Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = visible-light electron transfer photocatalysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4276 KiB  
Article
First-Principles Insights into Mo and Chalcogen Dopant Positions in Anatase, TiO2
by W. A. Chapa Pamodani Wanniarachchi, Ponniah Vajeeston, Talal Rahman and Dhayalan Velauthapillai
Computation 2025, 13(7), 170; https://doi.org/10.3390/computation13070170 - 14 Jul 2025
Viewed by 242
Abstract
This study employs density functional theory (DFT) to investigate the electronic and optical properties of molybdenum (Mo) and chalcogen (S, Se, Te) co-doped anatase TiO2. Two co-doping configurations were examined: Model 1, where the dopants are adjacent, and Model 2, where [...] Read more.
This study employs density functional theory (DFT) to investigate the electronic and optical properties of molybdenum (Mo) and chalcogen (S, Se, Te) co-doped anatase TiO2. Two co-doping configurations were examined: Model 1, where the dopants are adjacent, and Model 2, where the dopants are farther apart. The incorporation of Mo into anatase TiO2 resulted in a significant bandgap reduction, lowering it from 3.22 eV (pure TiO2) to range of 2.52–0.68 eV, depending on the specific doping model. The introduction of Mo-4d states below the conduction band led to a shift in the Fermi level from the top of the valence band to the bottom of the conduction band, confirming the n-type doping characteristics of Mo in TiO2. Chalcogen doping introduced isolated electronic states from Te-5p, S-3p, and Se-4p located above the valence band maximum, further reducing the bandgap. Among the examined configurations, Mo–S co-doping in Model 1 exhibited most optimal structural stability structure with the fewer impurity states, enhancing photocatalytic efficiency by reducing charge recombination. With the exception of Mo–Te co-doping, all co-doped systems demonstrated strong oxidation power under visible light, making Mo-S and Mo-Se co-doped TiO2 promising candidates for oxidation-driven photocatalysis. However, their limited reduction ability suggests they may be less suitable for water-splitting applications. The study also revealed that dopant positioning significantly influences charge transfer and optoelectronic properties. Model 1 favored localized electron density and weaker magnetization, while Model 2 exhibited delocalized charge density and stronger magnetization. These findings underscore the critical role of dopant arrangement in optimizing TiO2-based photocatalysts for solar energy applications. Full article
(This article belongs to the Special Issue Feature Papers in Computational Chemistry)
Show Figures

Figure 1

38 pages, 6778 KiB  
Review
Challenges and Opportunities for g-C3N4-Based Heterostructures in the Photodegradation of Environmental Pollutants
by Eduardo Estrada-Movilla, Jhonathan Castillo-Saenz, Benjamín Valdez-Salas, Álvaro Ortiz-Pérez, Ernesto Beltrán-Partida, Jorge Salvador-Carlos and Esneyder Puello-Polo
Catalysts 2025, 15(7), 653; https://doi.org/10.3390/catal15070653 - 4 Jul 2025
Viewed by 633
Abstract
Graphitic carbon nitride (g-C3N4) is emerging as one of the most promising non-metallic semiconductors for the degradation of pollutants in water by photocatalytic processes. Its exceptional reduction–oxidation (redox) potentials and adequate band gap of approximately 2.7 eV give it [...] Read more.
Graphitic carbon nitride (g-C3N4) is emerging as one of the most promising non-metallic semiconductors for the degradation of pollutants in water by photocatalytic processes. Its exceptional reduction–oxidation (redox) potentials and adequate band gap of approximately 2.7 eV give it the ability to absorb in the visible light range. However, the characteristic sensitivity to light absorption is limited, leading to rapid recombination of electron–hole pairs. Therefore, different strategies have been explored to optimize this charge separation, among which the formation of heterostructures based on g-C3N4 is highlighted. This review addresses recent advances in photocatalysis mediated by g-C3N4 heterostructures, considering the synthesis methods enabling the optimization of the morphology and active interface of these materials. Next, the mechanisms of charge transfer are discussed in detail, with special emphasis on type II, type S, and type Z classifications and their influence on the efficiency of photodegradation. Subsequently, the progress in the application of these photocatalysts for the degradation of water pollutants, such as toxic organic dyes, pharmaceutical pollutants, pesticides, and per- and polyfluoroalkyl substances (PFAS), are analyzed, highlighting both experimental advances and remaining challenges. Finally, future perspectives oriented towards the optimization of heterostructures, the efficiency of synthesis methods, and the practical application of these in photocatalytic processes for environmental remediation. Full article
(This article belongs to the Special Issue Design and Synthesis of Nanostructured Catalysts, 3rd Edition)
Show Figures

