Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (355)

Search Parameters:
Keywords = vitamin delivery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 775 KiB  
Review
Bioactive Compounds, Technological Advances, and Sustainable Applications of Avocado (Persea americana Mill.): A Critical Review
by Amanda Priscila Silva Nascimento, Maria Elita Martins Duarte, Ana Paula Trindade Rocha and Ana Novo Barros
Foods 2025, 14(15), 2746; https://doi.org/10.3390/foods14152746 - 6 Aug 2025
Abstract
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in [...] Read more.
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in monounsaturated fatty acids, especially oleic acid, which can comprise over two-thirds of its lipid content. In addition, it provides significant levels of dietary fiber, fat-soluble vitamins such as A, D, E and K, carotenoids, tocopherols, and phytosterols like β-sitosterol. These constituents are consistently associated with antioxidant, anti-inflammatory, glycemic regulatory, and cardioprotective effects, supported by a growing body of experimental and clinical evidence. This review offers a comprehensive and critical synthesis of the chemical composition and functional properties of avocado, with particular emphasis on its lipid profile, phenolic compounds, and phytosterols. It also explores recent advances in environmentally sustainable extraction techniques, including ultrasound-assisted and microwave-assisted processes, as well as the application of natural deep eutectic solvents. These technologies have demonstrated improved efficiency in recovering bioactives while aligning with the principles of green chemistry. The use of avocado-derived ingredients in nanostructured delivery systems and their incorporation into functional foods, cosmetics, and health-promoting formulations is discussed in detail. Additionally, the potential of native cultivars and the application of precision nutrition strategies are identified as promising avenues for future innovation. Taken together, the findings underscore the avocado’s relevance as a high-value matrix for sustainable development. Future research should focus on optimizing extraction protocols, clarifying pharmacokinetic behavior, and ensuring long-term safety in diverse applications. Full article
(This article belongs to the Special Issue Feature Review on Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

