Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,547)

Search Parameters:
Keywords = volatile organic compound (VOC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 847 KiB  
Article
Characterization and Selection of Lycium barbarum Cultivars Based on Physicochemical, Bioactive, and Aromatic Properties
by Juan Carlos Solomando González, María José Rodríguez Gómez, María Ramos García, Noelia Nicolás Barroso and Patricia Calvo Magro
Horticulturae 2025, 11(8), 924; https://doi.org/10.3390/horticulturae11080924 - 5 Aug 2025
Abstract
Goji berries (Lycium barbarum L.) are considered a functional food due to their high content of bioactive compounds with demonstrated health benefits. This study evaluated four cultivars (G3, G4, G5, and G7) grown under Mediterranean climate conditions, focusing on their physicochemical properties [...] Read more.
Goji berries (Lycium barbarum L.) are considered a functional food due to their high content of bioactive compounds with demonstrated health benefits. This study evaluated four cultivars (G3, G4, G5, and G7) grown under Mediterranean climate conditions, focusing on their physicochemical properties (total soluble solids, titratable acidity, and pH), bioactive compound (sugars and organic acids, total and individual phenolic and carotenoid compounds, and antioxidant activities (DPPH and CUPRAC assay)), and aromatic profiles (by GC-MS) to assess their suitability for fresh consumption or incorporation into food products. G4 exhibited the most favorable physicochemical characteristics, with the highest total soluble solids (20.2 °Brix) and sugar content (92.8 g 100 g−1 dw). G5 stood out for its lower titratable acidity (0.34%) and highest ripening index (54.8), indicating desirable flavor attributes. Concerning bioactive compounds, G3 and G4 showed the highest total phenolic content (17.9 and 19.1 mg GAE g−1 dw, respectively), with neochlorogenic acid being predominant. G4 was notable for its high carotenoid content, particularly zeaxanthin (1722.6 μg g−1 dw). These compounds significantly contributed to antioxidant activity. Volatile organic compound (VOC) profiles revealed alcohols and aldehydes as the dominant chemical families, with hexanal being the most abundant. G5 and G7 exhibited the highest total VOC concentrations. Principal component analysis grouped G3 and G4 based on their high sugar and phenolic content, while G5 and G7 were characterized by their complex aromatic profiles. Therefore, G3 and G4 are promising candidates for fresh consumption and potential functional applications, while G5 and G7 are particularly suitable for new product development due to their nutraceutical and aromatic value. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

27 pages, 5730 KiB  
Article
A Non-Invasive Diagnostic Platform for Canine Leishmaniasis Using VOC Analysis and Distributed Veterinary Infrastructure
by Marius Iulian Mihailescu, Violeta Elena Simion, Alexandra Ursachi, Varanya Somaudon, Aylen Lisset Jaimes-Mogollón, Cristhian Manuel Durán Acevedo, Carlos Cuastumal, Laura-Madalina Lixandru, Xavier Llauradó, Nezha El Bari, Benachir Bouchikhi, Dhafer Laouini, Mohamed Fethi Diouani, Adam Borhan Eddine Bessou, Nazim Messaoudi, Fayçal Zeroual and Valentina Marascu
Vet. Sci. 2025, 12(8), 732; https://doi.org/10.3390/vetsci12080732 - 4 Aug 2025
Viewed by 213
Abstract
This article describes a new software architecture for the non-invasive detection of canine leishmaniasis disease. The proposed platform combines gas-sensing technologies, artificial intelligence (AI), and modular cloud-based software components to identify disease-specific volatile organic compounds (VOCs) found in dog breath and hair samples. [...] Read more.
This article describes a new software architecture for the non-invasive detection of canine leishmaniasis disease. The proposed platform combines gas-sensing technologies, artificial intelligence (AI), and modular cloud-based software components to identify disease-specific volatile organic compounds (VOCs) found in dog breath and hair samples. The system, which has a multi-tier architecture that includes data collection, pre-processing, machine learning-based analysis, diagnosis-request processing, and user interfaces for veterinarians, faculty researchers, and dog owners, has been integrated into a Li-ion Power website plug-in. The primary goal of implementing the proposed platform is to detect parasites at any point they are infectious to a host. This includes detecting parasites at all stages of their life cycle, where they can infect a new host. In addition, this is crucial for accurate diagnosis, effective treatment, and preventing further transmission. Full article
Show Figures

