Causes of Childhood Cancer: A Review of Literature (2014–2021): Part 2—Pregnancy and Birth-Related Factors
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Alcohol
4. Smoking
5. Diet and Vitamins
6. Caffeine
7. Parental Age
8. Maternal Diabetes
9. Maternal Obesity
10. Birth Characteristics and Obstetric History
10.1. Birth Weight
10.2. Gestational Age
10.3. Phototherapy
10.4. Multiple Gestation
10.5. Birth Order
10.6. Cesarean Section and Operative Vaginal Delivery
11. Assistive Reproductive Technologies (ARTs)
12. Prenatal Exposure to Medications Used During Pregnancy
12.1. Diethylstilbestrol (DES)
12.2. Other Hormones
12.3. Antibiotics and Antiretrovirals
12.4. Antipyretics/Analgesics
12.5. Other Medications and Drug Use
13. Medical Ionizing Radiation During Pregnancy
14. Limitations
15. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ricci, A.M.; Emeny, R.T.; Bagley, P.J.; Blunt, H.B.; Butow, M.E.; Morgan, A.; Alford-Teaster, J.A.; Titus, L.; Walston, R.R., III; Rees, J.R. Causes of Childhood Cancer: A Review of the Recent Literature: Part I—Childhood Factors. Cancers 2024, 16, 1297. [Google Scholar] [CrossRef]
- Steliarova-Foucher, E.; Colombet, M.; Ries, L.A.G.; Moreno, F.; Dolya, A.; Bray, F.; Hesseling, P.; Shin, H.Y.; Stiller, C.A.; The IICC-3. International incidence of childhood cancer, 2001–10: A population-based registry study. Lancet Oncol. 2017, 18, 719–731. [Google Scholar] [CrossRef]
- IARC Monographs on the Identification of Carcinogenic Hazards to Humans. International Agency for Research on Cancer. Available online: https://monographs.iarc.who.int/list-of-classifications (accessed on 6 June 2025).
- Ionizing Radiation, Part 1: X- and Gamma (γ)-Radiation, and Neutrons. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2000; Volume 75.
- Ionizing Radiation, Part 2: Some Internally Deposited Radionuclides. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2000; Volume 78.
- Karalexi, M.A.; Dessypris, N.; Thomopoulos, T.P.; Ntouvelis, E.; Kantzanou, M.; Diamantaras, A.-A.; Moschovi, M.; Baka, M.; Hatzipantelis, E.; Kourti, M.; et al. Parental alcohol consumption and risk of leukemia in the offspring: A systematic review and meta-analysis. Eur. J. Cancer Prev. 2017, 26, 433–441. [Google Scholar] [CrossRef]
- Muller-Schulte, E.; Kurlemann, G.; Harder, A. Tobacco, alcohol and illicit drugs during pregnancy and risk of neuroblastoma: Systematic review. Arch. Dis. Child. Fetal Neonatal Ed. 2018, 103, F467–F473. [Google Scholar] [CrossRef] [PubMed]
- Georgakis, M.K.; Dessypris, N.; Papadakis, V.; Tragiannidis, A.; Bouka, E.; Hatzipantelis, E.; Moschovi, M.; Papakonstantinou, E.; Polychronopoulou, S.; Sgouros, S.; et al. Perinatal and early life risk factors for childhood brain tumors: Is instrument-assisted delivery associated with higher risk? Cancer Epidemiol. 2019, 59, 178–184. [Google Scholar] [CrossRef]
- Doganis, D.; Katsimpris, A.; Panagopoulou, P.; Bouka, P.; Bouka, E.; Moschovi, M.; Polychronopoulou, S.; Papakonstantinou, E.; Tragiannidis, A.; Katzilakis, N.; et al. Maternal lifestyle characteristics and Wilms tumor risk in the offspring: A systematic review and meta-analysis. Cancer Epidemiol. 2020, 67, 101769. [Google Scholar] [CrossRef]
- Alberg, A.J.; Shopland, D.R.; Cummings, K.M. The 2014 Surgeon General’s report: Commemorating the 50th Anniversary of the 1964 Report of the Advisory Committee to the US Surgeon General and updating the evidence on the health consequences of cigarette smoking. Am. J. Epidemiol. 2014, 179, 403–412. [Google Scholar] [CrossRef]
- Asomaning, K.; Miller, D.P.; Liu, G.; Wain, J.C.; Lynch, T.J.; Su, L.; Christiani, D.C. Second hand smoke, age of exposure and lung cancer risk. Lung Cancer 2008, 61, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.S.; Ko, H.J.; Kwon, J.H.; Lee, J.M. Exposure to Secondhand Smoke and Risk of Cancer in Never Smokers: A Meta-Analysis of Epidemiologic Studies. Int. J. Environ. Res. Public Health 2018, 15, 1981. [Google Scholar] [CrossRef] [PubMed]