Figure 1

41 pages, 1254 KiB  
Review
Hydrogen Production Through Newly Developed Photocatalytic Nanostructures and Composite Materials
by Amra Bratovčić and Vesna Tomašić
Processes 2025, 13(6), 1813; https://doi.org/10.3390/pr13061813 - 7 Jun 2025
Viewed by 2100
Abstract
Photocatalytic hydrogen (H2) production offers a promising solution to energy shortages and environmental challenges by converting solar energy into chemical energy. Hydrogen, as a versatile energy carrier, can be generated through photocatalysis under sunlight or via electrolysis powered by solar or [...] Read more.
Photocatalytic hydrogen (H2) production offers a promising solution to energy shortages and environmental challenges by converting solar energy into chemical energy. Hydrogen, as a versatile energy carrier, can be generated through photocatalysis under sunlight or via electrolysis powered by solar or wind energy. However, the advancement of photocatalysis is hindered by the limited availability of effective visible light-responsive semiconductors and the challenges of charge separation and transport. To address these issues, researchers are focusing on the development of novel nanostructured semiconductors and composite materials that can enhance photocatalytic performance. In this paper, we provide an overview of the advanced photocatalytic materials prepared so far that can be activated by sunlight, and their efficiency in H2 production. One of the key strategies in this research area concerns improving the separation and transfer of electron–hole pairs generated by light, which can significantly boost H2 production. Advanced hybrid materials, such as organic–inorganic hybrid composites consisting of a combination of polymers with metal oxide photocatalysts, and the creation of heterojunctions, are seen as effective methods to improve charge separation and interfacial interactions. The development of Schottky heterojunctions, Z-type heterojunctions, p–n heterojunctions from nanostructures, and the incorporation of nonmetallic atoms have proven to reduce photocorrosion and enhance photocatalytic efficiency. Despite these advancements, designing efficient semiconductor-based heterojunctions at the atomic scale remains a significant challenge for the realization of large-scale photocatalytic H2 production. In this review, state-of-the-art advancements in photocatalytic hydrogen production are presented and discussed in detail, with a focus on photocatalytic nanostructures, heterojunctions and hybrid composites. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

10 pages, 2488 KiB  
Article
Photothermal-Assisted Photocatalytic Degradation of Antibiotic by Black g-C3N4 Materials Derived from C/N Precursors and Tetrachlorofluorescein
by Xiyuan Gao, Pengnian Shan, Weilong Shi and Feng Guo
Catalysts 2025, 15(5), 504; https://doi.org/10.3390/catal15050504 - 21 May 2025
Cited by 1 | Viewed by 538
Abstract
The development of photothermal-assisted photocatalytic systems with broad-spectrum solar utilization and high charge separation efficiency remains a critical challenge for antibiotic degradation. Herein, we report novel black g-C3N4 (BCN) materials synthesized via a one-step thermal copolymerization strategy using C/N precursors [...] Read more.
The development of photothermal-assisted photocatalytic systems with broad-spectrum solar utilization and high charge separation efficiency remains a critical challenge for antibiotic degradation. Herein, we report novel black g-C3N4 (BCN) materials synthesized via a one-step thermal copolymerization strategy using C/N precursors and tetrachlorofluorescein. After the introduction of tetrachlorofluorescein, the color of the sample changes, which gives BCN enhanced light absorption and a significant photothermal effect for poorly heating-assisted photocatalysis. The synergistic coupling of photothermal and photocatalytic processes enabled the optimal BCN-U sample to achieve exceptional degradation efficiency (89% within 120 min) for a typical antibiotic (e.g., tetracycline) under an LED lamp as the visible light source, outperforming conventional yellow g-C3N4 (YCN-U) by a factor of 1.37. Mechanistic studies revealed that the photothermal effect facilitates carrier separation via thermal-driven electron excitation while accelerating reactive oxygen species (•OH and •O2) generation. The synergistic interplay between photocatalysis and photothermal effects, which improved mass transfer, ensures robust stability, which provides new insights into designing dual-functional carbon nitride-based materials for sustainable environmental remediation. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation of Pollutants in Wastewater)
Show Figures

