Effects of 0.05% Cetylpyridinium Chloride Mouthwash on Halitosis and Tongue Microbiota in Patients Undergoing Orthodontic Treatment: A Double-Blind Randomized Clinical Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Trial Design
2.2. Participants, Eligibility Criteria, and Setting
2.3. Sample Size Calculation
2.4. Randomization
2.5. Blinding
2.6. Intervention
2.7. Outcome Variables
2.7.1. Assessment of Halitosis
2.7.2. Assessment of Oral Hygiene Status
2.7.3. Assessment of Tongue Coating Index (TCI)
2.7.4. Unstimulated Salivary Flow Rate
2.7.5. Microbial Sampling Procedure
2.8. Microbiome Analysis
2.9. Statistical Analysis
2.10. Ethics
3. Results
3.1. Baseline Characteristics (T0) of the Participants in This Study
3.2. Changes in VSC Levels by Participant
3.3. Within-Group Comparisons
3.4. Between-Group Comparisons
3.5. Microbiome Results
3.5.1. Sequence Data
3.5.2. Oral Microbiome Structure
3.5.3. Species-Level Changes in Oral Microbiota
3.5.4. Harm
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tonzetich, J. Production and origin of oral malodor: A review of mechanisms and methods of analysis. J. Periodontol. 1977, 48, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Van den Broek, A.M.; Feenstra, L.; de Baat, C. A review of the current literature on aetiology and measurement methods of halitosis. J. Dent. 2007, 35, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Dadamio, J.; Van Tournout, M.; Teughels, W.; Dekeyser, C.; Coucke, W.; Quirynen, M. Efficacy of different mouthrinse formulations in reducing oral malodour: A randomized clinical trial. J. Clin. Periodontol. 2013, 40, 505–513. [Google Scholar] [CrossRef]
- Persson, S.; Edlund, M.B.; Claesson, R.; Carlsson, J. The formation of hydrogen sulfide and methyl mercaptan by oral bacteria. Oral Microbiol. Immunol. 1990, 5, 195–201. [Google Scholar] [CrossRef]
- Rosenberg, M.; McCulloch, C.A. Measurement of oral malodor: Current methods and future prospects. J. Periodontol. 1992, 63, 776–782. [Google Scholar] [CrossRef] [PubMed]
- Babacan, H.; Sokucu, O.; Marakoglu, I.; Ozdemir, H.; Nalcaci, R. Effect of fixed appliances on oral malodor. Am. J. Orthod. Dentofacial Orthop. 2011, 139, 351–355. [Google Scholar] [CrossRef]
- Santonocito, S.; Polizzi, A. Oral Microbiota Changes during Orthodontic Treatment. Front. Biosci. (Elite Ed.) 2022, 14, 19. [Google Scholar] [CrossRef]
- Sökücü, O.; Akpınar, A.; Özdemir, H.; Birlik, M.; Çalışır, M. The effect of fixed appliances on oral malodor from beginning of treatment till 1 year. BMC Oral Health 2016, 16, 14. [Google Scholar] [CrossRef]
- Zurfluh, M.A.; van Waes, H.J.M.; Filippi, A. The influence of fixed orthodontic appliances on halitosis. Schweiz Monatsschr Zahnmed. 2013, 123, 1064–1075. [Google Scholar]