- Chu, P.; Wang, H.; Han, S.; Jin, Y.; Lu, J.; Han, W.; Shi, J.; Guo, Y.; Ni, X. Maternal smoking during pregnancy and risk of childhood neuroblastoma: Systematic review and meta-analysis. J. Cancer Res. Ther. 2016, 12, 999–1005. [Google Scholar] [CrossRef]
- Zumel-Marne, A.; Castano-Vinyals, G.; Kundi, M.; Alguacil, J.; Cardis, E. Environmental Factors and the Risk of Brain Tumours in Young People: A Systematic Review. Neuroepidemiology 2019, 53, 121–141. [Google Scholar] [CrossRef]
- Rios, P.; Bailey, H.D.; Poulalhon, C.; Valteau-Couanet, D.; Schleiermacher, G.; Bergeron, C.; Petit, A.; Defachelles, A.-S.; Marion, G.; Sirvent, N.; et al. Parental smoking, maternal alcohol consumption during pregnancy and the risk of neuroblastoma in children. A pooled analysis of the ESCALE and ESTELLE French studies. Int. J. Cancer 2019, 145, 2907–2916. [Google Scholar] [CrossRef]
- Bailey, H.D.; Lacour, B.; Guerrini-Rousseau, L.; Bertozzi, A.-I.; Leblond, P.; Faure-Conter, C.; Pellier, I.; Freycon, C.; Doz, F.; Puget, S.; et al. Parental smoking, maternal alcohol, coffee and tea consumption and the risk of childhood brain tumours: The ESTELLE and ESCALE studies (SFCE, France). Cancer Causes Control 2017, 28, 719–732. [Google Scholar] [CrossRef]
- Wan Ismail, W.R.; Abdul Rahman, R.; Rahman, N.A.A.; Atil, A.; Nawi, A.M. The Protective Effect of Maternal Folic Acid Supplementation on Childhood Cancer: A Systematic Review and Meta-analysis of Case-control Studies. J. Prev. Med. Public Health 2019, 52, 205–213. [Google Scholar] [CrossRef]
- Bonaventure, A.; Simpson, J.; Ansell, P.; Roman, E.; Lightfoot, T. Prescription drug use during pregnancy and risk of childhood cancer—Is there an association? Cancer Epidemiol. 2015, 39, 73–78. [Google Scholar] [CrossRef]
- US Department of Health and Human Services Food and Drug Administration. Food Standards: Amendment of the Standards of Identity for Enriched Grain Product to Require Addition of Folic Acid; US Department of Health and Human Services Food and Drug Administration: Silver Spring, MD, USA, 1996.
- Health Canada. Regulations Amending the Food and Drug Regulations (1066). In Canada Gazette Part II; Health Canada: Ottawa, ON, Canada, 1998; Volume 132, No 24; pp. 3702–3737. [Google Scholar]
- Linabery, A.M.; Johnson, K.J.; Ross, J.A. Childhood cancer incidence trends in association with US folic acid fortification (1986-2008). Pediatrics 2012, 129, 1125–1133. [Google Scholar] [CrossRef]
- Singer, A.W.; Carmichael, S.L.; Selvin, S.; Fu, C.; Block, G.; Metayer, C. Maternal diet quality before pregnancy and risk of childhood leukaemia. Br. J. Nutr. 2016, 116, 1469–1478. [Google Scholar] [CrossRef]
- Dessypris, N.; Karalexi, M.A.; Ntouvelis, E.; Diamantaras, A.-A.; Papadakis, V.; Baka, M.; Hatzipantelis, E.; Kourti, M.; Moschovi, M.; Polychronopoulou, S.; et al. Association of maternal and index child’s diet with subsequent leukemia risk: A systematic review and meta analysis. Cancer Epidemiol. 2017, 47, 64–75. [Google Scholar] [CrossRef]
- Yiu, T.T.; Li, W. Pediatric cancer epigenome and the influence of folate. Epigenomics 2015, 7, 961–973. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists. Moderate caffeine consumption during pregnancy. Committee Opinion No. 462. Obs. Gynecol. 2010, 116, 467–468. [Google Scholar] [CrossRef]
- James, J.E. Maternal caffeine consumption and pregnancy outcomes: A narrative review with implications for advice to mothers and mothers-to-be. BMJ Evid. Based Med. 2021, 26, 114–115. [Google Scholar] [CrossRef]
- Milne, E.; Greenop, K.R.; Petridou, E.; Bailey, H.D.; Orsi, L.; Kang, A.Y.; Baka, M.; Bonaventure, A.; Kourti, M.; Metayer, C.; et al. Maternal consumption of coffee and tea during pregnancy and risk of childhood ALL: A pooled analysis from the childhood Leukemia International Consortium. Cancer Causes Control 2018, 29, 539–550. [Google Scholar] [CrossRef]
- Cheng, J.; Su, H.; Zhu, R.; Wang, X.; Peng, M.; Song, J.; Fan, D. Maternal coffee consumption during pregnancy and risk of childhood acute leukemia: A metaanalysis. Am. J. Obs. Gynecol. 2014, 210, 151.e1–151.e10. [Google Scholar] [CrossRef]