18 pages, 305 KiB  
Review
Causes of Childhood Cancer: A Review of Literature (2014–2021): Part 2—Pregnancy and Birth-Related Factors
by Rebecca T. Emeny, Angela M. Ricci, Linda Titus, Alexandra Morgan, Pamela J. Bagley, Heather B. Blunt, Mary E. Butow, Jennifer A. Alford-Teaster, Raymond R. Walston III and Judy R. Rees
Cancers 2025, 17(15), 2499; https://doi.org/10.3390/cancers17152499 - 29 Jul 2025
Viewed by 590
Abstract
Purpose: To review parental pre-pregnancy and pregnancy exposures in relation to pediatric cancer (diagnosis before age 20). Methods: We conducted literature searches using Ovid Medline and Scopus to find primary research studies, review articles, and meta-analyses published from 2014 to 17 March 2021. [...] Read more.
Purpose: To review parental pre-pregnancy and pregnancy exposures in relation to pediatric cancer (diagnosis before age 20). Methods: We conducted literature searches using Ovid Medline and Scopus to find primary research studies, review articles, and meta-analyses published from 2014 to 17 March 2021. Results: Strong evidence links increased risk of childhood cancer with maternal diabetes, age, and alcohol and coffee consumption during pregnancy. Both paternal and maternal cigarette smoking before and during pregnancy are associated with childhood cancers. Diethylstilbestrol (DES) exposure in utero has long been known to be causally associated with increased risk of vaginal/cervical cancers in adolescent girls. More recent evidence implicates in utero DES exposure to testicular cancer in young men and possible intergenerational effects on ovarian cancer in the granddaughters of women exposed to DES during pregnancy. There is strong evidence that childhood cancer risk is also associated with both high and very low birth weight and with gestational age. Evidence is also strong for the protective effects of maternal vitamin consumption and a healthy diet during pregnancy. Unlike early studies, those reviewed here show no association between in utero exposure to medical ionizing radiation, which may be explained by reductions over time in radiation doses, avoidance of radiation during pregnancy, and/or by inadequate statistical power to detect small increases in risk, rather than a lack of causal association. Evidence is mixed or conflicting for an association between childhood cancer and maternal obesity, birth order, cesarean/instrumental delivery, and prenatal exposure to diagnostic medical radiation. Evidence is weak or absent for associations between childhood cancer and multiple gestations or assisted reproductive therapies, as well as prenatal exposure to hormones other than DES, and medications. Full article
24 pages, 2213 KiB  
Article
Triple-Loaded Nanoemulsions Incorporating Coffee Extract for the Photoprotection of Curcumin and Capsaicin: Experimental and Computational Evaluation
by Nuttapol Boonrueang, Siripat Chaichit, Wipawadee Yooin, Siriporn Okonogi, Kanokwan Kiattisin and Chadarat Ampasavate
Pharmaceutics 2025, 17(7), 926; https://doi.org/10.3390/pharmaceutics17070926 - 17 Jul 2025
Viewed by 449
Abstract
Background/Objectives: This study aims to present a strategic approach to enhancing the photostability and antioxidative resilience of curcumin and capsaicin by integrating selected natural stabilizers within a nanoemulsion-based delivery system. Methods: Coffee extract (Coffea arabica Linn.), along with its active [...] Read more.
Background/Objectives: This study aims to present a strategic approach to enhancing the photostability and antioxidative resilience of curcumin and capsaicin by integrating selected natural stabilizers within a nanoemulsion-based delivery system. Methods: Coffee extract (Coffea arabica Linn.), along with its active components and vitamin E-containing natural oils, was assessed in terms of improving the photostabilizing and antioxidative retention abilities of curcumin and capsaicin. An optimized ratio of the active mixture was then loaded into a nanoformulation. Results: The analysis of active contents with validated high-performance liquid chromatography (HPLC), ferric reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays confirmed the stabilization enhancement after irradiation with UV and white light for 72,000–84,000 lux hours. The optimized combination of coffee extract with turmeric and chili mixtures loaded into the optimized nanoemulsion enhanced the half-lives (T1/2) of curcumin and capsaicin by 416% and 390%, respectively. The interactions of curcumin and capsaicin with caffeine and chlorogenic acid were elucidated using computational calculations. Interaction energies (Eint), HOMO-LUMO energy gap (HLG) analysis, and global reactivity descriptors revealed hydrogen bonding interactions be-tween capsaicin and chlorogenic acid, as well as between curcumin and caffeine. Conclusions: By leveraging the synergistic antioxidative properties of coffee extract and vitamin E within a nanoemulsion matrix, this study overcomes the intrinsic stability limitations of curcumin and capsaicin, offering a robust platform for future pharmaceutical and nutraceutical applications. Full article
Show Figures

Graphical abstract

14 pages, 868 KiB  
Article
Prenatal Determinants of Maternal 25(OH)D Levels at Delivery: The Role of Diet and Supplement Use in a Cross-Sectional Study in Greece
by Artemisia Kokkinari, Evangelia Antoniou, Kleanthi Gourounti, Maria Dagla, Maria Iliadou, Ermioni Palaska, Eirini Tomara and Georgios Iatrakis
Medicina 2025, 61(7), 1249; https://doi.org/10.3390/medicina61071249 - 10 Jul 2025
Viewed by 262
Abstract
Background and Objectives: Maternal vitamin D (25-hydroxyvitamin D, 25(OH)D) deficiency during pregnancy is associated with adverse outcomes for both mother and fetus. While vitamin D supplementation is commonly recommended, dietary and lifestyle factors influencing maternal 25(OH)D levels at term remain underexplored, particularly in [...] Read more.
Background and Objectives: Maternal vitamin D (25-hydroxyvitamin D, 25(OH)D) deficiency during pregnancy is associated with adverse outcomes for both mother and fetus. While vitamin D supplementation is commonly recommended, dietary and lifestyle factors influencing maternal 25(OH)D levels at term remain underexplored, particularly in Southern Europe. Aim: This study aimed to investigate prenatal determinants of maternal 25(OH)D levels at the time of delivery, focusing on dietary intake, supplement use, and seasonal variation. Materials and Methods: We conducted a cross-sectional study on 248 pregnant women admitted for delivery at the General Hospital of Piraeus “Tzaneio” between September 2019 and January 2022. A structured questionnaire was used to assess prenatal intake of vitamin D-rich foods (such as fatty fish, eggs, dairy, and fortified products), supplement use (dose, frequency), sun exposure habits, and lifestyle factors. Maternal serum 25(OH)D concentrations were measured from blood samples collected at the time of admission for delivery. Statistical analysis included descriptive statistics and multivariate linear regression to identify independent dietary and supplemental predictors of maternal vitamin D status. Results: A high prevalence of maternal vitamin D deficiency (VDD) was observed, particularly during the autumn and winter months. Women who reported regular intake of vitamin D supplements (400–800 IU daily) had significantly higher 25(OH)D levels compared to those who did not. Dietary intake of vitamin D-rich foods was positively associated with maternal 25(OH)D status, although the effect size was smaller compared to supplementation. Seasonal variation, BMI, and limited sun exposure were also independent predictors. Conclusions: Both vitamin D supplementation and increased dietary intake were positively associated with maternal 25(OH)D concentrations at delivery. These findings underscore the importance of prenatal nutritional assessment and targeted supplementation strategies to prevent maternal VDD in Mediterranean populations. Full article
(This article belongs to the Special Issue Recent Advances in Maternal–Fetal Medicine)
Show Figures