- Schaefer, I.; Braumann, B. Halitosis, oral health and quality of life during treatment with Invisalign(®) and the effect of a low-dose chlorhexidine solution. J. Orofac. Orthop. 2010, 71, 430–441. [Google Scholar] [CrossRef]
- Witt, J.; Ramji, N.; Gibb, R.; Dunavent, J.; Flood, J.; Barnes, J. Antibacterial and antiplaque effects of a novel, alcohol-free oral rinse with cetylpyridinium chloride. J. Contemp. Dent. Pract. 2005, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Witt, J.J.; Walters, P.; Bsoul, S.; Gibb, R.; Dunavent, J.; Putt, M. Comparative clinical trial of two antigingivitis mouthrinses. Am. J. Dent. 2005, 18, 15A–17A. [Google Scholar] [PubMed]
- Rawlinson, A.; Pollington, S.; Walsh, T.F.; Lamb, D.J.; Marlow, I.; Haywood, J.; Wright, P. Efficacy of two alcohol-free cetylpyridinium chloride mouthwashes: A randomized double-blind crossover study. J. Clin. Periodontol. 2008, 35, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, S.; Cardash, H.; Browning, H.; Sahly, H.; Rosenberg, M. Isolation of Enterobacteriaceae from the mouth and potential association with malodor. J. Dent. Res. 1997, 76, 1770–1775. [Google Scholar] [CrossRef] [PubMed]
- Figuero, E.; Herrera, D.; Tobías, A.; Serrano, J.; Roldán, S.; Escribano, M.; Martín, C. Efficacy of adjunctive anti-plaque chemical agents in managing gingivitis: A systematic review and network meta-analyses. J. Clin. Periodontol. 2019, 46, 723–739. [Google Scholar] [CrossRef] [PubMed]
- Tadakamadla, S.K.; Bharathwaj, V.V.; Duraiswamy, P.; Sforza, C.; Tartaglia, G.M. Clinical efficacy of a new cetylpyridinium chloride-hyaluronic acid-based mouthrinse compared to chlorhexidine and placebo mouthrinses: A 21-day randomized clinical trial. Int. J. Dent. Hyg. 2020, 18, 116–123. [Google Scholar] [CrossRef]
- Rösing, C.K.; Cavagni, J.; Gaio, E.J.; Gomes Muniz, F.W.M.; Ranzan, N.; Oballe, H.J.R.; Friedrich, S.A.; Severo, R.M.; Stewart, B.; Zhang, Y.P. Efficacy of two mouthwashes with cetylpyridinium chloride: A controlled randomized clinical trial. Braz. Oral Res. 2017, 31, e47. [Google Scholar] [CrossRef]
- Haps, S.; Slot, D.E.; Berchier, C.E.; Van der Weijden, G.A. The effect of cetylpyridinium chloride-containing mouth rinses as adjuncts to toothbrushing on plaque and parameters of gingival inflammation: A systematic review. Int J Dent Hyg. 2008, 6, 290–303. [Google Scholar] [CrossRef]
- Musa, H.; Pașca, I.G.; Popa, M.; Bălean, O.; Dumitrescu, R.; Roșianu, R.S.; Gălușcan, A.; Oancea, R. Halitosis and Quality of Life in Young Orthodontic Patients: A Cross-Sectional Assessment of Mouthwash Use and Traditional, Rotative, and Sonic Toothbrushes. Medicina 2025, 61, 815. [Google Scholar] [CrossRef]