- Thomopoulos, T.P.; Ntouvelis, E.; Diamantaras, A.-A.; Tzanoudaki, M.; Baka, M.; Hatzipantelis, E.; Kourti, M.; Polychronopoulou, S.; Sidi, V.; Stiakaki, E.; et al. Maternal and childhood consumption of coffee, tea and cola beverages in association with childhood leukemia: A meta-analysis. Cancer Epidemiol. 2015, 39, 1047–1059. [Google Scholar] [CrossRef]
- Karalexi, M.A.; Dessypris, N.; Clavel, J.; Metayer, C.; Erdmann, F.; Orsi, L.; Kang, A.Y.; Schuz, J.; Bonaventure, A.; Greenop, K.R.; et al. Coffee and tea consumption during pregnancy and risk of childhood acute myeloid leukemia: A Childhood Leukemia International Consortium (CLIC) study. Cancer Epidemiol. 2019, 62, 101581. [Google Scholar] [CrossRef]
- Greenop, K.R.; Miller, M.; Attia, J.; Ashton, L.J.; Cohn, R.; Armstrong, B.K.; Milne, E. Maternal consumption of coffee and tea during pregnancy and risk of childhood brain tumors: Results from an Australian case-control study. Cancer Causes Control 2014, 25, 1321–1327. [Google Scholar] [CrossRef]
- Leviton, A. Biases Inherent in Studies of Coffee Consumption in Early Pregnancy and the Risks of Subsequent Events. Nutrients 2018, 10, 1152. [Google Scholar] [CrossRef]
- Drinking Coffee, Mate, and Very Hot Beverages. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2016; Volume 116.
- Zoppi, M.A.; Ibba, R.M.; Putzolu, M.; Floris, M.; Monni, G. Assessment of risk for chromosomal abnormalities at 10-14 weeks of gestation by nuchal translucency and maternal age in 5,210 fetuses at a single centre. Fetal Diagn. Ther. 2000, 15, 170–173. [Google Scholar] [CrossRef]
- Reefhuis, J.; Honein, M.A. Maternal age and non-chromosomal birth defects, Atlanta—1968–2000: Teenager or thirty-something, who is at risk? Birth Defects Res. Part A Clin. Mol. Teratol. 2004, 70, 572–579. [Google Scholar] [CrossRef]
- Laopaiboon, M.; Lumbiganon, P.; Intarut, N.; Mori, R.; Ganchimeg, T.; Vogel, J.P.; Souza, J.P.; Gulmezoglu, A.M.; on behalf of the WHO Multicountry Survey on Maternal Newborn Health Research Network. Advanced maternal age and pregnancy outcomes: A multicountry assessment. BJOG 2014, 121 (Suppl. S1), 49–56. [Google Scholar] [CrossRef]
- Markunas, C.A.; Wilcox, A.J.; Xu, Z.; Joubert, B.R.; Harlid, S.; Panduri, V.; Haberg, S.E.; Nystad, W.; London, S.J.; Sandler, D.P.; et al. Maternal Age at Delivery Is Associated with an Epigenetic Signature in Both Newborns and Adults. PLoS ONE 2016, 11, e0156361. [Google Scholar] [CrossRef]
- Petridou, E.T.; Georgakis, M.K.; Erdmann, F.; Ma, X.; Heck, J.E.; Auvinen, A.; Mueller, B.A.; Spector, L.G.; Roman, E.; Metayer, C.; et al. Advanced parental age as risk factor for childhood acute lymphoblastic leukemia: Results from studies of the Childhood Leukemia International Consortium. Eur. J. Epidemiol. 2018, 33, 965–976. [Google Scholar] [CrossRef] [PubMed]
- Marcotte, E.L.; Druley, T.E.; Johnson, K.J.; Richardson, M.; von Behren, J.; Mueller, B.A.; Carozza, S.; McLaughlin, C.; Chow, E.J.; Reynolds, P.; et al. Parental Age and Risk of Infant Leukaemia: A Pooled Analysis. Paediatr. Perinat. Epidemiol. 2017, 31, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Panagopoulou, P.; Skalkidou, A.; Marcotte, E.; Erdmann, F.; Ma, X.; Heck, J.E.; Auvinen, A.; Mueller, B.A.; Spector, L.G.; Roman, E.; et al. Parental age and the risk of childhood acute myeloid leukemia: Results from the Childhood Leukemia International Consortium. Cancer Epidemiol. 2019, 59, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.J.; Cullen, J.; Barnholtz-Sloan, J.S.; Ostrom, Q.T.; Langer, C.E.; Turner, M.C.; McKean-Cowdin, R.; Fisher, J.L.; Lupo, P.J.; Partap, S.; et al. Childhood brain tumor epidemiology: A brain tumor epidemiology consortium review. Cancer Epidemiol. Biomark. Prev. 2014, 23, 2716–2736. [Google Scholar] [CrossRef]
- Kehm, R.D.; Osypuk, T.L.; Poynter, J.N.; Vock, D.M.; Spector, L.G. Do pregnancy characteristics contribute to rising childhood cancer incidence rates in the United States? Pediatr. Blood Cancer 2018, 65, e26888. [Google Scholar] [CrossRef]
- Seppala, L.K.; Vettenranta, K.; Pitkaniemi, J.; Hirvonen, E.; Leinonen, M.K.; Madanat-Harjuoja, L.-M. Maternal diabetes and risk of childhood cancer in the offspring. Int. J. Cancer 2020, 147, 662–668. [Google Scholar] [CrossRef]