Figure 1

20 pages, 6694 KiB  
Article
Spatiotemporal Assessment of Benzene Exposure Characteristics in a Petrochemical Industrial Area Using Mobile-Extraction Differential Optical Absorption Spectroscopy (Me-DOAS)
by Dong keun Lee, Jung-min Park, Jong-hee Jang, Joon-sig Jung, Min-kyeong Kim, Jaeseok Heo and Duckshin Park
Toxics 2025, 13(8), 655; https://doi.org/10.3390/toxics13080655 - 31 Jul 2025
Viewed by 250
Abstract
Petrochemical complexes are spatially expansive and host diverse emission sources, making accurate monitoring of volatile organic compounds (VOCs) challenging using conventional two-dimensional methods. This study introduces Mobile-extraction Differential Optical Absorption Spectroscopy (Me-DOAS), a real-time, three-dimensional remote sensing technique for assessing benzene emissions in [...] Read more.
Petrochemical complexes are spatially expansive and host diverse emission sources, making accurate monitoring of volatile organic compounds (VOCs) challenging using conventional two-dimensional methods. This study introduces Mobile-extraction Differential Optical Absorption Spectroscopy (Me-DOAS), a real-time, three-dimensional remote sensing technique for assessing benzene emissions in the Ulsan petrochemical complex, South Korea. A vehicle-mounted Me-DOAS system conducted monthly measurements throughout 2024, capturing data during four daily intervals to evaluate diurnal variation. Routes included perimeter loops and grid-based transects within core industrial zones. The highest benzene concentrations were observed in February (mean: 64.28 ± 194.69 µg/m3; geometric mean: 5.13 µg/m3), with exceedances of the national annual standard (5 µg/m3) in several months. Notably, nighttime and early morning sessions showed elevated levels, suggesting contributions from nocturnal operations and meteorological conditions such as atmospheric inversion. A total of 179 exceedances (≥30 µg/m3) were identified, predominantly in zones with benzene-handling activities. Correlation analysis revealed a significant relationship between high concentrations and specific emission sources. These results demonstrate the utility of Me-DOAS in capturing spatiotemporal emission dynamics and support its application in exposure risk assessment and industrial emission control. The findings provide a robust framework for targeted management strategies and call for integration with source apportionment and dispersion modeling tools. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

22 pages, 1556 KiB  
Article
Long-Term Performance of Passive Volatile Organic Compounds (VOCs) Samplers for Indoor Air
by John H. Zimmerman, Brian Schumacher, Christopher C. Lutes, Brian Cosky and Heidi Hayes
Environments 2025, 12(8), 267; https://doi.org/10.3390/environments12080267 - 31 Jul 2025
Viewed by 316
Abstract
The reliability of passive samplers in measuring volatile organic compounds (VOCs) in indoor air depends on whether the uptake rate is constant given the environmental conditions and sampler exposure duration. The first phase of this study evaluated the performance of charcoal-based, solvent-extracted passive [...] Read more.
The reliability of passive samplers in measuring volatile organic compounds (VOCs) in indoor air depends on whether the uptake rate is constant given the environmental conditions and sampler exposure duration. The first phase of this study evaluated the performance of charcoal-based, solvent-extracted passive samplers (e.g., Radiello® 130 passive samplers with white diffusive bodies) over exposure periods ranging from 1 week to 1 year in a test house with known vapor intrusion (VI). Chloroform %Bias values exceeded the ±30% acceptance criterion after 4 weeks exposure. Benzene, hexane, and trichloroethylene (TCE) concentrations were within the acceptance criterion for up to three months. Toluene and tetrachloroethylene (PCE), the two least volatile compounds, demonstrated uniform uptake rates over one year. In the second phase of this study, testing of the longer exposure times of 6 months and 1 year were evaluated with three additional passive samplers: Waterloo Membrane SamplerTM (WMSTM), SKC 575 with secondary diffusive cover, and Radiello® 130 passive samplers with yellow diffusive bodies. The SKC 575 and Radiello® 130 passive samplers produced acceptable results (%Bias ≤ 30%) over the 6-month exposure period, while the WMSTM sampler results favored petroleum hydrocarbon more than chlorinated solvent uptake. After the 1-year exposure period, the passive sampler performances were acceptable under specific conditions of this study. The results suggest that all three samplers can produce acceptable results over exposure time periods beyond 30 days and up to a year for some compounds. Full article
Show Figures