- Thaweboon, S.; Thaweboon, B. Effect of an essential oil-containing mouth rinse on VSC-producing bacteria on the tongue. Southeast Asian J. Trop. Med. Public Health 2011, 42, 456–462. [Google Scholar]
- Banjar, A.A.; Hassan, S.M.; Alyafi, R.A.; Alawady, S.A.; Alghamdi, M.H.; Baik, K.M. Self-perceived halitosis among young adults undergoing orthodontic treatment. Int. J. Dent. Hyg. 2022, 20, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Amou, T.; Hinode, D.; Yoshioka, M.; Grenier, D. Relationship between halitosis and periodontal disease-associated oral bacteria in tongue coatings. Int. J. Dent. Hyg. 2014, 12, 145–151. [Google Scholar] [CrossRef]
- Takaesu, Y.; Suzuki, N.; Naito, M.; Watanabe, T.; Shimazu, A.; Yatabe, N.; Yoneda, M.; Hirofuji, T.; Hanioka, T. Novel oral biomarkers predicting oral malodor. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 130, 667–674. [Google Scholar] [CrossRef]
- Zhang, Y.; Lo, K.L.; Liman, A.N.; Feng, X.P.; Ye, W. Tongue-Coating Microbial and Metabolic Characteristics in Halitosis. J. Dent. Res. 2024, 103, 484–493. [Google Scholar] [CrossRef]
- Oshiro, A.; Zaitsu, T.; Ueno, M.; Kawaguchi, Y. Characterization of oral bacteria in the tongue coating of patients with halitosis using 16S rRNA analysis. Acta Odontol. Scand. 2020, 78, 541–546. [Google Scholar] [CrossRef]
- Gomar-Vercher, S.; Simón-Soro, Á.; Montiel-Company, J.M.; Almerich-Silla, J.M.; Mira, A. Stimulated and unstimulated saliva samples have significantly different bacterial profiles. PLoS ONE 2018, 13, e0198021. [Google Scholar] [CrossRef] [PubMed]
- Pithon, M.M.; Sant’Anna, L.I.D.A.; Baião, F.C.S.; dos Santos, R.L.; da Silva Coqueiro, R.; Maia, L.C. Assessment of the effectiveness of mouthwashes in reducing cariogenic biofilm in orthodontic patients: A systematic review. J. Dent. 2015, 43, 297–308. [Google Scholar] [CrossRef]
- Seerangaiyan, K.; van Winkelhoff, A.J.; Harmsen, H.J.M.; Rossen, J.W.A.; Winkel, E.G. The tongue microbiome in healthy subjects and patients with intra-oral halitosis. J. Breath Res. 2017, 11, 036010. [Google Scholar] [CrossRef] [PubMed]
- Krespi, Y.P.; Shrime, M.G.; Kacker, A. The relationship between oral malodor and volatile sulfur compound-producing bacteria. Otolaryngol. Head Neck Surg. 2006, 135, 671–676. [Google Scholar] [CrossRef]
- Suzuki, N.; Yoneda, M.; Takeshita, T.; Hirofuji, T.; Hanioka, T. Induction and inhibition of oral malodor. Mol. Oral Microbiol. 2019, 34, 85–96. [Google Scholar] [CrossRef]
- Takeshita, T.; Suzuki, N.; Nakano, Y.; Shimazaki, Y.; Yoneda, M.; Hirofuji, T.; Yamashita, Y. Relationship between oral malodor and the global composition of indigenous bacterial populations in saliva. Appl. Environ. Microbiol. 2010, 76, 2806–2814. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-H.; Kho, H.-S.; Chung, S.-C.; Lee, S.-W.; Kim, Y.-K. The relationship between volatile sulfur compounds and major halitosis-inducing factors. J. Periodontol. 2003, 74, 32–37. [Google Scholar] [CrossRef]