- Yan, P.; Wang, Y.; Yu, X.; Liu, Y.; Zhang, Z.-J. Maternal diabetes and risk of childhood malignancies in the offspring: A systematic review and meta-analysis of observational studies. Acta Diabetol. 2021, 58, 153–168, Erratum in Acta Diabetol. 2021, 58, 169. [Google Scholar] [CrossRef]
- Deleskog, A.; den Hoed, M.; Tettamanti, G.; Carlsson, S.; Ljung, R.; Feychting, M.; Brooke, H.L. Maternal diabetes and incidence of childhood cancer—A nationwide cohort study and exploratory genetic analysis. Clin. Epidemiol. 2017, 9, 633–642. [Google Scholar] [CrossRef]
- Contreras, Z.A.; Ritz, B.; Virk, J.; Cockburn, M.; Heck, J.E. Maternal pre-pregnancy and gestational diabetes, obesity, gestational weight gain, and risk of cancer in young children: A population-based study in California. Cancer Causes Control 2016, 27, 1273–1285. [Google Scholar] [CrossRef]
- Borsari, L.; Malagoli, C.; Della Torre, F.; Cellini, M.; Rodolfi, R.; Pession, A.; Vinceti, M. Maternal pregestational diabetes and risk of acute lymphoblastic leukemia in the offspring: A population-based study in Northern Italy. Cancer Epidemiol. 2019, 62, 101572. [Google Scholar] [CrossRef] [PubMed]
- Stacy, S.L.; Buchanich, J.M.; Ma, Z.Q.; Mair, C.; Robertson, L.; Sharma, R.K.; Talbott, E.O.; Yuan, J.M. Maternal Obesity, Birth Size, and Risk of Childhood Cancer Development. Am. J. Obs. Gynecol. 2019, 188, 1503–1511. [Google Scholar] [CrossRef] [PubMed]
- Kessous, R.; Wainstock, T.; Sheiner, E. Pre-pregnancy obesity and childhood malignancies: A population-based cohort study. Pediatr. Blood Cancer 2020, 67, e28269. [Google Scholar] [CrossRef] [PubMed]
- Dahlhaus, A.; Prengel, P.; Spector, L.; Pieper, D. Birth weight and subsequent risk of childhood primary brain tumors: An updated meta-analysis. Pediatr. Blood Cancer 2017, 64, e26299. [Google Scholar] [CrossRef]
- Caughey, R.W.; Michels, K.B. Birth weight and childhood leukemia: A meta-analysis and review of the current evidence. Int. J. Cancer 2009, 124, 2658–2670. [Google Scholar] [CrossRef]
- Harder, T.; Plagemann, A.; Harder, A. Birth weight and risk of neuroblastoma: A meta-analysis. Int. J. Epidemiol. 2010, 39, 746–756. [Google Scholar] [CrossRef]
- Georgakis, M.K.; Kalogirou, E.I.; Liaskas, A.; Karalexi, M.A.; Papathoma, P.; Ladopoulou, K.; Kantzanou, M.; Tsivgoulis, G.; NARECHEM-BT Working Group; Petridou, E.T. Anthropometrics at birth and risk of a primary central nervous system tumour: A systematic review and meta-analysis. Eur. J. Cancer 2017, 75, 117–131. [Google Scholar] [CrossRef]
- Jimenez-Hernandez, E.; Fajardo-Gutierrez, A.; Nunez-Enriquez, J.C.; Martin-Trejo, J.A.; Espinoza-Hernandez, L.E.; Flores-Lujano, J.; Arellano-Galindo, J.; Medina-Sanson, A.; Paredes-Aguilera, R.; Merino-Pasaye, L.E.; et al. A greater birthweight increases the risk of acute leukemias in Mexican children-experience from the Mexican Interinstitutional Group for the Identification of the Causes of Childhood Leukemia (MIGICCL). Cancer Med. 2018, 7, 1528–1536. [Google Scholar] [CrossRef]
- O’Neill, K.A.; Murphy, M.F.; Bunch, K.J.; Puumala, S.E.; Carozza, S.E.; Chow, E.J.; Mueller, B.A.; McLaughlin, C.C.; Reynolds, P.; Vincent, T.J.; et al. Infant birthweight and risk of childhood cancer: International population-based case control studies of 40 000 cases. Int. J. Epidemiol. 2015, 44, 153–168. [Google Scholar] [CrossRef]
- Groves, F.D.; Watkins, B.T.; Roberts, D.J.; Tucker, T.C.; Shen, T.; Flood, T.J. Case-Control Study: Birth Weight and Risk of Childhood Acute Lymphoblastic Leukemia in Arizona, Illinois, and Kentucky. South. Med. J. 2018, 111, 579–584. [Google Scholar] [CrossRef]
- Lupatsch, J.E.; Kreis, C.; Konstantinoudis, G.; Ansari, M.; Kuehni, C.E.; Spycher, B.D. Birth characteristics and childhood leukemia in Switzerland: A register-based case-control study. Cancer Causes Control 2021, 32, 713–723. [Google Scholar] [CrossRef]