Figure 1

18 pages, 2664 KiB  
Article
Engineering a Polyacrylamide/Polydopamine Adhesive Hydrogel Patch for Sustained Transdermal Vitamin E Delivery
by Yejin Kim, Juhyeon Kim, Dongmin Yu, Taeho Kim, Jonghyun Park, Juyeon Lee, Sohyeon Yu, Dongseong Seo, Byoungsoo Kim, Simseok A. Yuk, Daekyung Sung and Hyungjun Kim
Cosmetics 2025, 12(4), 138; https://doi.org/10.3390/cosmetics12040138 - 1 Jul 2025
Viewed by 669
Abstract
A transdermal drug delivery system based on hydrogel patches was explored, leveraging their sustained release properties and biocompatibility. Despite these advantages, conventional hydrogels often lack proper adhesion to the skin, limiting their practical application. To address this issue, we designed a skin-adhesive hydrogel [...] Read more.
A transdermal drug delivery system based on hydrogel patches was explored, leveraging their sustained release properties and biocompatibility. Despite these advantages, conventional hydrogels often lack proper adhesion to the skin, limiting their practical application. To address this issue, we designed a skin-adhesive hydrogel using a polyacrylamide (PAM)/polydopamine (PDA) dual-network structure. The matrix combines the mechanical toughness of PAM with the strong adhesive properties of PDA, derived from mussel foot proteins, enabling firm tissue attachment and robust performance under physiological conditions. To demonstrate its applicability, the hydrogel was integrated with poly(lactic-co-glycolic acid) (PLGA) nanoparticles encapsulating the hydrophobic antioxidant vitamin E as a model compound. The resulting PAM/PDA@VitE hydrogel system exhibited improved swelling behavior, high water retention, and prolonged release of α-tocopherol. These results suggest that the PAM/PDA hydrogel platform is a versatile vehicle not only for vitamin E, but also for the transdermal delivery of various cosmetic and therapeutic agents. Full article
Show Figures

Figure 1

57 pages, 2866 KiB  
Review
Shifting Perspectives on the Role of Tocotrienol vs. Tocopherol in Brain Health: A Scoping Review
by Rabiatul Adawiyah Razali, Wan Zurinah Wan Ngah, Suzana Makpol, Daijiro Yanagisawa, Tomoko Kato and Ikuo Tooyama
Int. J. Mol. Sci. 2025, 26(13), 6339; https://doi.org/10.3390/ijms26136339 - 30 Jun 2025
Viewed by 834
Abstract
Vitamin E has been extensively studied for its neuroprotective properties, with increasing evidence supporting its broader roles in brain health. This scoping review aims to systematically identify, analyze, and synthesize evidence of the existing literature over the last 10 years on tocotrienol and [...] Read more.
Vitamin E has been extensively studied for its neuroprotective properties, with increasing evidence supporting its broader roles in brain health. This scoping review aims to systematically identify, analyze, and synthesize evidence of the existing literature over the last 10 years on tocotrienol and tocopherol supplementation in humans. A systematic search was conducted across PubMed, Scopus, and EBSCOhost yielding 42 eligible articles. Findings suggest that tocopherols, especially α- and γ-forms, are associated with improved cognitive performance, reduced neuroinflammation, and preservation of synaptic proteins. Despite tocotrienol’s lower plasma bioavailability, tocotrienol availability in selective brain regions has been associated with structural protection, particularly in white matter. Both compounds exhibit complementary effects, suggesting a potential advantage of combined supplementation. However, heterogeneity in study designs, subject characteristics, dosage, duration, and assessment methods limit direct comparisons and generalizability of findings. Based on our review’s findings, further research such as dose-optimization, long-term exposures, and delivery methods on human studies should be performed. This review highlights the multifaceted roles of vitamin E in brain health and underscores the urgent need for well-designed studies to clarify the distinct and synergistic effects of tocopherols and tocotrienols, particularly in human populations. Full article
(This article belongs to the Special Issue Nutraceuticals for the Maintenance of Brain Health)
Show Figures