Figure 1

21 pages, 2681 KiB  
Review
Exploring Metal- and Porphyrin-Modified TiO2-Based Photocatalysts for Efficient and Sustainable Hydrogen Production
by Dimitrios Rafail Bitsos, Apostolos Salepis, Emmanouil Orfanos, Athanassios G. Coutsolelos, Ramonna I. Kosheleva, Athanassios C. Mitropoulos and Kalliopi Ladomenou
Inorganics 2025, 13(4), 121; https://doi.org/10.3390/inorganics13040121 - 11 Apr 2025
Cited by 2 | Viewed by 2258
Abstract
Photocatalytic H2 production is one of the most promising approaches for sustainable energy. The literature presents a plethora of carefully designed systems aimed at harnessing solar energy and converting it into chemical energy. However, the main drawback of the reported photocatalysts is [...] Read more.
Photocatalytic H2 production is one of the most promising approaches for sustainable energy. The literature presents a plethora of carefully designed systems aimed at harnessing solar energy and converting it into chemical energy. However, the main drawback of the reported photocatalysts is their stability. Thus, the development of a cost-effective and stable photocatalyst, suitable for real-world applications remains a challenge. An ideal photocatalyst for H2 production must possess appropriate band-edge energy positions, an effective sacrificial agent, and a suitable cocatalyst. Among the various photocatalysts studied, TiO2 stands out due to its stability, abundance, and non-toxicity. However, its efficiency in the visible spectrum is limited by its wide bandgap. Metal doping is an effective strategy to enhance electron–hole separation and improve light absorption efficiency, thereby boosting H2 synthesis. Common metal cocatalysts used as TiO2 dopants include platinum (Pt), gold (Au), copper (Cu), nickel (Ni), cobalt (Co), ruthenium (Ru), iron (Fe), and silver (Ag), as well as bimetallic combinations such as Ni-Fe, Ni-Cu, Nb-Ta, and Ni-Pt. In all cases, doped TiO2 exhibits higher H2 production performance compared to undoped TiO2, as metals provide additional reaction sites and enhance charge separation. The use of bimetallic dopants further optimizes the hydrogen evolution reaction. Additionally, porphyrins, with their strong visible light absorption and efficient electron transfer properties, have demonstrated potential in TiO2 photocatalysis. Their incorporation expands the photocatalyst’s light absorption range into the visible spectrum, enhancing H2 production efficiency. This review paper explores the principles and advancements in metal- and porphyrin-doped TiO2 photocatalysts, highlighting their potential for sustainable hydrogen production. Full article
(This article belongs to the Special Issue Featured Papers in Inorganic Materials 2025)
Show Figures

Graphical abstract

17 pages, 3799 KiB  
Article
Sol-Gel Heterogeneization of an Ir(III) Complex for Sustainable Visible-Light Redox Photocatalysis
by Janira Herce, Mónica Martínez-Aguirre, Javier Gómez-Benito, Miguel A. Rodríguez and Jesús R. Berenguer
Molecules 2025, 30(8), 1680; https://doi.org/10.3390/molecules30081680 - 9 Apr 2025
Viewed by 405
Abstract
Photocatalysis is a key strategy for the development of sustainable solar-driven chemical processes. In this work, we report the synthesis and characterization of a novel organometallo–ionosilica material derived from the self-condensation of an alcoxysilane functionalized Ir(III) complex. In acetonitrile suspension, the material retains [...] Read more.
Photocatalysis is a key strategy for the development of sustainable solar-driven chemical processes. In this work, we report the synthesis and characterization of a novel organometallo–ionosilica material derived from the self-condensation of an alcoxysilane functionalized Ir(III) complex. In acetonitrile suspension, the material retains the photophysical properties of its precursor in solution in the same solvent, together with a significant absorption in the visible between 400 and 500 nm. As a heterogeneous photocatalyst, the material showed high efficiency in the reductive dehalogenation of 2-bromoacetophenone under blue light irradiation, achieving high yields of conversion of about 90%, and excellent recyclability in seven catalytic cycles, retaining more than 70% of the catalytic efficiency. All these properties of the self-condensed material highlight its potential as an efficient and sustainable heterogeneous photocatalyst for applications in organic synthesis and solar-driven redox processes. Full article
Show Figures