Figure 1

16 pages, 3038 KiB  
Article
The Interaction Mechanism Between Modified Selective Catalytic Reduction Catalysts and Volatile Organic Compounds in Flue Gas: A Density Functional Theory Study
by Ke Zhuang, Hanwen Wang, Zhenglong Wu, Yao Dong, Yun Xu, Chunlei Zhang, Xinyue Zhou, Yangwen Wu and Bing Zhang
Catalysts 2025, 15(8), 728; https://doi.org/10.3390/catal15080728 - 31 Jul 2025
Viewed by 264
Abstract
The overall efficiency of combining denitrification and volatile organic compound (VOC) removal through selective catalytic reduction (SCR) technology is currently mainly limited by the VOC removal aspect. However, existing studies have not studied the microscopic mechanism of the interaction between VOCs and catalysts, [...] Read more.
The overall efficiency of combining denitrification and volatile organic compound (VOC) removal through selective catalytic reduction (SCR) technology is currently mainly limited by the VOC removal aspect. However, existing studies have not studied the microscopic mechanism of the interaction between VOCs and catalysts, failing to provide a theoretical basis for catalysts. Therefore, this work explored the interaction mechanisms between SCR catalysts doped with different additives and typical VOCs (acetone and toluene) in flue gas based on density functional theory (DFT) calculations. The results showed that the VNi-TiO2 surface exhibited a high adsorption energy of −0.80 eV for acetone and a high adsorption energy of −1.02 eV for toluene on the VMn-TiO2 surface. Electronic structure analysis revealed the VMn-TiO2 and VNi-TiO2 surfaces exhibited more intense orbital hybridization with acetone and toluene, promoting charge transfer between the two and resulting in stronger interactions. The analysis of temperature on adsorption free energy showed that VMn-TiO2 and VNi-TiO2 still maintained high activity at high temperatures. This work contributes to clarifying the interaction mechanism between SCR and VOCs and enhancing the VOC removal efficiency. Full article
(This article belongs to the Section Computational Catalysis)
Show Figures

Graphical abstract

19 pages, 4690 KiB  
Article
Immune-Redox Biomarker Responses to Short- and Long-Term Exposure to Naturally Emitted Compounds from Korean Red Pine (Pinus densiflora) and Japanese Cypress (Chamaecyparis obtusa): In Vivo Study
by Hui Ma, Jiyoon Yang, Chang-Deuk Eom, Johny Bajgai, Md. Habibur Rahman, Thu Thao Pham, Haiyang Zhang, Won-Joung Hwang, Seong Hoon Goh, Bomi Kim, Cheol-Su Kim, Keon-Ho Kim and Kyu-Jae Lee
Toxics 2025, 13(8), 650; https://doi.org/10.3390/toxics13080650 - 31 Jul 2025
Viewed by 268
Abstract
Volatile organic compounds (VOCs) are highly volatile chemicals in natural and anthropogenic environments, significantly affecting indoor air quality. Major sources of indoor VOCs include emissions from building materials, furnishings, and consumer products. Natural wood products release VOCs, including terpenes and aldehydes, which exert [...] Read more.
Volatile organic compounds (VOCs) are highly volatile chemicals in natural and anthropogenic environments, significantly affecting indoor air quality. Major sources of indoor VOCs include emissions from building materials, furnishings, and consumer products. Natural wood products release VOCs, including terpenes and aldehydes, which exert diverse health effects ranging from mild respiratory irritation to severe outcomes, such as formaldehyde-induced carcinogenicity. The temporal dynamics of VOC emissions were investigated, and the toxicological and physiological effects of the VOCs emitted by two types of natural wood, Korean Red Pine (Pinus densiflora) and Japanese Cypress (Chamaecyparis obtusa), were evaluated. Using female C57BL/6 mice as an animal model, the exposure setups included phytoncides, formaldehyde, and intact wood samples over short- and long-term durations. The exposure effects were assessed using oxidative stress markers, antioxidant enzyme activity, hepatic and renal biomarkers, and inflammatory cytokine profiles. Long-term exposure to Korean Red Pine and Japanese Cypress wood VOCs did not induce significant pathological changes. Japanese Cypress exhibited more distinct benefits, including enhanced oxidative stress mitigation, reduced systemic toxicity, and lower pro-inflammatory cytokine levels compared to the negative control group, attributable to its more favorable VOC emission profile. These findings highlight the potential health and environmental benefits of natural wood VOCs and offer valuable insights for optimizing timber use, improving indoor air quality, and informing public health policies. Full article
Show Figures