Figure 1

39 pages, 1558 KiB  
Review
Antioxidant Intervention Against Microplastic Hazards
by Zhihua Wang, Yunting Wang, Jian Zhang, Guoquan Feng, Shuhan Miao, Rongzhu Lu, Xinyu Tian and Yang Ye
Antioxidants 2025, 14(7), 797; https://doi.org/10.3390/antiox14070797 - 27 Jun 2025
Viewed by 1727
Abstract
Microplastic pollution (<5 mm) poses a serious threat to the environment and human health, inducing cellular stress damage in organisms (especially through oxidative stress). The damage results from excessive reactive oxygen species and impaired defense mechanisms, affecting energy production, organelles, and triggering inflammation. [...] Read more.
Microplastic pollution (<5 mm) poses a serious threat to the environment and human health, inducing cellular stress damage in organisms (especially through oxidative stress). The damage results from excessive reactive oxygen species and impaired defense mechanisms, affecting energy production, organelles, and triggering inflammation. Antioxidants (such as vitamin C, curcumin, and quercetin) reduce stress markers and inflammation by neutralizing harmful molecules, activating protective pathways, and regulating autophagy, providing potential protection. However, practical applications face challenges such as low absorption rates, large individual variations, and unclear long-term safety. Research needs to delve into the molecular interaction mechanisms, develop effective delivery systems for antioxidant combinations, and formulate evidence-based strategies. Addressing the complexity of microplastics (size, shape, additives) and their cross-ecosystem impacts requires multidisciplinary collaboration. This review explores the oxidative stress mechanisms induced by microplastics, assesses the potential and limitations of antioxidant interventions, and provides a basis for environmental health risk management. Full article
(This article belongs to the Special Issue Oxidative Stress Induced by Micro(Nano)plastics)
Show Figures

Figure 1

19 pages, 8480 KiB  
Article
(W/O/W) Double Emulsions-Filled Chitosan Hydrogel Beads for Topical Application
by Rui Sun, Yufeng Sun, Xiaoyan Tang and Juling Ji
Gels 2025, 11(7), 504; https://doi.org/10.3390/gels11070504 - 27 Jun 2025
Viewed by 398
Abstract
The aim of this study was to develop double emulsions-filled chitosan hydrogel beads for topical application and to elucidate their skin penetration behavior. Double emulsions were prepared by a two-step emulsification method, and double emulsions-filled chitosan hydrogel beads were prepared by the extrusion [...] Read more.
The aim of this study was to develop double emulsions-filled chitosan hydrogel beads for topical application and to elucidate their skin penetration behavior. Double emulsions were prepared by a two-step emulsification method, and double emulsions-filled chitosan hydrogel beads were prepared by the extrusion method. The structure, stability, and skin penetration behavior were investigated. The results of yield efficiency (above 80%) and microstructure observation confirmed the feasibility of the preparation method. After loading the hydrophilic active ingredients (vitamin C) into this system, the retention ratio after storage for 6 weeks increased by 77.6%. Furthermore, hydrogel beads could promote the permeation of hydrophilic active ingredients loaded in double emulsions. When the concentration of chitosan was 3% (w/v), the permeation coefficient of vitamin C from hydrogel beads exhibited an increase (1.7-fold) compared with double emulsions. This system could affect the orderliness of lipid structures in the stratum corneum. In addition, the results indicated that this system could be used for the topical delivery of hydrophobic active ingredients (quercetin) as well. This is the first report of chitosan bead stabilization of W/O/W emulsions, yielding a 2.6-fold increase in skin uptake of hydrophilic actives. Full article
(This article belongs to the Special Issue Recent Advances in Gels for Pharmaceutical Application)
Show Figures