- Seerangaiyan, K.; Jüch, F.; Winkel, E.G. Tongue coating: Its characteristics and role in intra-oral halitosis and general health—A review. J. Breath Res. 2018, 12, 034001. [Google Scholar] [CrossRef]
- Kazor, C.E.; Mitchell, P.M.; Lee, A.M.; Stokes, L.N.; Loesche, W.J.; Dewhirst, F.E.; Paster, B.J. Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. J. Clin. Microbiol. 2003, 41, 558–563. [Google Scholar] [CrossRef]
- Mao, X.; Hiergeist, A.; Auer, D.L.; Scholz, K.J.; Muehler, D.; Hiller, K.-A.; Maisch, T.; Buchalla, W.; Hellwig, E.; Gessner, A.; et al. Ecological effects of daily antiseptic treatment on microbial composition of saliva-grown microcosm biofilms and selection of resistant phenotypes. Front. Microbiol. 2022, 13, 934525. [Google Scholar] [CrossRef] [PubMed]
- Idrees, M.; Nassani, M.-Z.; Kujan, O. Assessing the association between unstimulated whole salivary flow rate (UWSFR) and oral health status among healthy adult subjects: A cross-sectional study. Med. Oral Patol. Oral Cir. Bucal 2018, 23, e384–e390. [Google Scholar] [CrossRef]
- Schulz, K.F.; Altman, D.G.; Moher, D.; CONSORT Group. CONSORT 2010 Statement: Updated Guidelines for Reporting Parallel Group Randomized Trials. BMJ 2010, 340, c332. [Google Scholar] [CrossRef] [PubMed]
- Tsironi, K.; Mylonopoulou, I.-M.; Pandis, N.; Vassilopoulos, S.; Sifakakis, I.; Papaioannou, W. The effect of mastic mouthwash on halitosis and oral hygiene in orthodontic patients: A randomized clinical trial. Eur. J. Orthod. 2023, 45, 781–787. [Google Scholar] [CrossRef]
- Silness, J.; Löe, H. Periodontal Disease in Pregnancy II. Correlation between Oral Hygiene and Periodontal Condition. Acta Odontol. Scand. 1964, 22, 121–135. [Google Scholar] [CrossRef]
- Abe, S.; Ishihara, K.; Adachi, M.; Okuda, K. Tongue-coating as risk indicator for aspiration pneumonia in edentate elderly. Arch. Gerontol. Geriatr. 2008, 47, 267–275. [Google Scholar] [CrossRef]
- Choi, H.-N.; Cho, Y.-S.; Koo, J.-W. The effect of mechanical tongue cleaning on oral malodor and tongue coating. Int. J. Environ. Res. Public Health 2021, 19, 108. [Google Scholar] [CrossRef] [PubMed]
- Kıranatlı, M.; Yurttaş, M.; Güngör, M.; Canbaz Kabay, S. Evaluation of major salivary glands with ultrasonography in multiple sclerosis patients. BMC Oral Health 2024, 24, 245. [Google Scholar] [CrossRef] [PubMed]
- Herrera, D.; Escudero, N.; Pérez, L.; Otheo, M.; Cañete-Sánchez, E.; Pérez, T.; Alonso, B.; Serrano, J.; Palma, J.C.; Sanz, M. Clinical and microbiological effects of the use of a cetylpyridinium chloride dentifrice and mouth rinse in orthodontic patients: A 3-month randomized clinical trial. Eur. J. Orthod. 2018, 40, 465–474. [Google Scholar] [CrossRef] [PubMed]