- Dixon, F.; Ziegler, D.S.; Bajuk, B.; Wright, I.; Hilder, L.; Abdel Latif, M.E.; Somanathan, A.; Oei, J.L. Treatment with nitric oxide in the neonatal intensive care unit is associated with increased risk of childhood cancer. Acta Paediatr. 2018, 107, 2092–2098. [Google Scholar] [CrossRef]
- Rios, P.; Bailey, H.D.; Orsi, L.; Lacour, B.; Valteau-Couanet, D.; Levy, D.; Corradini, N.; Leverger, G.; Defachelles, A.-S.; Gambart, M.; et al. Risk of neuroblastoma, birth-related characteristics, congenital malformations and perinatal exposures: A pooled analysis of the ESCALE and ESTELLE French studies (SFCE). Int. J. Cancer 2016, 139, 1936–1948. [Google Scholar] [CrossRef] [PubMed]
- Lupo, P.J.; Danysh, H.E.; Skapek, S.X.; Hawkins, D.S.; Spector, L.G.; Zhou, R.; Okcu, M.F.; Papworth, K.; Erhardt, E.B.; Grufferman, S. Maternal and birth characteristics and childhood rhabdomyosarcoma: A report from the Children’s Oncology Group. Cancer Causes Control 2014, 25, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Spector, L.G. Leukemia in the mothers of big babies--does the tree fall far from the apple? Leuk. Res. 2008, 32, 1644–1645. [Google Scholar] [CrossRef] [PubMed]
- Paquette, K.; Coltin, H.; Boivin, A.; Amre, D.; Nuyt, A.-M.; Luu, T.M. Cancer risk in children and young adults born preterm: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0210366. [Google Scholar] [CrossRef]
- Huang, Q.-T.; Gao, Y.-F.; Zhong, M.; Yu, Y.-H. Preterm Birth and Subsequent Risk of Acute Childhood Leukemia: A Meta-Analysis of Observational Studies. Cell Physiol. Biochem. 2016, 39, 1229–1238. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Wu, L.-Q.; Liu, Y.-N.; Bi, Y.-Y.; Wang, H. Gestational age and childhood leukemia: A meta-analysis of epidemiologic studies. Hematology 2018, 23, 253–262. [Google Scholar] [CrossRef]
- Lupo, P.J.; Luna-Gierke, R.E.; Chambers, T.M.; Tavelin, B.; Scheurer, M.E.; Melin, B.; Papworth, K. Perinatal and familial risk factors for soft tissue sarcomas in childhood through young adulthood: A population-based assessment in 4 million live births. Int. J. Cancer 2020, 146, 791–802. [Google Scholar] [CrossRef]
- Kemper, A.R.; Newman, T.B.; Slaughter, J.L.; Maisels, M.J.; Watchko, J.F.; Downs, S.M.; Grout, R.W.; Bundy, D.G.; Stark, A.R.; Bogen, D.L.; et al. Clinical Practice Guideline Revision: Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation. Pediatrics 2022, 150, e2022058859. [Google Scholar] [CrossRef]
- Wickremasinghe, A.C.; Kuzniewicz, M.W.; Grimes, B.A.; McCulloch, C.E.; Newman, T.B. Neonatal Phototherapy and Infantile Cancer. Pediatrics 2016, 137, e20151353. [Google Scholar] [CrossRef] [PubMed]
- Auger, N.; Laverdiere, C.; Ayoub, A.; Lo, E.; Luu, T.M. Neonatal phototherapy and future risk of childhood cancer. Int. J. Cancer 2019, 145, 2061–2069. [Google Scholar] [CrossRef]
- Newman, T.B.; Wickremasinghe, A.C.; Walsh, E.M.; Grimes, B.A.; McCulloch, C.E.; Kuzniewicz, M.W. Retrospective Cohort Study of Phototherapy and Childhood Cancer in Northern California. Pediatrics 2016, 137, e20151354. [Google Scholar] [CrossRef] [PubMed]
- Paltiel, O.; Lemeshow, S.; Phillips, G.S.; Tikellis, G.; Linet, M.S.; Ponsonby, A.-L.; Magnus, P.; Haberg, S.E.; Olsen, S.F.; Granstrom, C.; et al. The association between birth order and childhood leukemia may be modified by paternal age and birth weight. Pooled results from the International Childhood Cancer Cohort Consortium (I4C). Int. J. Cancer 2019, 144, 26–33. [Google Scholar] [CrossRef]
- Yan, K.; Xu, X.; Liu, X.; Wang, X.; Hua, S.; Wang, C.; Liu, X. The associations between maternal factors during pregnancy and the risk of childhood acute lymphoblastic leukemia: A meta-analysis. Pediatr. Blood Cancer 2015, 62, 1162–1170, Erratum in Pediatr. Blood Cancer 2016, 63, 953–954. [Google Scholar] [CrossRef]
- Nguyen, M.V.; Tran, M.T.; Tran, C.T.; Tran, Q.H.; Tuonga, T.T.V.; Phung, L.N.; Vu, H.X.; Le, L.C.; Boffetta, P.; Luu, H.N. The association between birth order and childhood brain tumors: A systematic review and meta-analysis. Eur.J. Cancer Prev. 2019, 28, 551–561. [Google Scholar] [CrossRef]