Graphical abstract

40 pages, 16257 KiB  
Review
Synthesis, Characterization, and Roles of Vacancy Defects in Polymer and Graphitized Carbon Nitride Photocatalysts: A Comprehensive Review
by Arul Pundi and Chi-Jung Chang
Polymers 2025, 17(3), 334; https://doi.org/10.3390/polym17030334 - 26 Jan 2025
Cited by 2 | Viewed by 1694
Abstract
Vacancy defect graphitic carbon nitride (g-C3N4) and conjugated polyimide (PI) polymer photocatalysts have become increasingly recognized as metal-free photocatalysts featuring an appropriate bandgap. The narrow absorption spectrum of visible light and the rapid recombination rate of the photoexcited charge [...] Read more.
Vacancy defect graphitic carbon nitride (g-C3N4) and conjugated polyimide (PI) polymer photocatalysts have become increasingly recognized as metal-free photocatalysts featuring an appropriate bandgap. The narrow absorption spectrum of visible light and the rapid recombination rate of the photoexcited charge carriers in PI polymers and g-C3N4 impede its photocatalytic performance. The presence of oxygen vacancies (OVs) in PI polymer photocatalysts, as well as nitrogen vacancies (NVs) and carbon vacancies (CVs) in g-C3N4, can significantly enhance the migration of photogenerated electrons. Adding vacancies to improve the electronic structure and band gap width can greatly enhance the photocatalytic efficiency of PI polymers and g-C3N4. Defect engineering is important for increasing the photocatalytic ability of PI-polymer and g-C3N4. There remains a notable absence of thorough review papers covering the synthesis, characterization, and applications of vacancy-rich PI-polymer and g-C3N4 in photocatalysis. This review paper examines the roles of OVs in PI-polymer, NVs, and CVs in g-C3N4 and thoroughly summarizes the preparation approaches employed before and after, as well as during polymerization. This review scrutinizes spectroscopic characterization techniques, such as EPR, XPS, PAS, XRD, FTIR, and NMR, for vacancy defect analysis. We also reviewed the role of vacancies, which include light absorption, photogenerated charge carrier separation, and transfer dynamics. This review could serve as a comprehensive understanding, a vacancy-engineered design framework, and a practical guide for synthesizing and characterizing. Full article
Show Figures

Figure 1

20 pages, 24444 KiB  
Article
Preparation and Photocatalytic Performance of In2O3/Bi2WO6 Type II Heterojunction Composite Materials
by Xiuping Zhang, Fengqiu Qin, Yuanyuan Zhong, Tian Xiao, Qiang Yu, Xiaodong Zhu, Wei Feng and Zhiyong Qi
Molecules 2024, 29(20), 4911; https://doi.org/10.3390/molecules29204911 - 17 Oct 2024
Cited by 8 | Viewed by 1345
Abstract
Bismuth-based photocatalytic materials have been widely used in the field of photocatalysis in recent years due to their unique layered structure. However, single bismuth-based photocatalytic materials are greatly limited in their photocatalytic performance due to their poor response to visible light and easy [...] Read more.
Bismuth-based photocatalytic materials have been widely used in the field of photocatalysis in recent years due to their unique layered structure. However, single bismuth-based photocatalytic materials are greatly limited in their photocatalytic performance due to their poor response to visible light and easy recombination of photogenerated charges. At present, constructing semiconductor heterojunctions is an effective modification method that improves quantum efficiency by promoting the separation of photogenerated electrons and holes. In this study, the successful preparation of an In2O3/Bi2WO6 (In2O3/BWO) II-type semiconductor heterojunction composite material was achieved. XRD characterization was performed to conduct a phase analysis of the samples, SEM and TEM characterization for a morphology analysis of the samples, and DRS and XPS testing for optical property and elemental valence state analyses of the samples. In the II-type semiconductor junction system, photogenerated electrons (e) on the In2O3 conduction band (CB) migrate to the BWO CB, while holes (h+) on the BWO valence band (VB) transfer to the In2O3 VB, promoting the separation of photoinduced charges, raising the quantum efficiency. When the molar ratio of In2O3/BWO is 2:6, the photocatalytic degradation degree of rhodamine B (RhB) is 59.4% (44.0% for BWO) after 60 min illumination, showing the best photocatalytic activity. After four cycles, the degradation degree of the sample was 54.3%, which is 91.4% of that of the first photocatalytic degradation experiment, indicating that the sample has good reusability. The XRD results of 2:6 In2O3/BWO before and after the cyclic experiments show that the positions and intensities of its diffraction peaks did not change significantly, indicating excellent structural stability. The active species experiment results imply that h+ is the primary species. Additionally, this study proposes a mechanism for the separation, migration, and photocatalysis of photoinduced charges in II-type semiconductor junctions. Full article
Show Figures