Parameter | Time Point | CPC Group (n = 15) | Placebo Group (n = 15) | p-Value |
---|---|---|---|---|
Age (years) | T0 | 24.5 ± 5.5 | 25.5 ± 4.8 | 0.597 |
Sex (male/female) | T0 | 6/9 | 6/9 | 1.000 |
H2S (ppb) | T0 | 409.00 (225.50–582.00) | 394.00 (313.50–547.50) | 0.713 |
T1 | 1.00 (0.00–15.50) | 328.00 (302.50–519.00) | <0.001 ** | |
CH3SH (ppb) | T0 | 34.00 (22.00–53.00) | 56.00 (27.00–75.00) | 0.250 |
T1 | 0.00 (0.00–2.00) | 35.00 (24.00–53.00) | <0.001 ** | |
(CH3)2S (ppb) | T0 | 3.00 (1.00–13.50) | 4.00 (0.00–9.00) | 0.486 |
T1 | 2.00 (1.50–4.50) | 2.00 (0.50–6.00) | 0.713 | |
Total VSCs (ppb) | T0 | 446.00 (248.00–623.00) | 468.00 (397.00–577.00) | 0.512 |
T1 | 6.00 (2.50–20.50) | 389.00 (318.00–542.00) | <0.001 ** | |
PI | T0 | 16.00 (7.55–18.25) | 11.30 (7.75–16.65) | 0.624 |
T1 | 5.50 (2.90–6.75) | 7.00 (5.90–9.40) | 0.026 * | |
GI | T0 | 9.00 (4.50–10.50) | 6.80 (4.25–14.15) | 0.902 |
T1 | 3.00 (2.40–6.40) | 5.30 (4.25–7.05) | 0.081 | |
TCI | T0 | 0.50 (0.30–0.70) | 0.60 (0.45–0.85) | 0.202 |
T1 | 0.20 (0.20–0.30) | 0.60 (0.50–0.65) | <0.001 ** | |
Unstimulated Saliva (mL) | T0 | 0.20 (0.20–0.40) | 0.20 (0.15–0.55) | 0.902 |
T1 | 0.40 (0.25–0.50) | 0.30 (0.15–0.70) | 0.595 |
Parameter | Group | T0 Median (IQR) | T1 Median (IQR) | p-Value |
---|---|---|---|---|
H2S (ppb) | CPC | 409.00 (225.50–582.00) | 1.00 (0.00–15.50) | 0.001 ** |
Placebo | 394.00 (313.50–547.50) | 328.00 (302.50–519.00) | 0.334 | |
CH3SH (ppb) | CPC | 34.00 (22.00–53.00) | 0.00 (0.00–2.00) | 0.001 ** |
Placebo | 56.00 (27.00–75.00) | 35.00 (24.00–53.00) | 0.105 | |
(CH3)2S (ppb) | CPC | 3.00 (1.00–13.50) | 2.00 (1.50–4.50) | 0.221 |
Placebo | 4.00 (0.00–9.00) | 2.00 (0.50–6.00) | 0.529 | |
Total VSCs (ppb) | CPC | 446.00 (248.00–623.00) | 6.00 (2.50–20.50) | 0.001 ** |
Placebo | 468.00 (397.00–577.00) | 389.00 (318.00–542.00) | 0.105 | |
PI | CPC | 16.00 (7.55–18.25) | 5.50 (2.90–6.75) | 0.001 ** |
Placebo | 11.30 (7.75–16.65) | 7.00 (5.90–9.40) | 0.004 ** | |
GI | CPC | 9.00 (4.50–10.50) | 3.00 (2.40–6.40) | 0.012 ** |
Placebo | 6.80 (4.25–14.15) | 5.30 (4.25–7.05) | 0.086 | |
TCI | CPC | 0.50 (0.30–0.70) | 0.20 (0.20–0.30) | 0.003 ** |
Placebo | 0.60 (0.45–0.85) | 0.60 (0.50–0.65) | 0.188 | |
Unstimulated Saliva (mL) | CPC | 0.20 (0.20–0.40) | 0.40 (0.25–0.50) | 0.107 |
Placebo | 0.20 (0.15–0.55) | 0.30 (0.15–0.70) | 0.058 |
(A) CPC Mouthwash Group at Species Level | |||||||
---|---|---|---|---|---|---|---|
Species (0.1% or More Reduction) | Baseline (%) | After 1 Month (%) | Difference (%) | Species (0.1% or More Increase) | Baseline (%) | After 1 Month (%) | Difference (%) |