Figure 1

14 pages, 3747 KiB  
Article
Biocontrol Activity of Volatile Organic Compounds Emitted from Bacillus paralicheniformis 2-12 Against Fusarium oxysporum Associated with Astragalus membranaceus Root Rot
by Yan Wang, Jiaqi Yuan, Rui Zhao, Shengnan Yuan, Yaxin Su, Wenhui Jiao, Xinyu Huo, Meiqin Wang, Weixin Fan and Chunwei Wang
Microorganisms 2025, 13(8), 1782; https://doi.org/10.3390/microorganisms13081782 - 31 Jul 2025
Viewed by 289
Abstract
Root rot, mainly caused by Fusarium oxysporum, is one of the most destructive diseases and leads to significant economic loss of Astragalus membranaceus. To develop an effective strategy for the management of this serious disease, a bacterial strain 2-12 was screened [...] Read more.
Root rot, mainly caused by Fusarium oxysporum, is one of the most destructive diseases and leads to significant economic loss of Astragalus membranaceus. To develop an effective strategy for the management of this serious disease, a bacterial strain 2-12 was screened from A. membranaceus rhizosphere soil and identified as Bacillus paralicheniformis based on the phylogenetic analyses of gyrase subunit B gene (gyrB) and RNA polymerase gene (rpoB) sequences. Interestingly, the volatile organic compounds (VOCs) produced by B. paralicheniformis 2-12 exhibited potent antifungal activities against F. oxysporum, as well as fifteen other plant pathogens. Under scanning electron microscopy observation, hyphae treated with the VOCs exhibited abnormal variation such as distortion, twist, and vesiculation, leading to distinctive protoplasm shrinkage. After treatment with B. paralicheniformis 2-12 VOCs, the lesion diameter and disease incidence both reduced significantly compared to control (p < 0.05), thus demonstrating prominent biological efficiency. Moreover, B. paralicheniformis 2-12 VOCs were composed of 17 VOCs, including 9 alkanes, 3 alcohols, 3 acids and esters, 1 aromatic compound, and 1 alkyne compound. A total of 1945 DEGs, including 1001 up-regulated and 944 down-regulated genes, were screened via transcriptome analysis. These DEGs were mainly associated with membranes and membrane parts, amino acid metabolism, and lipid metabolism. The findings in this work strongly suggested that B. paralicheniformis 2-12 VOCs could be applied as a new candidate for the control of A. membranaceus root rot. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

14 pages, 6012 KiB  
Article
Decoding the Primacy of Transportation Emissions of Formaldehyde Pollution in an Urban Atmosphere
by Shi-Qi Liu, Hao-Nan Ma, Meng-Xue Tang, Yu-Ming Shao, Ting-Ting Yao, Ling-Yan He and Xiao-Feng Huang
Toxics 2025, 13(8), 643; https://doi.org/10.3390/toxics13080643 - 30 Jul 2025
Viewed by 272
Abstract
Understanding the differential impacts of emission sources of volatile organic compounds (VOCs) on formaldehyde (HCHO) levels is pivotal to effectively mitigating key photochemical radical precursors, thereby enhancing the regulation of atmospheric oxidation capacity (AOC) and ozone formation. This investigation systematically selected and analyzed [...] Read more.
Understanding the differential impacts of emission sources of volatile organic compounds (VOCs) on formaldehyde (HCHO) levels is pivotal to effectively mitigating key photochemical radical precursors, thereby enhancing the regulation of atmospheric oxidation capacity (AOC) and ozone formation. This investigation systematically selected and analyzed year-long VOC measurements across three urban zones in Shenzhen, China. Photochemical age correction methods were implemented to develop the initial concentrations of VOCs before source apportionment; then Positive Matrix Factorization (PMF) modeling resolved six primary sources: solvent usage (28.6–47.9%), vehicle exhaust (24.2–31.2%), biogenic emission (13.8–18.1%), natural gas (8.5–16.3%), gasoline evaporation (3.2–8.9%), and biomass burning (0.3–2.4%). A machine learning (ML) framework incorporating Shapley Additive Explanations (SHAP) was subsequently applied to evaluate the influence of six emission sources on HCHO concentrations while accounting for reaction time adjustments. This machine learning-driven nonlinear analysis demonstrated that vehicle exhaust nearly always emerged as the primary anthropogenic contributor in diverse functional zones and different seasons, with gasoline evaporation as another key contributor, while the traditional reactivity metric method, ozone formation potential (OFP), tended to underestimate the role of the two sources. This study highlights the primacy of strengthening emission reduction of transportation sectors to mitigate HCHO pollution in megacities. Full article
Show Figures