Figure 1

15 pages, 2847 KiB  
Article
Metabolomic Profiles During and After a Hypertensive Disorder of Pregnancy: The EPOCH Study
by Mark A. Hlatky, Chi-Hung Shu, Nasim Bararpour, Brenna M. Murphy, Sabina M. Sorondo, Nicholas J. Leeper, Frank Wong, David K. Stevenson, Gary M. Shaw, Marcia L. Stefanick, Heather A. Boyd, Mads Melbye, Oshra Sedan, Ronald J. Wong, Michael P. Snyder, Nima Aghaeepour and Virginia D. Winn
Int. J. Mol. Sci. 2025, 26(13), 6150; https://doi.org/10.3390/ijms26136150 - 26 Jun 2025
Viewed by 413
Abstract
Hypertensive disorders of pregnancy are associated with a higher risk of later cardiovascular disease, but the mechanistic links are unknown. We recruited two groups of women, one during pregnancy and another at least two years after delivery, including both cases (with a hypertensive [...] Read more.
Hypertensive disorders of pregnancy are associated with a higher risk of later cardiovascular disease, but the mechanistic links are unknown. We recruited two groups of women, one during pregnancy and another at least two years after delivery, including both cases (with a hypertensive disorder of pregnancy) and controls (with a normotensive pregnancy). We measured metabolites using liquid chromatography–mass spectroscopy and applied machine learning to identify metabolomic signatures at three time points: antepartum, postpartum, and mid-life. The mean ages of the pregnancy cohort (58 cases, 46 controls) and the mid-life group (71 cases, 74 controls) were 33.8 and 40.8 years, respectively. The levels of 157 metabolites differed significantly between the cases and the controls antepartum, including 19 acylcarnitines, 12 gonadal steroids, 11 glycerophospholipids, nine fatty acids, six vitamin D metabolites, and four corticosteroids. The machine learning model developed using all antepartum metabolite levels discriminated well between the cases and the controls antepartum (c-index = 0.96), postpartum (c-index = 0.63), and in mid-life (c-index = 0.60). Levels of 10,20-dihydroxyeicosanoic acid best distinguished the cases from the controls both antepartum and postpartum. These data suggest that the pattern of differences in metabolites found antepartum continues to distinguish women who had a hypertensive disorder of pregnancy from women with a normotensive pregnancy for years after delivery. Full article
(This article belongs to the Special Issue Molecular Links Between Pregnancy and Chronic Diseases)
Show Figures

Figure 1

19 pages, 2467 KiB  
Article
The Impact of Dietary Habits and Maternal Body Composition on Human Milk Microbiota—Polish Pilot Study
by Agnieszka Bzikowska-Jura, Anna Koryszewska-Bagińska, Małgorzata Konieczna, Jan Gawor, Robert Gromadka, Aleksandra Wesołowska and Gabriela Olędzka
Molecules 2025, 30(13), 2723; https://doi.org/10.3390/molecules30132723 - 25 Jun 2025
Viewed by 437
Abstract
Human milk (HM) is a complex biological fluid that plays a significant role in infant health, influenced by maternal dietary habits and body composition. This study aimed to explore how maternal diet and nutritional status affect the microbial composition of HM. In this [...] Read more.
Human milk (HM) is a complex biological fluid that plays a significant role in infant health, influenced by maternal dietary habits and body composition. This study aimed to explore how maternal diet and nutritional status affect the microbial composition of HM. In this pilot study, 15 mothers were recruited from a maternity ward and assessed for dietary habits through a semi-structured food frequency questionnaire and a 3-day dietary record. Maternal body composition was evaluated using bioelectrical impedance analysis. HM samples were collected for microbiota analysis, focusing on the diversity and composition of bacterial communities via 16S rRNA sequencing. The study identified that maternal nutrient intake significantly correlated with the composition of HM microbiota. Specifically, Firmicutes abundance showed positive correlations with animal protein (τ = 0.39; p = 0.043), total carbohydrates (τ = 0.39; p = 0.043), and vitamin A (τ = 0.429; p = 0.026). Bacteroidota was positively correlated with retinol (τ = 0.39; p = 0.043). Higher consumption of dietary fiber (>24 g/day) did not yield significant differences in bacterial composition compared to lower intake (<24 g/day) (p = 0.8977). Additionally, no significant differences were found in overall bacterial abundance across different maternal characteristics such as age, mode of delivery, or breastfeeding type. This study underscores the importance of maternal diet in shaping the HM microbiota, which may have implications for infant health. Dietary modifications during lactation could be a strategic approach to promote beneficial microbial colonization in HM. Further research is warranted to confirm these findings and explore the underlying mechanisms. Full article
(This article belongs to the Special Issue Research on Bioactive Compounds in Milk)
Show Figures