Prevotella melaninogenica | 11.67 | 6.89 | −4.78 | Prevotella scopos | 0.09 | 0.23 | 0.13 |
Actinomyces sp. | 1.91 | 0.27 | −1.64 | Neisseria oralis | 0.10 | 0.26 | 0.16 |
Prevotella histicola | 2.71 | 1.16 | −1.55 | Streptococcus mitis | 0.26 | 0.47 | 0.21 |
Actinomyces gerencseriae | 1.36 | 0.02 | −1.34 | Haemophilus sputorum | 0.02 | 0.23 | 0.21 |
Actinomyces viscosus | 1.32 | 0.08 | −1.24 | Actinomyces meyeri | 0.56 | 0.78 | 0.22 |
Corynebacterium matruchotii | 1.16 | 0.01 | −1.15 | Fusobacterium nucleatum | 1.42 | 1.79 | 0.37 |
Actinobaculum sp. | 1.08 | 0.00 | −1.08 | Porphyromonas catoniae | 2.12 | 2.90 | 0.78 |
Actinomyces naeslundii | 1.02 | 0.05 | −0.97 | Gemella sanguinis | 0.62 | 1.54 | 0.92 |
Prevotella denticola | 1.04 | 0.10 | −0.93 | Granulicatella adiacens | 3.30 | 4.53 | 1.23 |
Prevotella loescheii | 0.66 | 0.00 | −0.65 | Streptococcus sobrinus | 0.09 | 1.42 | 1.33 |
Porphyromonas endodontalis | 0.73 | 0.13 | −0.60 | Rothia mucilaginosa | 6.40 | 7.93 | 1.53 |
Prevotella salivae | 0.87 | 0.31 | −0.56 | Streptococcus parasanguinis | 2.45 | 4.46 | 2.01 |
Veillonella alcalescens | 1.07 | 0.51 | −0.56 | Neisseria perflava | 2.42 | 4.93 | 2.51 |
Streptococcus peroris | 0.71 | 0.22 | −0.49 | Veillonella parvula | 3.78 | 6.35 | 2.57 |
Streptococcus oralis | 1.41 | 0.96 | −0.45 | Neisseria flavescens | 1.41 | 4.60 | 3.19 |
Selenomonas noxia | 0.45 | 0.01 | −0.45 | Haemophilus parainfluenzae | 1.77 | 5.28 | 3.50 |
Actinomyces odontolyticus | 2.97 | 2.52 | −0.44 | Streptococcus salivarius | 7.72 | 12.23 | 4.51 |
Prevotella oulorum | 0.46 | 0.03 | −0.43 | Streptococcus infantis | 1.82 | 7.71 | 5.89 |
Streptococcus sanguinis | 0.49 | 0.06 | −0.42 | ||||
Propionibacterium propionicum | 0.42 | 0.00 | −0.42 | ||||
Prevotella copri | 1.13 | 0.75 | −0.38 | ||||
Selenomonas genomosp. | 0.38 | 0.01 | −0.37 | ||||
Schlegelella thermodepolymerans | 0.45 | 0.08 | −0.36 | ||||
Leptotrichia wadei | 0.59 | 0.23 | −0.35 | ||||
Alloprevotella rava | 0.36 | 0.06 | −0.30 | ||||
Streptococcus tigurinus | 0.39 | 0.08 | −0.30 | ||||
Prevotella pallens | 1.39 | 1.10 | −0.30 | ||||
Rothia dentocariosa | 0.62 | 0.35 | −0.28 | ||||
Actinomyces massiliensis | 0.26 | 0.00 | −0.26 | ||||
Actinomyces oris | 0.27 | 0.01 | −0.26 | ||||
Prevotella nigrescens | 0.28 | 0.03 | −0.26 | ||||
Streptococcus anginosus | 0.27 | 0.03 | −0.24 | ||||
Streptococcus cristatus | 0.43 | 0.21 | −0.22 | ||||
Rothia aeria | 0.25 | 0.04 | −0.21 | ||||
Leptotrichia sp. | 0.24 | 0.05 | −0.20 | ||||
Prevotella sp. | 0.21 | 0.01 | −0.20 | ||||
Treponema medium | 0.19 | 0.00 | −0.19 | ||||
Capnocytophaga ochracea | 0.19 | 0.00 | −0.19 | ||||
Streptococcus australis | 0.66 | 0.48 | −0.18 | ||||
Selenomonas sputigena | 0.19 | 0.01 | −0.17 | ||||
Prevotella saccharolytica | 0.17 | 0.00 | −0.17 | ||||