Figure 1

9 pages, 8889 KiB  
Article
Bimetallic Fe, Co-Modified TiO2 Derived from NH2-MIL-125(Ti) as an Efficient Photocatalyst for N2 Fixation
by Huiying Yang and Xiangchao Meng
Processes 2024, 12(9), 1879; https://doi.org/10.3390/pr12091879 - 2 Sep 2024
Viewed by 1206
Abstract
The conversion of nitrogen (N2) and water (H2O) into NH3 by photocatalysis under ambient conditions has been considered an environmentally friendly strategy. However, developing effective catalysts for N2 fixation is still challenging. Herein, we report a bimetallic [...] Read more.
The conversion of nitrogen (N2) and water (H2O) into NH3 by photocatalysis under ambient conditions has been considered an environmentally friendly strategy. However, developing effective catalysts for N2 fixation is still challenging. Herein, we report a bimetallic JH Fe, Co/TiO2 derived from NH2-MIL-125(Ti) by the fast Joule heating (FJH) method for visible–light–driven catalytic N2 fixation. It was found that the photocatalytic N2 reduction efficiency of bimetallic FC@TiO2-JH was improved, enabling an NH3 yield rate of 110.14 µmol g−1 h−1 without any sacrificial agents. Furthermore, the rate was higher than those of Fe@TiO2-JH and Co@TiO2-JH, suggesting that the synergistic effect between Fe and Co broke the electronic equilibrium and increased the center of its d-band, enhancing electronic feedback to the antibonding π* orbitals of N2 while weakening the bonding energy of N≡N. Meanwhile, the rate was about 2.75 times higher than that of FC@TiO2-TF, which was calcined in a tube furnace. It is assumed that FJH might lead to the formation of lattice defects, leading to localized charge deficiency, enhanced carrier separation, and transport. Thus, doping of Fe and Co synergistically interacted with the defects produced from FJH, facilitating the photocatalytic reduction process. As detected, it had a greater ability to separate hole–electron pairs and transferred electrons to adsorbed N2 at faster rates. Our work demonstrates a prospective strategy for designing bimetallic catalysts derived from NH2-MIL-125(Ti) for N2 fixation. Full article
(This article belongs to the Special Issue Photocatalysts: Synthesis, Mechanisms and Applications)
Show Figures

