transition from Weissella and Aspergillus dominance in the early stage to salt-tolerant Tetragenococcus and aroma-producing yeasts (Kodamaea and Zygosaccharomyces) in later phases. Beyond organic acids and fermentation parameters (e.g., pH and salinity), microbial interactions were identified as critical drivers shaping community assembly and succession. Metabolic pathway analysis revealed a stage-dependent mechanism of flavor formation. During the initial stage (0–2 months), Aspergillus-mediated proteolysis released free amino acids as key taste precursors. In the later stages (3–6 months), Tetragenococcus and aroma-producing yeasts dominated, synthesizing characteristic esters (e.g., benzoic acid and methyl ester, correlated with Tetragenococcus; r = 0.71, p < 0.05), phenolics (e.g., 4-ethyl-2-methoxyphenol, correlated with Wickerhamomyces; r = 0.89, p < 0.05), and sulfur-containing compounds (e.g., methional, correlated with Wickerhamomyces; r = 0.83, p < 0.05). Full article
Show Figures

Figure 1

12 pages, 1198 KB  
Article
Regional and Whole-Body Dermal Emission Rates of Volatile Sulfur Compounds and Potential Impact on Indoor Air Odour
by Tomomi Osaka, Daisuke Sato, Akihiro Hosomi, Mizuki Fukui and Yoshika Sekine
Atmosphere 2025, 16(12), 1331; https://doi.org/10.3390/atmos16121331 - 25 Nov 2025
Viewed by 478
Abstract
Volatile sulfur compounds (VSCs) are known to cause characteristic—and sometimes unpleasant—body odour. Human presence may influence the odour of indoor air; however, the contribution of skin-derived VSCs has not been thoroughly evaluated. This study aimed to elucidate the regional and whole-body dermal emission [...] Read more.
Volatile sulfur compounds (VSCs) are known to cause characteristic—and sometimes unpleasant—body odour. Human presence may influence the odour of indoor air; however, the contribution of skin-derived VSCs has not been thoroughly evaluated. This study aimed to elucidate the regional and whole-body dermal emission rates of VSCs—diallyl disulfide (DADS), allyl methyl sulfide (AMS), ethyl mercaptan (EMT), allyl mercaptan (AMT) and dimethyl trisulfide (DMTS)—by conducting simultaneous and multi-point measurements of dermal emissions from the human skin surface to assess their potential impact on indoor air quality. Dermal emission fluxes of VSCs were measured at 14 anatomical regions of 12 healthy young subjects using a passive flux sampler coupled with gas chromatography/mass spectrometry. These fluxes were converted to emission rates using regional body surface area, and the whole-body emission rates were subsequently used to estimate indoor air concentrations for comparison with the odour thresholds of each VSC. The results showed that although some regional differences in emission rates were observed among subjects, the large inter-individual variability ultimately led to no significant differences in whole-body emission rates of VSCs between males and females. Using the average whole-body emission rates across 12 subjects, the estimated indoor air concentrations of VSCs followed the descending order: EMT > AMT >> DMTS > AMS > DADS. The odour quotient was used to evaluate the impact of skin-derived VSCs on indoor air quality and indicated that EMT consistently contributes to indoor odour. Full article
Show Figures

Figure 1

Back to TopTop