Tannerella sp. | 0.16 | 0.00 | −0.16 | ||||
Neisseria bacilliformis | 0.16 | 0.01 | −0.16 | ||||
Selenomonas infelix | 0.16 | 0.01 | −0.15 | ||||
Leptotrichia shahii | 0.15 | 0.01 | −0.14 | ||||
Selenomonas artemidis | 0.15 | 0.00 | −0.14 | ||||
Gemella morbillorum | 0.13 | 0.00 | −0.13 | ||||
Actinomyces dentalis | 0.12 | 0.00 | −0.12 | ||||
Streptococcus sp. | 0.13 | 0.01 | −0.12 | ||||
Eikenella corrodens | 0.13 | 0.01 | −0.12 | ||||
Campylobacter gracilis | 0.12 | 0.01 | −0.12 | ||||
Treponema socranskii | 0.12 | 0.00 | −0.12 | ||||
Parvimonas micra | 0.12 | 0.00 | −0.12 | ||||
Leptotrichia buccalis | 0.11 | 0.00 | −0.11 | ||||
Lachnoanaerobaculum saburreum | 0.12 | 0.01 | −0.11 | ||||
Prevotella oris | 0.12 | 0.02 | −0.11 | ||||
(B) Placebo Mouthwash Group at the Species Level | |||||||
Species (0.1% or More Reduction) | Baseline (%) | After 1 Month (%) | Difference (%) | Species (0.1% or More Increase) | Baseline (%) | After 1 Month (%) | Difference (%) |
Prevotella copri | 3.36 | 0.92 | −2.43 | Actinomyces oris | 0.03 | 0.14 | 0.11 |
Streptococcus anginosus | 1.99 | 0.21 | −1.78 | Lachnoanaerobaculum orale | 0.12 | 0.24 | 0.12 |
Prevotella nigrescens | 1.31 | 0.09 | −1.22 | Neisseria flavescens | 0.14 | 0.26 | 0.12 |
Corynebacterium matruchotii | 2.09 | 0.89 | −1.20 | Streptococcus oralis | 0.56 | 0.70 | 0.14 |
Actinomyces meyeri | 1.40 | 0.24 | −1.16 | Haemophilus parainfluenzae | 2.00 | 2.14 | 0.15 |
Porphyromonas catoniae | 4.17 | 3.01 | −1.16 | Fusobacterium nucleatum | 2.03 | 2.18 | 0.15 |
Prevotella aurantiaca | 1.09 | 0.33 | −0.76 | Neisseria elongata | 0.07 | 0.22 | 0.15 |
Veillonella alcalescens | 1.89 | 1.21 | −0.68 | Peptostreptococcus stomatis | 0.56 | 0.74 | 0.17 |
Schlegelella thermodepolymerans | 0.79 | 0.11 | −0.68 | Actinomyces viscosus | 0.14 | 0.35 | 0.21 |
Prevotella loescheii | 0.98 | 0.32 | −0.65 | Prevotella pallens | 0.74 | 0.95 | 0.21 |
Leptotrichia wadei | 1.31 | 0.66 | −0.65 | Parvimonas sp. | 0.20 | 0.43 | 0.24 |
Streptococcus peroris | 1.24 | 0.66 | −0.59 | Rothia dentocariosa | 0.35 | 0.61 | 0.27 |
Prevotella nanceiensis | 1.42 | 0.92 | −0.50 | Streptococcus mutans | 0.01 | 0.32 | 0.31 |
Streptococcus gordonii | 0.64 | 0.16 | −0.48 | Gemella sanguinis | 0.66 | 1.03 | 0.37 |
Streptococcus cristatus | 0.76 | 0.36 | −0.41 | Streptococcus australis | 0.55 | 1.08 | 0.53 |
Prevotella denticola | 0.43 | 0.03 | −0.40 | Actinomyces odontolyticus | 2.17 | 2.99 | 0.82 |
Alloprevotella tannerae | 0.59 | 0.20 | −0.39 | Rothia mucilaginosa | 4.26 | 5.18 | 0.91 |
Actinobaculum sp. | 0.59 | 0.22 | −0.37 | Granulicatella adiacens | 1.89 | 3.55 | 1.65 |
Leptotrichia hofstadii | 0.53 | 0.20 | −0.33 | Streptococcus infantis | 1.11 | 2.82 | 1.71 |