Figure 1

21 pages, 1236 KiB  
Review
Gelatin-Based Hydrogels for Peripheral Nerve Regeneration: A Multifunctional Vehicle for Cellular, Molecular, and Pharmacological Therapy
by Denisa-Madalina Viezuina, Irina Musa, Madalina Aldea, Irina-Mihaela Matache, Alexandra-Daniela Rotaru Zavaleanu, Andrei Gresita, Sfredel Veronica and Smaranda Ioana Mitran
Gels 2025, 11(7), 490; https://doi.org/10.3390/gels11070490 - 25 Jun 2025
Viewed by 1032
Abstract
Peripheral nerve injuries (PNIs) present a significant clinical challenge due to the inherently limited regenerative capacity of the adult nervous system. Conventional therapeutic strategies, such as nerve autografting and systemic pharmacological interventions, are often limited by donor site morbidity, restricted graft availability, and [...] Read more.
Peripheral nerve injuries (PNIs) present a significant clinical challenge due to the inherently limited regenerative capacity of the adult nervous system. Conventional therapeutic strategies, such as nerve autografting and systemic pharmacological interventions, are often limited by donor site morbidity, restricted graft availability, and suboptimal drug bioavailability. In this context, gelatin-based hydrogels have emerged as a promising class of biomaterials due to their excellent biocompatibility, biodegradability, and structural similarity to the native extracellular matrix. These hydrogels could offer a highly tunable platform capable of supporting cellular adhesion, promoting axonal elongation, and enabling localized and sustained release of therapeutic agents. This narrative review synthesizes recent advances in the application of gelatin-based hydrogels for peripheral nerve regeneration, with a particular focus on their use as delivery vehicles for neurotrophic factors, stem cells, and pharmacologically active compounds. Additionally, this review provides a foundation for extending our ongoing preclinical study, evaluating the neuroregenerative effects of alpha-lipoic acid, B-complex vitamins, and a deproteinized hemoderivative in a murine PNI model. Although systemic administration has demonstrated promising neuroprotective effects, limitations related to local drug availability and off-target exposure highlight the need for site-specific delivery strategies. In this regard, gelatin hydrogels might represent an excellent candidate for localized, controlled drug delivery. The review concludes by discussing formulation techniques, manufacturing considerations, biological performance, and key translational and regulatory aspects. Full article
(This article belongs to the Special Issue Gelatin-Based Materials for Tissue Engineering)
Show Figures