Figure 1

22 pages, 3955 KiB  
Review
Exploring the Multifaceted Potential of 2D Bismuthene Multilayered Materials: From Synthesis to Environmental Applications and Future Directions
by Amauri Serrano-Lázaro, Karina Portillo-Cortez, Aldo Ríos-Soberanis, Rodolfo Zanella and Juan C. Durán-Álvarez
Catalysts 2024, 14(8), 500; https://doi.org/10.3390/catal14080500 - 1 Aug 2024
Cited by 1 | Viewed by 2071
Abstract
Two-dimensional (2D) materials have emerged as a frontier in materials science, offering unique properties due to their atomically thin nature. Among these materials, bismuthene stands out due to its exceptional optical, electronic, and catalytic characteristics. Bismuthene exhibits high charge carrier mobility, stability, and [...] Read more.
Two-dimensional (2D) materials have emerged as a frontier in materials science, offering unique properties due to their atomically thin nature. Among these materials, bismuthene stands out due to its exceptional optical, electronic, and catalytic characteristics. Bismuthene exhibits high charge carrier mobility, stability, and a tunable bandgap (0.3–1.0 eV), making it highly suitable for applications in transistors, spintronics, biomedicine, and photocatalysis. This work explores the so far reported synthesis methods for obtaining 2D bismuthene, including bottom-up approaches like chemical vapor deposition and molecular beam epitaxy, and top-down methods such as liquid-phase exfoliation and mechanical exfoliation. Recent advancements in understanding 2D bismuthene structural phases, electronic properties modulated by spin-orbit coupling, and its potential applications in next-generation photocatalysts are also reviewed. As is retrieved by our literature review, 2D bismuthene shows great promise for addressing significant environmental challenges. For instance, in CO2 reduction, integrating bismuthene into 2D/2D heterostructures enhances electron transfer efficiency, thereby improving selectivity toward valuable products, such as CH4 and formic acid. In organic pollutant degradation, bismuth subcarbonate (Bi2O2CO3) nanosheets, obtained from 2D bismuthene, have demonstrated high photocatalytic degradation of antibiotics under visible light irradiation, due to their increased surface area and efficient generation of reactive species. Moreover, bismuthene-based materials exhibit potential in the photocatalytic water-splitting process for hydrogen production, overcoming issues associated with UV-light dependence and sacrificial agent usage. This review underscores the versatile applications of 2D bismuthene in advancing photocatalytic technologies, offering insights into future research directions and potential industrial applications. Full article
(This article belongs to the Special Issue Advances in Catalysis for a Sustainable Future)
Show Figures

Graphical abstract

18 pages, 4728 KiB  
Article
2D/2D Heterojunctions of Layered TiO2 and (NH4)2V3O8 for Sunlight-Driven Methylene Blue Degradation
by Juan Aliaga, Matías Alegria, J. Pedro Donoso, Claudio J. Magon, Igor D. A. Silva, Harold Lozano, Elies Molins, Eglantina Benavente and Guillermo González
Ceramics 2024, 7(3), 926-943; https://doi.org/10.3390/ceramics7030060 - 2 Jul 2024
Viewed by 1559
Abstract
Photocatalysis based on titanium dioxide (TiO2) has become a promising method to remediate industrial and municipal effluents in an environmentally friendly manner. However, the efficiency of TiO2 is hampered by problems such as rapid electron–hole recombination and limited solar spectrum [...] Read more.
Photocatalysis based on titanium dioxide (TiO2) has become a promising method to remediate industrial and municipal effluents in an environmentally friendly manner. However, the efficiency of TiO2 is hampered by problems such as rapid electron–hole recombination and limited solar spectrum absorption. Furthermore, the sensitization of TiO2 through heterojunctions with other materials has gained attention. Vanadium, specifically in the form of ammonium vanadate ((NH4)2V3O8), has shown promise as a photocatalyst due to its ability to effectively absorb visible light. However, its use in photocatalysis remains limited. Herein, we present a novel synthesis method to produce lamellar (NH4)2V3O8 as a sensitizer in a supramolecular hybrid photocatalyst of TiO2–stearic acid (SA), contributing to a deeper understanding of its structural and magnetic characteristics, expanding the range of visible light absorption, and improving the efficiency of photogenerated electron–hole separation. Materials, such as TiO2–SA and (NH4)2V3O8, were synthesized and characterized. EPR studies of (NH4)2V3O8 demonstrated their orientation-dependent magnetic properties and, from measurements of the angular variation of g-values, suggest that the VO2+ complexes are in axially distorted octahedral sites. The photocatalytic results indicate that the 2D/2D heterojunction layered TiO2/vanadate at a ratio (1:0.050) removed 100% of the methylene blue, used as a model contaminant in this study. The study of the degradation mechanism of methylene blue emphasizes the role of reactive species such as hydroxyl radicals (OH) and superoxide ions (O2•−). These species are crucial for breaking down contaminant molecules, leading to their degradation. The band alignment between ammonium vanadate ((NH4)2V3O8) and TiO2–SA, shows effective separation and charge transfer processes at their interface. Furthermore, the study confirms the chemical stability and recyclability of the TiO2–SA/(NH4)2V3O8 photocatalyst, demonstrated that it could be used for multiple photocatalytic cycles without a significant loss of activity. This stability, combined with its ability to degrade organic pollutants under solar irradiation, means that the TiO2–SA/(NH4)2V3O8 photocatalyst is a promising candidate for practical environmental remediation applications. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Figure 1