Streptococcus vestibularis | 0.30 | 0.00 | −0.30 | Streptococcus parasanguinis | 2.02 | 4.23 | 2.20 |
Actinomyces massiliensis | 0.32 | 0.05 | −0.27 | Neisseria perflava | 3.40 | 5.72 | 2.32 |
Prevotella oulorum | 0.38 | 0.11 | −0.27 | Veillonella parvula | 3.69 | 6.19 | 2.50 |
Rothia aeria | 0.34 | 0.08 | −0.26 | Actinomyces graevenitzii | 1.50 | 5.61 | 4.10 |
Prevotella oris | 0.30 | 0.04 | −0.26 | Streptococcus salivarius | 4.98 | 10.21 | 5.23 |
Streptococcus sanguinis | 0.45 | 0.20 | −0.25 | ||||
Neisseria oralis | 0.33 | 0.08 | −0.25 | ||||
Prevotella maculosa | 0.30 | 0.07 | −0.23 | ||||
Leptotrichia hongkongensis | 0.25 | 0.03 | −0.22 | ||||
Gemella morbillorum | 0.33 | 0.11 | −0.22 | ||||
Streptococcus lactarius | 0.39 | 0.20 | −0.19 | ||||
Prevotella melaninogenica | 10.62 | 10.43 | −0.19 | ||||
Selenomonas noxia | 0.41 | 0.22 | −0.18 | ||||
Actinomyces naeslundii | 0.45 | 0.28 | −0.17 | ||||
Lautropia mirabilis | 0.22 | 0.05 | −0.17 | ||||
Prevotella shahii | 0.31 | 0.14 | −0.16 | ||||
Prevotella micans | 0.20 | 0.04 | −0.16 | ||||
Actinomyces dentalis | 0.18 | 0.04 | −0.14 | ||||
Prevotella saccharolytica | 0.25 | 0.11 | −0.14 | ||||
Actinomyces sp. | 0.70 | 0.56 | −0.14 | ||||
Eubacterium brachy | 0.15 | 0.02 | −0.13 | ||||
Kingella oralis | 0.14 | 0.01 | −0.13 | ||||
Treponema medium | 0.18 | 0.05 | −0.13 | ||||
Capnocytophaga sputigena | 0.20 | 0.08 | −0.13 | ||||
Leptotrichia sp. | 0.16 | 0.05 | −0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiina, N.; Shimpo, Y.; Kikuchi, K.; Sekiya, T.; Tomonari, H. Effects of 0.05% Cetylpyridinium Chloride Mouthwash on Halitosis and Tongue Microbiota in Patients Undergoing Orthodontic Treatment: A Double-Blind Randomized Clinical Trial. J. Clin. Med. 2025, 14, 4576. https://doi.org/10.3390/jcm14134576
Shiina N, Shimpo Y, Kikuchi K, Sekiya T, Tomonari H. Effects of 0.05% Cetylpyridinium Chloride Mouthwash on Halitosis and Tongue Microbiota in Patients Undergoing Orthodontic Treatment: A Double-Blind Randomized Clinical Trial. Journal of Clinical Medicine. 2025; 14(13):4576. https://doi.org/10.3390/jcm14134576
Chicago/Turabian StyleShiina, Natsuki, Yudai Shimpo, Kou Kikuchi, Toshiko Sekiya, and Hiroshi Tomonari. 2025. "Effects of 0.05% Cetylpyridinium Chloride Mouthwash on Halitosis and Tongue Microbiota in Patients Undergoing Orthodontic Treatment: A Double-Blind Randomized Clinical Trial" Journal of Clinical Medicine 14, no. 13: 4576. https://doi.org/10.3390/jcm14134576
APA StyleShiina, N., Shimpo, Y., Kikuchi, K., Sekiya, T., & Tomonari, H. (2025). Effects of 0.05% Cetylpyridinium Chloride Mouthwash on Halitosis and Tongue Microbiota in Patients Undergoing Orthodontic Treatment: A Double-Blind Randomized Clinical Trial. Journal of Clinical Medicine, 14(13), 4576. https://doi.org/10.3390/jcm14134576