Graphical abstract

30 pages, 924 KiB  
Review
Wood-Based Panels and Volatile Organic Compounds (VOCs): An Overview on Production, Emission Sources and Analysis
by Fátima Daniela Gonçalves, Luísa Hora Carvalho, José António Rodrigues and Rui Miguel Ramos
Molecules 2025, 30(15), 3195; https://doi.org/10.3390/molecules30153195 - 30 Jul 2025
Viewed by 347
Abstract
The emission and presence of volatile organic compounds (VOCs) in the indoor air of houses and factories has been a growing topic of debate in the industry and related research fields. Given the extended times people in modern society spend indoors, monitoring VOCs [...] Read more.
The emission and presence of volatile organic compounds (VOCs) in the indoor air of houses and factories has been a growing topic of debate in the industry and related research fields. Given the extended times people in modern society spend indoors, monitoring VOCs is crucial due to the associated potential health hazards, with formaldehyde being particularly noteworthy. Wood and wood-based panels (WBPs) (the latter constituting a significant segment of the wood-transforming industry, being widely used in furniture, construction, and other applications) are known sources for the emission of VOCs to indoor air. In the case of the WBPs, the emission of VOCs depends on the type and species of wood, together with industrial processing and addition of additives. This review integrates perspectives on the production processes associated with WBPs, together with the evolving global regulations, and thoroughly examines VOC sources associated with WBPs, health risks from exposure, and current analytical methods utilized for VOC detection. It comprises an overview of the WBP industry, providing relevant definitions, descriptions of manufacturing processes and adhesive use, analysis of legal constraints, and explanations of VOC source identification and describing analysis techniques utilized for VOCs in WBPs. Full article
Show Figures

Figure 1

13 pages, 2414 KiB  
Article
In Silico Characterization of Molecular Interactions of Aviation-Derived Pollutants with Human Proteins: Implications for Occupational and Public Health
by Chitra Narayanan and Yevgen Nazarenko
Atmosphere 2025, 16(8), 919; https://doi.org/10.3390/atmos16080919 - 29 Jul 2025
Viewed by 298
Abstract
Combustion of aviation jet fuel emits a complex mixture of pollutants linked to adverse health outcomes among airport personnel and nearby communities. While epidemiological studies showed the detrimental effects of aviation-derived air pollutants on human health, the molecular mechanisms of the interactions of [...] Read more.
Combustion of aviation jet fuel emits a complex mixture of pollutants linked to adverse health outcomes among airport personnel and nearby communities. While epidemiological studies showed the detrimental effects of aviation-derived air pollutants on human health, the molecular mechanisms of the interactions of these pollutants with cellular biomolecules like proteins that drive the adverse health effects remain poorly understood. In this study, we performed molecular docking simulations of 272 pollutant–protein complexes using AutoDock Vina 1.2.7 to characterize the binding strength of the pollutants with the selected proteins. We selected 34 aviation-derived pollutants that constitute three chemical categories of pollutants: volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs), and organophosphate esters (OPEs). Each pollutant was docked to eight proteins that play critical roles in endocrine, metabolic, transport, and neurophysiological functions, where functional disruption is implicated in disease. The effect of binding of multiple pollutants was analyzed. Our results indicate that aliphatic and monoaromatic VOCs display low (<6 kcal/mol) binding affinities while PAHs and organophosphate esters exhibit strong (>7 kcal/mol) binding affinities. Furthermore, the binding strength of PAHs exhibits a positive correlation with the increasing number of aromatic rings in the pollutants, ranging from nearly 7 kcal/mol for two aromatic rings to more than 15 kcal/mol for five aromatic rings. Analysis of intermolecular interactions showed that these interactions are predominantly stabilized by hydrophobic, pi-stacking, and hydrogen bonding interactions. Simultaneous docking of multiple pollutants revealed the increased binding strength of the resulting complexes, highlighting the detrimental effect of exposure to pollutant mixtures found in ambient air near airports. We provide a priority list of pollutants that regulatory authorities can use to further develop targeted mitigation strategies to protect the vulnerable personnel and communities near airports. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