- Zegers-Hochschild, F.; Adamson, G.D.; Dyer, S.; Racowsky, C.; de Mouzon, J.; Sokol, R.; Rienzi, L.; Sunde, A.; Schmidt, L.; Cooke, I.D.; et al. The International Glossary on Infertility and Fertility Care, 2017. Hum. Reprod. 2017, 32, 1786–1801. [Google Scholar] [CrossRef]
- Gilboa, D.; Koren, G.; Barer, Y.; Katz, R.; Rotem, R.; Lunenfeld, E.; Shalev, V. Assisted reproductive technology and the risk of pediatric cancer: A population based study and a systematic review and meta analysis. Cancer Epidemiol. 2019, 63, 101613. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, R.; Chen, H.; Xu, W.; Yang, Y.; Zeng, X.; Sun, X.; Zhang, S.; Hu, X.; Qin, L. The association between fertility treatments and the incidence of paediatric cancer: A systematic review and meta-analysis. Eur. J. Cancer 2020, 138, 133–148. [Google Scholar] [CrossRef]
- Herbst, A.L.; Ulfelder, H.; Poskanzer, D.C. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N. Engl. J. Med. 1971, 284, 878–881. [Google Scholar] [CrossRef] [PubMed]
- Hatch, E.E.; Palmer, J.R.; Titus-Ernstoff, L.; Noller, K.L.; Kaufman, R.H.; Mittendorf, R.; Robboy, S.J.; Hyer, M.; Cowan, C.M.; Adam, E.; et al. Cancer risk in women exposed to diethylstilbestrol in utero. JAMA 1998, 280, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Hom, M.; Sriprasert, I.; Ihenacho, U.; Castelao, J.E.; Siegmund, K.; Bernstein, L.; Cortessis, V.K. Systematic Review and Meta-analysis of Testicular Germ Cell Tumors Following In Utero Exposure to Diethylstilbestrol. JNCI Cancer Spectr. 2019, 3, pkz045. [Google Scholar] [CrossRef]
- Titus-Ernstoff, L.; Troisi, R.; Hatch, E.E.; Hyer, M.; Wise, L.A.; Palmer, J.R.; Kaufman, R.; Adam, E.; Noller, K.; Herbst, A.L.; et al. Offspring of women exposed in utero to diethylstilbestrol (DES): A preliminary report of benign and malignant pathology in the third generation. Epidemiology 2008, 19, 251–257. [Google Scholar] [CrossRef]
- Blatt, J.; Van Le, L.; Weiner, T.; Sailer, S. Ovarian carcinoma in an adolescent with transgenerational exposure to diethylstilbestrol. J. Pediatr. Hematol. Oncol. 2003, 25, 635–636. [Google Scholar] [CrossRef]
- Gaspari, L.; Paris, F.; Cassel-Knipping, N.; Villeret, J.; Verschuur, A.; Soyer-Gobillard, M.O.; Carcopino-Tusoli, X.; Hamamah, S.; Kalfa, N.; Sultan, C. Diethylstilbestrol exposure during pregnancy with primary clear cell carcinoma of the cervix in an 8-year-old granddaughter: A multigenerational effect of endocrine disruptors? Hum. Reprod. 2021, 36, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Hargreave, M.; Morch, L.S.; Andersen, K.K.; Winther, J.F.; Schmiegelow, K.; Kjaer, S.K. Maternal use of hormonal contraception and risk of childhood leukaemia: A nationwide, population-based cohort study. Lancet Oncol. 2018, 19, 1307–1314. [Google Scholar] [CrossRef] [PubMed]
- Gregg, N.M. Congenital defects associated with maternal rubella. Aust. Hosp. 1947, 14, 7–9. [Google Scholar]
- Ye, X.; Monchka, B.A.; Righolt, C.H.; Mahmud, S.M. Maternal use of antibiotics and cancer incidence risk in offspring: A population-based cohort study in Manitoba, Canada. Cancer Med. 2019, 8, 5367–5372. [Google Scholar] [CrossRef]
- Gradel, K.O.; Kaerlev, L. Antibiotic use from conception to diagnosis of child leukaemia as compared to the background population: A nested case-control study. Pediatr. Blood Cancer 2015, 62, 1155–1161. [Google Scholar] [CrossRef]
- Momen, N.C.; Olsen, J.; Gissler, M.; Kieler, H.; Haglund, B.; Li, J. Exposure to systemic antibacterial medications during pregnancy and risk of childhood cancer. Pharmacoepidemiol. Drug Saf. 2015, 24, 821–829. [Google Scholar] [CrossRef]
- Singh, E.; Naidu, G.; Davies, M.A.; Bohlius, J. HIV-associated malignancies in children. Curr. Opin. HIV AIDS 2017, 12, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Hleyhel, M.; Goujon, S.; Delteil, C.; Vasiljevic, A.; Luzi, S.; Stephan, J.-L.; Reliquet, V.; Jannier, S.; Tubiana, R.; Dollfus, C.; et al. Risk of cancer in children exposed to didanosine in utero. AIDS 2016, 30, 1245–1256. [Google Scholar] [CrossRef] [PubMed]
- Couto, A.C.; Ferreira, J.D.; Pombo-De-Oliveira, M.S.; Koifman, S. Pregnancy, maternal exposure to analgesic medicines, and leukemia in Brazilian children below 2 years of age. Eur. J. Cancer Prev. 2015, 24, 245–252. [Google Scholar] [CrossRef]