10 pages, 2956 KiB  
Article
Synthesis of Structure-Adjustable R-Au/Pt-CdS Nanohybrids with Strong Plasmon Coupling and Improved Photothermal Conversion Performance
by Hangyu Yan, Guowei Li, Fengyuan Zhang, Jingsong Liu and Mengdai Luoshan
Nanomaterials 2024, 14(10), 838; https://doi.org/10.3390/nano14100838 - 9 May 2024
Cited by 3 | Viewed by 1471
Abstract
Noble metal nanomaterials with a localized surface plasmon resonance effect exhibit outstanding advantages in areas such as photothermal therapy and photocatalysis. As a unique plasmonic metal nanostructure, gold nanobipyramids have been attracting much interest due to their strong specific local electric field intensity, [...] Read more.
Noble metal nanomaterials with a localized surface plasmon resonance effect exhibit outstanding advantages in areas such as photothermal therapy and photocatalysis. As a unique plasmonic metal nanostructure, gold nanobipyramids have been attracting much interest due to their strong specific local electric field intensity, large optical cross sections, and high refractive index sensitivity. In this study, we propose a novel three-component hetero-nanostructure composed of rough gold nanobipyramids (R-Au NBPs), Pt, and CdS. Initially, purified gold nanobipyramids are regrown to form R-Au NBPs that have a certain degree of roughness. These R-Au NBP substrates with a rough surface provide more hotspots and strengthen the intensity of localized electric fields. Subsequently, Pt and CdS nanoparticles are selectively deposited onto the surface of R-Au NBPs. Pt nanoparticles can provide more active sites. Each component of this hetero-nanostructure directly contacts others, creating multiple electron transfer channels. This novel design allows for tunable localized plasmon resonance wavelengths ranging from the visible to near-infrared regions. These factors contribute to the final superior photothermal conversion performance of the R-Au/Pt-CdS nanohybrids. Under the irradiation of near-infrared light (1064 nm), the photothermal conversion efficiency of R-Au/Pt-CdS reached 38.88%, which is 4.49, 1.5, and 1.22 times higher than that of Au NBPs, R-Au NBPs, and R-Au NBPs/Pt, respectively. Full article
Show Figures

Figure 1

12 pages, 2713 KiB  
Article
Efficient Photocatalytic Core–Shell Synthesis of Titanate Nanowire/rGO
by Xiaofang Ye, Yang Tian, Mengyao Gao, Fangjun Cheng, Jinshen Lan, Han Chen, Mark Lanoue, Shengli Huang and Z. Ryan Tian
Catalysts 2024, 14(4), 218; https://doi.org/10.3390/catal14040218 - 22 Mar 2024
Cited by 3 | Viewed by 2629
Abstract
Wide bandgap semiconductor-based photocatalysts are usually limited by their low solar energy conversion efficiency due to their limited absorption solar wavelength, their rapid surface recombination of the photogenerated electron–hole pairs, and their low charge-carrier mobility. Here, we report a novel stepwise solution synthesis [...] Read more.
Wide bandgap semiconductor-based photocatalysts are usually limited by their low solar energy conversion efficiency due to their limited absorption solar wavelength, their rapid surface recombination of the photogenerated electron–hole pairs, and their low charge-carrier mobility. Here, we report a novel stepwise solution synthesis for achieving a new photocatalytic core–shell consisting of a titanate nanowire/reduced graphene oxide shell (or titanate/rGO) 1D-nanocomposite. The new core–shell nanocomposite maximized the specific surface area, largely reduced the charge transfer resistance and reaction energy barrier, and significantly improved the absorption of visible light. The core–shell nanocomposites’ large on/off current ratio and rapid photo-responses boosted the photocurrent by 30.0%, the photocatalysis rate by 50.0%, and the specific surface area by 16.4% when compared with the results for the pure titanate nanowire core. Our numerical simulations support the effective charge separation on the new core–shell nanostructure, which can help further advance the novel photocatalysis. Full article
(This article belongs to the Special Issue Surface Microstructure Design for Advanced Catalysts)
Show Figures