33 pages, 16026 KiB  
Article
Spatiotemporal Analysis of BTEX and PM Using Me-DOAS and GIS in Busan’s Industrial Complexes
by Min-Kyeong Kim, Jaeseok Heo, Joonsig Jung, Dong Keun Lee, Jonghee Jang and Duckshin Park
Toxics 2025, 13(8), 638; https://doi.org/10.3390/toxics13080638 - 29 Jul 2025
Viewed by 295
Abstract
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for [...] Read more.
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for the rapid dispersion of hazardous air pollutants (HAPs). In this study, we conducted spatiotemporal data collection and analysis for the first time in Korea using real-time measurements obtained through mobile extractive differential optical absorption spectroscopy (Me-DOAS) mounted on a solar occultation flux (SOF) vehicle. The measurements were conducted in the Saha Sinpyeong–Janglim Industrial Complex in Busan, which comprises the Sasang Industrial Complex and the Sinpyeong–Janglim Industrial Complex. BTEX compounds were selected as target volatile organic compounds (VOCs), and real-time measurements of both BTEX and fine particulate matter (PM) were conducted simultaneously. Correlation analysis revealed a strong relationship between PM10 and PM2.5 (r = 0.848–0.894), indicating shared sources. In Sasang, BTEX levels were associated with traffic and localized facilities, while in Saha Sinpyeong–Janglim, the concentrations were more influenced by industrial zoning and wind patterns. Notably, inter-compound correlations such as benzene–m-xylene and p-xylene–toluene suggested possible co-emission sources. This study proposes a GIS-based, three-dimensional air quality management approach that integrates variables such as traffic volume, wind direction, and speed through real-time measurements. The findings are expected to inform effective pollution control strategies and future environmental management plans for industrial complexes. Full article
Show Figures

Graphical abstract

16 pages, 2131 KiB  
Article
A Comparative Study on ZrO2- and MgO-Based Sulfonic Acid Materials for the Reactive Adsorption of o-Xylene
by Hongmei Wang, Xiaoxu Zhang, Ziqi Shen and Zichuan Ma
Molecules 2025, 30(15), 3171; https://doi.org/10.3390/molecules30153171 - 29 Jul 2025
Viewed by 223
Abstract
The recovery and abatement of volatile organic compounds (VOCs) have received increasing attention due to their significant environmental and health impacts. Supported sulfonic acid materials have shown great potential in converting aromatic VOCs into their non-volatile derivatives through reactive adsorption. However, the anchoring [...] Read more.
The recovery and abatement of volatile organic compounds (VOCs) have received increasing attention due to their significant environmental and health impacts. Supported sulfonic acid materials have shown great potential in converting aromatic VOCs into their non-volatile derivatives through reactive adsorption. However, the anchoring state of sulfonic acid groups, which is closely related to the properties of the support, greatly affects their performance. In this study, two supported sulfonic acid materials, SZO and SMO, were prepared by treating ZrO2 and MgO with chlorosulfonic acid, respectively, to investigate the influence of the support properties on the anchoring state of sulfonic acid groups and their reactive adsorption performance for o-xylene. The supports, adsorbents, and adsorption products were extensively characterized, and the reactivity of SZO and SMO towards o-xylene was systematically compared. The results showed that sulfonic acid groups are anchored on the ZrO2 surface through covalent bonding, forming positively charged sulfonic acid sites ([O1.5Zr-O]δ−-SO3Hδ+) with a loading of 3.6 mmol/g. As a result, SZO exhibited excellent removal efficiency (≥91.3%) and high breakthrough adsorption capacity (ranging from 38.59 to 82.07 mg/g) for o-xylene in the temperature range of 130 –150 °C. In contrast, sulfonic acid groups are anchored on the MgO surface via ion-paired bonding, leading to the formation of negatively charged sulfonic acid sites ([O0.5Mg]+:OSO3H), which prevents their participation in the electrophilic sulfonation reaction with o-xylene molecules. This work provides new insights into tuning and enhancing the performance of supported sulfonic acid materials for the resource-oriented treatment of aromatic VOCs. Full article
(This article belongs to the Special Issue Applied Chemistry in Asia)
Show Figures