Figure 1

24 pages, 657 KiB  
Article
Sexual Functioning and Depressive Symptoms in Levothyroxine-Treated Women with Postpartum Thyroiditis and Different Vitamin D Status
by Karolina Kowalcze, Joanna Kula-Gradzik, Anna Błaszczyk and Robert Krysiak
Nutrients 2025, 17(13), 2091; https://doi.org/10.3390/nu17132091 - 24 Jun 2025
Viewed by 492
Abstract
Background/Objectives: Hypothyroidism and thyroid autoimmunity have a negative effect on women’s sexual health, which is only partially reversed by thyroid hormone substitution. Sexual functioning in thyroid disorders after delivery has been poorly researched. The aim of our study was to compare the [...] Read more.
Background/Objectives: Hypothyroidism and thyroid autoimmunity have a negative effect on women’s sexual health, which is only partially reversed by thyroid hormone substitution. Sexual functioning in thyroid disorders after delivery has been poorly researched. The aim of our study was to compare the effect of levothyroxine on sexual response and depressive symptoms in women with postpartum thyroiditis (PPT) and different vitamin D status. Methods: The study population consisted of three matched groups of women with the hypothyroid phase of PPT: two groups with subclinical and one with overt thyroid hypofunction. Each group included similar numbers of women with normal and low vitamin D status. For the following six months, one group of women with subclinical hypothyroidism and all women with overt thyroid hypofunction received levothyroxine. At the beginning and at the end of the study, all participants completed questionnaires evaluating female sexual function (FSFI) and depressive symptoms (BMI-II). The remaining outcomes of interest included thyroid antibody titers, and the serum levels of 25-hydroxyvitamin D, TSH, free thyroid hormones, sex hormones, and prolactin. Results: Before levothyroxine substitution, women with overt and subclinical disease differed in the total FSFI score, all domain scores, and the overall BDI-II score. Within each study group, domain scores for desire were greater in women with vitamin D sufficiency than in those with vitamin D deficiency/insufficiency. Testosterone and estradiol levels were lower in women with overt than in women with subclinical hypothyroidism, while the opposite relationship was found for prolactin. Levothyroxine treatment improved all domains of female sexual function and reduced the total BDI-II score in both patients with overt and subclinical hypothyroidism and normal vitamin D status. In women with vitamin D deficiency/insufficiency, the impact of this agent was limited to arousal, lubrication, and sexual satisfaction. Levothyroxine replacement reduced thyroid antibody titers only in women with normal vitamin D status. The impact on testosterone was limited to women with normal vitamin D status, and was more pronounced in women with overt than subclinical disease. The effect on estradiol and prolactin, observed only in overt disease, was unrelated to vitamin D status. The increase in sexual functioning correlated with the following: 25-hydroxyvitamin D levels (in vitamin D-deficient/insufficient women); the impact on thyroid peroxidase antibodies, free triiodothyronine and testosterone (for desire and arousal); and the changes in the overall BDI-II score. Five years later, the quality of life was better in vitamin D-sufficient women receiving levothyroxine in the postpartum period. Conclusions: Low vitamin D status attenuates the impact of levothyroxine on female sexual function and depressive symptoms in women with the hypothyroid phase of PPT. Full article
(This article belongs to the Special Issue Vitamins and Human Health: 3rd Edition)
Show Figures

Figure 1

13 pages, 1770 KiB  
Article
PMSSO-Hydrogels as a Promising Carrier for B12 Vitamin
by Daniil Ialama, Polina Orlova, Anna Skuredina, Ivan Meshkov, Aziz Muzafarov and Irina Le-Deygen
J. Pharm. BioTech Ind. 2025, 2(3), 10; https://doi.org/10.3390/jpbi2030010 - 23 Jun 2025
Viewed by 246
Abstract
The development of novel dosage forms of vitamin B12 is an urgent task for addressing vitamin deficiency in individuals with gastrointestinal diseases or those following stringent dietary limitations. The study illustrates the fundamental possibility of employing a non-toxic and biocompatible organosilicon hydrogel [...] Read more.
The development of novel dosage forms of vitamin B12 is an urgent task for addressing vitamin deficiency in individuals with gastrointestinal diseases or those following stringent dietary limitations. The study illustrates the fundamental possibility of employing a non-toxic and biocompatible organosilicon hydrogel with significant sorption capacity for B12 delivery. Research indicated that 40 min of incubation suffices for optimal loading efficiency, influenced by both external diffusion and intradiffusion factors. The release of B12 in a medium that mimics the human gastrointestinal tract transpires almost entirely within a timeframe that aligns with physiological conditions. Consequently, organosilicon hydrogels serve as potential vehicles for the administration of vitamin B12. Full article
Show Figures