- Wen, W.; Shu, X.O.; Potter, J.D.; Severson, R.K.; Buckley, J.D.; Reaman, G.H.; Robison, L.L. Parental medication use and risk of childhood acute lymphoblastic leukemia. Cancer 2002, 95, 1786–1794. [Google Scholar] [CrossRef]
- Momen, N.C.; Munk-Olsen, T.; Li, J.; Ingstrup, K.G.; Olsen, J.; Bergink, V.; Liu, X. Antidepressant use during pregnancy and childhood cancer in the offspring. Pharmacoepidemiol. Drug Saf. 2018, 27, 114–118. [Google Scholar] [CrossRef]
- Vock, P. Clinical perspective on diagnostic X-ray examinations of pregnant patients—What to take into account. Phys. Med. 2017, 43, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; De Jesus, O. Radiation Effects On The Fetus. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Abalo, K.D.; Rage, E.; Leuraud, K.; Richardson, D.B.; Le Pointe, H.D.; Laurier, D.; Bernier, M.O. Early life ionizing radiation exposure and cancer risks: Systematic review and meta-analysis. Pediatr. Radiol. 2021, 51, 45–56, Erratum in Pediatr. Radiol. 2021, 51, 157–158. [Google Scholar] [CrossRef]
- Pasqual, E.; Castano-Vinyals, G.; Thierry-Chef, I.; Kojimahara, N.; Sim, M.R.; Kundi, M.; Krewski, D.; Momoli, F.; Lacour, B.; Remen, T.; et al. Exposure to Medical Radiation during Fetal Life, Childhood and Adolescence and Risk of Brain Tumor in Young Age: Results from The MOBI-Kids Case-Control Study. Neuroepidemiology 2020, 54, 343–355. [Google Scholar] [CrossRef] [PubMed]
Part 1 [1] Child Factors | Part 2 Parental Pre-Pregnancy and Pregnancy Factors | Part 3 Environmental and Occupational Factors |
---|---|---|
Genetic predisposition | Alcohol | Air Quality
|
Birth defects | Smoking | Radiation exposures
|
Prior cancer and associated treatments | Diet and vitamins | Occupational exposures: |
Medical ionizing radiation | Caffeine |
|
Ultraviolet (UV) light | Parental age |
|
Organ transplantation | Maternal diabetes |
|
Medications in childhood | Maternal obesity |
|
Diet and breastfeeding | Birth characteristics and obstetric history | |
Body mass index |
| |
Infections |
| |
Vaccinations |
| |
Allergies |
| |
| ||
| ||
Assistive reproductive technologies | ||
Medications during pregnancy | ||
| ||
| ||
| ||
| ||
| ||
Medical ionizing radiation during pregnancy |
Exposure | Notes |
---|---|
Strong evidence of association with childhood cancer | |
Alcohol use during pregnancy | Maternal consumption of alcohol, an International Agency for Research on Cancer (IARC) [3] group I carcinogen, is associated with increased risk of several childhood cancers. |
Cigarette smoking during pregnancy | Tobacco smoke, an IARC group I carcinogen [3], is associated with higher risk of several childhood cancers; maternal and paternal smoking are implicated, both before conception and during pregnancy. |
Diet and vitamins | Lower risk of certain childhood cancers is seen with folic acid supplementation and consumption of fruits, vegetables, and legumes during pregnancy. |
Caffeine | IARC describes coffee as “not classifiable as to its carcinogenicity to humans” [3] but there is growing evidence of a link between coffee consumption during pregnancy and increased risk of childhood leukemia in the offspring. |
Maternal diabetes | Pre-existing maternal diabetes is associated with an overall increased risk of cancer and leukemia, and with acute lymphoblastic leukemia (ALL), but evidence is mixed regarding the role of gestational diabetes. |
Gestational age | There is evidence that preterm birth increases the risk of several cancers. Post-term birth may increase risk of leukemia overall. |
High birth weight | There is good evidence that high birth weight increases overall cancer risk and risk of leukemia, CNS cancers, and several other malignancies. |
Low birth weight | Evidence indicates that low birth weight is associated with increased risk of alveolar rhabdomyosarcoma, primitive neuroectodermal tumor (PNET), and medulloblastoma. Both high and low birth weight may be related to an increased risk of neuroblastoma. |