Graphical abstract

17 pages, 1706 KiB  
Article
Root-Emitted Volatile Organic Compounds from Daucus carota Modulate Chemotaxis in Phasmarhabditis and Oscheius Nematodes
by Emre Sen, Tamás Lakatos, Tímea Tóth, Stanislav Trdan and Žiga Laznik
Agronomy 2025, 15(8), 1793; https://doi.org/10.3390/agronomy15081793 - 25 Jul 2025
Viewed by 848
Abstract
Root-emitted volatile organic compounds (VOCs) play a critical role in below-ground ecological interactions by mediating communication between plants, pests, and their natural enemies. This study investigates the chemotactic behavior of three slug-parasitic nematode species—Phasmarhabditis papillosa, Oscheius myriophilus, and Oscheius onirici [...] Read more.
Root-emitted volatile organic compounds (VOCs) play a critical role in below-ground ecological interactions by mediating communication between plants, pests, and their natural enemies. This study investigates the chemotactic behavior of three slug-parasitic nematode species—Phasmarhabditis papillosa, Oscheius myriophilus, and Oscheius onirici—in response to four carrot (Daucus carota) root-derived VOCs: α-pinene, terpinolene, bornyl acetate, and 2-ethyl-1-hexanol. Using a modified Petri dish assay, infective juveniles (IJs) were exposed to each compound across four concentrations (pure, 1000 ppm, 10 ppm, and 0.03 ppm), and their directional movement was quantified using a chemotaxis index (CI). The results revealed strong species-specific and concentration-dependent patterns. O. myriophilus exhibited the highest motility and repellency, particularly toward bornyl acetate and terpinolene, indicating its potential for use in VOC-guided biocontrol strategies. O. onirici showed moderate but consistent attraction to most VOCs, while P. papillosa exhibited generally weak or repellent responses, especially at higher concentrations. None of the compounds tested functioned as strong attractants (CI ≥ 0.2), suggesting that plant-derived VOCs alone may not be sufficient to direct nematode recruitment under field conditions. However, their integration with other biotic cues could enhance nematode-based “lure-and-infect” systems for sustainable slug control in carrot cropping systems. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