Figure 1

17 pages, 4097 KiB  
Article
Boosting Visible-Light Photocatalytic Activity of BiOCl Nanosheets via Synergetic Effect of Oxygen Vacancy Engineering and Graphene Quantum Dots-Sensitization
by Zisheng Shi, Wei Chen, Yin Hu, Fen Zhang, Lingling Wang, Dan Zhou, Xuanye Chen and Sugang Meng
Molecules 2024, 29(6), 1362; https://doi.org/10.3390/molecules29061362 - 19 Mar 2024
Cited by 7 | Viewed by 2098
Abstract
In recent years, oxygen vacancy (VO) engineering has become a research hotspot in the field of photocatalysis. Herein, an efficient GQDs/BiOCl-VO heterojunction photocatalyst was fabricated by loading graphene quantum dots (GQDs) onto BiOCl nanosheets containing oxygen vacancies. ESR and XPS [...] Read more.
In recent years, oxygen vacancy (VO) engineering has become a research hotspot in the field of photocatalysis. Herein, an efficient GQDs/BiOCl-VO heterojunction photocatalyst was fabricated by loading graphene quantum dots (GQDs) onto BiOCl nanosheets containing oxygen vacancies. ESR and XPS characterizations confirmed the formation of oxygen vacancy. Combining experimental analysis and DFT calculations, it was found that oxygen vacancy promoted the chemical adsorption of O2, while GQDs accelerated electron transfer. Benefiting from the synergistic effect of oxygen vacancy, GQDs, and dye sensitization, the as-prepared GQDs/BiOCl-VO sample exhibited improved efficiency for RhB degradation under visible-light irradiation. A 2 wt% GQDs/BiOCl-VO composite effectively degraded 98% of RhB within 20 min. The main active species were proven to be hole (h+) and superoxide radical (·O2) via ESR analysis and radical trapping experiments. This study provided new insights into the effective removal of organic pollutants from water by combining defect engineering and quantum dot doping techniques in heterojunction catalysts. Full article
Show Figures

Figure 1

17 pages, 5428 KiB  
Article
Efficient Zinc Vanadate Homojunction with Cadmium Nanostructures for Photocatalytic Water Splitting and Hydrogen Evolution
by Imran Hasan, Adel El Marghany, Naaser A. Y. Abduh and Fahad A. Alharthi
Nanomaterials 2024, 14(6), 492; https://doi.org/10.3390/nano14060492 - 9 Mar 2024
Cited by 9 | Viewed by 2130
Abstract
Construction of a homojunction is an effective strategy for effective charge transfer to suppress charge carrier recombination in augmented photocatalysis. The present work reveals the synthesis of homojunction formation through the reinforcement of Cd nanostructures into a solid lattice of zinc vanadate (Zn [...] Read more.
Construction of a homojunction is an effective strategy for effective charge transfer to suppress charge carrier recombination in augmented photocatalysis. The present work reveals the synthesis of homojunction formation through the reinforcement of Cd nanostructures into a solid lattice of zinc vanadate (Zn3V2O8, ZnV) using the hydrothermal method. The formation of a homojunction between cadmium vanadate (CdV, Cd3V2O8) and ZnV was confirmed by various spectroscopic and electron microscopic techniques such as Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) associated with energy-dispersive X-ray (EDX) mapping, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet–visible spectrophotometry (UV–Vis). The synthesized material was explored for photocatalytic hydrogen (PC H2) production using the water splitting process under visible-light illumination. The spectroscopic and experimental results revealed that the formation of a CdV/ZnV homojunction significantly improved the transport of photogenerated charge carriers (electron–hole pairs) and thus resulted in enhanced H2 production efficiency (366.34 μmol g−1 h−1) as compared to pristine ZnV (229.09 μmol g−1 h−1) and CdV (274.91 μmol g−1 h−1) using methanol as a sacrificial reagent (SR) with water under visible-light illumination. The synergistic effect of Cd on ZnV NPs resulted in band gap reduction and broadened visible light absorption which was attributed to enhanced H2 production. The current study explains how a homojunction affects various features of important factors behind photocatalytic activity, which supports significant insights into the advancement of materials in the future. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

Back to TopTop