Diethylstilbestrol | IARC classifies diethylstilbestrol (DES) as a group 1 carcinogen [3]. In utero exposure to DES is causally related to a strong increased risk of cervical/vaginal clear cell adenocarcinoma in girls and young women. |
Parental age | Older parental age is associated with increased risk of childhood ALL; collinearity affects the separate analysis of maternal and paternal age. |
Mixed evidence of association with childhood cancer | |
Maternal obesity | There is mixed evidence of an association with childhood cancer, independent of maternal diabetes and the child’s birth weight. |
Birth order | Later birth order may be related to decreased leukemia risk, but there is mixed evidence for other cancer types, including brain tumors. |
Cesarean/instrumental delivery | There is mixed evidence that C-section increases total cancer risk in offspring. The risk of brain tumor may be lower in C-section delivery but higher in instrumental vaginal delivery. |
Radiation during pregnancy | Recent studies provide mixed evidence of a link between childhood cancer and exposure to radiation in utero, perhaps in part because of the establishment of ionizing radiation as a class I carcinogen [4,5]; this has led to substantially reduced use of medical imaging during pregnancy, affecting the ability to study lower dose or less frequent exposure. |
Weak or no evidence of association with childhood cancer | |
Phototherapy for neonatal jaundice | After adjustment for potential confounders including the causes of neonatal jaundice, little evidence was found for an association with childhood cancer. |
Multiple gestation | A possible association has been found in a single study comparing multiparity to single birth outcomes with leukemia, but more evidence is needed. |
Assisted reproductive therapies (ARTs) | Studies have not shown an association between ART and childhood cancer risk. |
Other hormones (excluding DES) | Weak evidence due to limited research; one study has shown an association between pregnancy use of non-DES hormones and increased cancer in the offspring consequently. |
Antibiotics/antiretrovirals | Evidence of increased cancer in children exposed in utero to antibiotics is weak. A possible link with cancer has been reported for in utero exposure to antiretrovirals. |
Analgesics/Antipyretics | Weak evidence due to limited research; one study suggests reduced risk of ALL with acetaminophen use during first or second trimester, and of acute myeloid leukemia (AML) during third trimester. Prenatal exposure to Dipyrone may increase risk of ALL in children < 4 months. |
Other medications | Evidence for most specific medications is weak due to limited research; studies of iron taken during pregnancy have produced inconsistent results. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emeny, R.T.; Ricci, A.M.; Titus, L.; Morgan, A.; Bagley, P.J.; Blunt, H.B.; Butow, M.E.; Alford-Teaster, J.A.; III, R.R.W.; Rees, J.R. Causes of Childhood Cancer: A Review of Literature (2014–2021): Part 2—Pregnancy and Birth-Related Factors. Cancers 2025, 17, 2499. https://doi.org/10.3390/cancers17152499
Emeny RT, Ricci AM, Titus L, Morgan A, Bagley PJ, Blunt HB, Butow ME, Alford-Teaster JA, III RRW, Rees JR. Causes of Childhood Cancer: A Review of Literature (2014–2021): Part 2—Pregnancy and Birth-Related Factors. Cancers. 2025; 17(15):2499. https://doi.org/10.3390/cancers17152499
Chicago/Turabian StyleEmeny, Rebecca T., Angela M. Ricci, Linda Titus, Alexandra Morgan, Pamela J. Bagley, Heather B. Blunt, Mary E. Butow, Jennifer A. Alford-Teaster, Raymond R. Walston III, and Judy R. Rees. 2025. "Causes of Childhood Cancer: A Review of Literature (2014–2021): Part 2—Pregnancy and Birth-Related Factors" Cancers 17, no. 15: 2499. https://doi.org/10.3390/cancers17152499
APA StyleEmeny, R. T., Ricci, A. M., Titus, L., Morgan, A., Bagley, P. J., Blunt, H. B., Butow, M. E., Alford-Teaster, J. A., III, R. R. W., & Rees, J. R. (2025). Causes of Childhood Cancer: A Review of Literature (2014–2021): Part 2—Pregnancy and Birth-Related Factors. Cancers, 17(15), 2499. https://doi.org/10.3390/cancers17152499