27 pages, 1179 KiB  
Article
Properties of Plant Extracts from Adriatic Maritime Zone for Innovative Food and Packaging Applications: Insights into Bioactive Profiles, Protective Effects, Antioxidant Potentials and Antimicrobial Activity
by Petra Babić, Tea Sokač Cvetnić, Iva Čanak, Mia Dujmović, Mojca Čakić Semenčić, Filip Šupljika, Zoja Vranješ, Frédéric Debeaufort, Nasreddine Benbettaieb, Emilie Descours and Mia Kurek
Antioxidants 2025, 14(8), 906; https://doi.org/10.3390/antiox14080906 - 24 Jul 2025
Viewed by 303
Abstract
Knowledge about the composition (volatile and non-volatile) and functionality of natural extracts from Mediterranean plants serves as a basis for their further application. In this study, five selected plants were used for the extraction of plant metabolites. Leaves and flowers of Critmum maritimum [...] Read more.
Knowledge about the composition (volatile and non-volatile) and functionality of natural extracts from Mediterranean plants serves as a basis for their further application. In this study, five selected plants were used for the extraction of plant metabolites. Leaves and flowers of Critmum maritimum, Rosmarinus officinalis, Olea europea, Phylliera latifolia and Mellisa officinalis were collected, and a total of 12 extracts were prepared. Extractions were performed under microwave-assisted conditions, with two solvent types: water (W) and a hydroalcoholic (ethanolic) solution (HA). Detailed extract analysis was conducted. Phenolics were analyzed by detecting individual bioactive compounds using high-performance liquid chromatography and by calculating total phenolic and total flavonoid content through spectrophotometric analysis. Higher concentrations of total phenolics and total flavonoids were obtained in the hydroalcoholic extracts, with the significantly highest total phenolic and flavonoid values in the rosemary hydroalcoholic extract (3321.21 mgGAE/L) and sea fennel flower extract (1794.63 mgQE/L), respectively; and the lowest phenolics in the water extract of olive leaves (204.55 mgGAE/L) and flavonoids in the water extracts of sea fennel leaves, rosemary, olive and mock privet (around 100 mgQE/L). Volatile organic compounds (VOC) were detected using HS-SPME/GC–MS (Headspace Solid-Phase Microextraction coupled with Gas Chromatography-Mass Spectrometry), and antioxidant capacity was estimated using DPPH (2,2-diphenyl-1-picrylhydrazyl assay) and FRAP (Ferric Reducing Antioxidant Power) methods. HS-SPME/GC–MS analysis of samples revealed that sea fennel had more versatile profile, with the presence of 66 and 36 VOCs in W and HA sea fennel leaf extracts, 52 and 25 in W and HA sea fennel flower extracts, 57 in rosemary W and 40 in HA, 20 in olive leaf W and 9 in HA, 27 in W mock privet and 11 in HA, and 35 in lemon balm W and 10 in HA extract. The lowest values of chlorophyll a were observed in sea fennel leaves (2.52 mg/L) and rosemary (2.21 mg/L), and chlorophyll b was lowest in sea fennel leaf and flower (2.47 and 2.25 mg/L, respectively), while the highest was determined in olive (6.62 mg/L). Highest values for antioxidant activity, determined via the FRAP method, were obtained in the HA plant extracts (up to 11,216 mgAAE/L for lemon balm), excluding the sea fennel leaf (2758 mgAAE/L) and rosemary (2616 mgAAE/L). Considering the application of these plants for fresh fish preservation, antimicrobial activity of water extracts was assessed against Vibrio fischeri JCM 18803, Vibrio alginolyticus 3050, Aeromonas hydrophila JCM 1027, Moraxella lacunata JCM 20914 and Yersinia ruckeri JCM 15110. No activity was observed against Y. ruckeri and P. aeruginosa, while the sea fennel leaf showed inhibition against V. fisheri (inhibition zone of 24 mm); sea fennel flower was active against M. lacunata (inhibition zone of 14.5 mm) and A. hydrophila (inhibition zone of 20 mm); and rosemary and lemon balm showed inhibition only against V. fisheri (inhibition zone from 18 to 30 mm). This study supports the preparation of natural extracts from Mediterranean plants using green technology, resulting in extracts rich in polyphenolics with strong antioxidant potential, but with no clear significant antimicrobial efficiency at the tested concentrations. Full article
Show Figures

Figure 1

15 pages, 1565 KiB  
Article
Volatile Compounds Profiling of Fresh R. alba L. Blossom by Headspace—Solid Phase Microextraction and Gas Chromatography
by Daniela Antonova-Nedeltcheva, Ana Dobreva, Kamelia Gechovska and Liudmil Antonov
Molecules 2025, 30(15), 3102; https://doi.org/10.3390/molecules30153102 - 24 Jul 2025
Viewed by 277
Abstract
The white oil-bearing rose (R. alba L.) is the second of the industrially important rose species for Bulgarian rose cultivation and essential oil production. In recent years, the interest in white oil-bearing rose has increased, following the worldwide trend for searching for [...] Read more.
The white oil-bearing rose (R. alba L.) is the second of the industrially important rose species for Bulgarian rose cultivation and essential oil production. In recent years, the interest in white oil-bearing rose has increased, following the worldwide trend for searching for new aromatic alternatives. Therefore, the purpose of the current research is to evaluate the volatile compounds profile of fresh R. alba L. flowers using headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC/MS). More than 75 individual compounds were identified and quantified using HS-SPME-GC/MS. The study revealed that the aroma-bearing fraction of rose volatiles consists mainly of monoterpene alcohols; 2-phenylethanol was the most abundant component (8.4–33.9%), followed by geraniol (12.8–32.5%) and citronellol + nerol (17.7–26.5%). Linalool, α-pinene, β-myrcene, and rose oxides were also observed in low concentrations. The stearopten fraction in the HS phase was observed in low concentration, with main representatives nonadecane + nonadecene, heptadecane, heneicosane, and tricosane. The HS-GC profile of the R. alba fresh flowers shows distinct differences in relative abundance of the components between the two studied clones of the population, as well as between volatiles in petals and in the whole blossom. The absence of some undesirable components, such as allergenic and potentially carcinogenic methyl eugenol in fresh R. alba blossom, makes white oil-bearing rose a promising alternative to R. damascena in perfumery, natural cosmetics, and aromatherapy. Full article
Show Figures

Figure 1

Back to TopTop