Figure 1

41 pages, 5987 KiB  
Review
The Mechanical Glass Transition Temperature Affords a Fundamental Quality Control in Condensed Gels for Innovative Application in Functional Foods and Nutraceuticals
by Vilia Darma Paramita, Naksit Panyoyai and Stefan Kasapis
Foods 2025, 14(12), 2098; https://doi.org/10.3390/foods14122098 - 14 Jun 2025
Viewed by 508
Abstract
A subject of increasing fundamental and technological interest is the techno- and bio-functionality of functional foods and nutraceuticals in high-solid gels. This encompasses the diffusion of natural bioactive compounds, prevention of oxidation of essential fatty acids, minimization of food browning, and the prevention [...] Read more.
A subject of increasing fundamental and technological interest is the techno- and bio-functionality of functional foods and nutraceuticals in high-solid gels. This encompasses the diffusion of natural bioactive compounds, prevention of oxidation of essential fatty acids, minimization of food browning, and the prevention of malodorous flavour formation in enzymatic and non-enzymatic reactions, to mention but a few. Textural and sensory considerations require that these delivery/encapsulating/entrapping vehicles are made with natural hydrocolloids and co-solutes in a largely amorphous state. It is now understood that the mechanical glass transition temperature is a critical consideration in monitoring the performance of condensed polymer networks that incorporate small bioactive compounds. This review indicates that the metastable properties of the rubber-to-glass transition in condensed gels (as opposed to the thermodynamic equilibrium in crystalline lattices) are a critical parameter in providing a fundamental quality control of end products. It appears that the “sophisticated synthetic polymer research” can provide a guide in the design of advanced biomaterials for targeted release or the prevention of undesirable byproducts. Such knowledge can assist in designing and optimizing functional foods and nutraceuticals, particularly those including vitamins, antioxidants, essential fatty acids, stimulants for performance enhancement, and antimicrobials. Full article
Show Figures

Figure 1

20 pages, 1377 KiB  
Review
The Multi-Dimensional Role of Vitamin D in the Pathophysiology and Treatment of Diabetic Foot Ulcers: From Molecular Mechanisms to Clinical Translation
by Weiwei Tang, Shengqiu Chen, Shuxia Zhang and Xingwu Ran
Int. J. Mol. Sci. 2025, 26(12), 5719; https://doi.org/10.3390/ijms26125719 - 14 Jun 2025
Viewed by 787
Abstract
Diabetic foot ulcers (DFUs) constitute a severe and debilitating complication of diabetes, imposing a substantial global health burden due to their intricate pathophysiology and impaired wound healing processes. Vitamin D deficiency is highly prevalent among diabetic populations, and accumulating evidence indicates its potential [...] Read more.
Diabetic foot ulcers (DFUs) constitute a severe and debilitating complication of diabetes, imposing a substantial global health burden due to their intricate pathophysiology and impaired wound healing processes. Vitamin D deficiency is highly prevalent among diabetic populations, and accumulating evidence indicates its potential involvement in the pathogenesis and prognosis of DFUs. This review comprehensively explores the diverse roles of vitamin D in DFUs, encompassing its molecular mechanisms such as immunomodulation, promotion of angiogenesis, neuroprotection, and induction of antimicrobial peptides, as well as the metabolic characteristics associated with various vitamin D forms and compromised vitamin D receptor (VDR) signaling pathways. Although robust observational studies have established an association between vitamin D deficiency and adverse outcomes in DFUs, the clinical validation of supplementation efficacy through randomized controlled trials (RCTs) remains constrained by limitations such as small sample sizes, heterogeneity in study protocols, and insufficient long-term follow-up. This highlights the critical need for large-scale, high-quality studies to ascertain optimal treatment regimens and to cater to individualized patient requirements, particularly for individuals with obesity or those with renal impairments. Innovative strategies, such as the topical administration of vitamin D through intelligent delivery systems leveraging advanced biomaterials like nanofibers and hydrogels, exhibit substantial preclinical potential in enhancing stability, achieving targeted controlled release, and augmenting local biological effects, including the induction of antimicrobial peptides. Nevertheless, significant challenges persist in conclusively establishing clinical efficacy, comprehensively elucidating the underlying mechanisms, ensuring the safe translation of novel delivery systems, and developing personalized therapeutic strategies. The future success of these interventions hinges on meticulous research and interdisciplinary collaboration to seamlessly integrate validated vitamin D-based interventions into a comprehensive multidisciplinary management framework for DFUs, thereby holding promise for improving the clinical outcomes of this debilitating condition. Full article
(This article belongs to the Special Issue The Role of Vitamin D in Human Health and Diseases 4.0)
Show Figures

Figure 1

Back to TopTop