Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = viscous torque

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3128 KiB  
Article
Slow Translation and Rotation of a Composite Sphere Parallel to One or Two Planar Walls
by Yu F. Chou and Huan J. Keh
Fluids 2025, 10(6), 154; https://doi.org/10.3390/fluids10060154 - 12 Jun 2025
Viewed by 689
Abstract
A semi-analytical investigation is conducted to examine the coupled translational and rotational motions of a composite spherical particle (consisting of an impermeable hard core surrounded by a permeable porous shell) immersed in a viscous fluid parallel to one or two planar boundaries under [...] Read more.
A semi-analytical investigation is conducted to examine the coupled translational and rotational motions of a composite spherical particle (consisting of an impermeable hard core surrounded by a permeable porous shell) immersed in a viscous fluid parallel to one or two planar boundaries under the steady condition of a low Reynolds number. The fluid flow is described using the Stokes equations outside the porous shell and the Brinkman equation within it. A general solution is formulated by employing fundamental solutions in both spherical and Cartesian coordinate systems. The boundary conditions on the planar walls are implemented using the Fourier transform method, while those on the inner and outer boundaries of the porous shell are applied via a collocation technique. Numerical calculations yield hydrodynamic force and torque results with good convergence across a broad range of physical parameters. For validation, the results corresponding to an impermeable hard sphere parallel to one or two planar walls are shown to be in close agreement with established solutions from the literature. The hydrodynamic drag force and torque experienced by the composite particle increase steadily with larger values of the ratio of the particle radius to the porous shell’s permeation length, the ratio of the core radius to the total particle radius, and the separations between the particle and the walls. It has been observed that the influence of the walls on translational motion is significantly stronger than that on rotational motion. When comparing motions parallel versus normal to the walls, the planar boundaries impose weaker hydrodynamic forces but stronger torques during parallel motions. The coupling between the translation and rotation of the composite sphere parallel to the walls exhibits complex behavior that does not vary monotonically with changes in system parameters. Full article
(This article belongs to the Section Flow of Multi-Phase Fluids and Granular Materials)
Show Figures

Figure 1

36 pages, 569 KiB  
Article
Conformable Lagrangian Mechanics of Actuated Pendulum
by Adina Veronica Crişan, Cresus Fonseca de Lima Godinho, Claudio Maia Porto and Ion Vasile Vancea
Mathematics 2025, 13(10), 1634; https://doi.org/10.3390/math13101634 - 16 May 2025
Viewed by 552
Abstract
In this paper, we construct the conformable actuated pendulum model in the conformable Lagrangian formalism. We solve the equations of motion in the absence of force and in the case of a specific force resulting from torques, which generalizes a well known mechanical [...] Read more.
In this paper, we construct the conformable actuated pendulum model in the conformable Lagrangian formalism. We solve the equations of motion in the absence of force and in the case of a specific force resulting from torques, which generalizes a well known mechanical model. Our study shows that the conformable model captures essential information about the physical system encoded in the parameters which depend on the conformability factor α. This dependence can describe internal variations such as viscous friction, transmission, or environmental effects. We solve the equations of motion analytically for α=1/2 and using Frobenius’ method for α1/2. Full article
Show Figures

Figure 1

21 pages, 8880 KiB  
Article
Impact of Acid Hydrolysis on Morphology, Rheology, Mechanical Properties, and Processing of Thermoplastic Starch
by Saffana Kouka, Veronika Gajdosova, Beata Strachota, Ivana Sloufova, Radomir Kuzel, Zdenek Stary and Miroslav Slouf
Polymers 2025, 17(10), 1310; https://doi.org/10.3390/polym17101310 - 11 May 2025
Viewed by 616
Abstract
We modified native wheat starch using 15, 30, and 60 min of acid hydrolysis (AH). The non-modified and AH-modified starches were converted to highly homogeneous thermoplastic starches (TPSs) using our two-step preparation protocol consisting of solution casting and melt mixing. Our main objective [...] Read more.
We modified native wheat starch using 15, 30, and 60 min of acid hydrolysis (AH). The non-modified and AH-modified starches were converted to highly homogeneous thermoplastic starches (TPSs) using our two-step preparation protocol consisting of solution casting and melt mixing. Our main objective was to verify if AH can decrease the processing temperature of TPS. All samples were characterized in detail by microscopic, spectroscopic, diffraction, thermomechanical, rheological, and micromechanical methods, including in situ measurements of torque and temperature during the final melt mixing step. The experimental results showed that (i) AH decreased the average molecular weight preferentially in the amorphous regions, (ii) the lower-viscosity matrix in the AH-treated starches resulted in slightly higher crystallinity, and (iii) all AH-modified TPSs with a less viscous amorphous phase and higher content of crystalline phase exhibited similar properties. The effect of the higher crystallinity predominated at a laboratory temperature and low deformations, resulting in slightly stiffer material. The effect of the lower viscosity dominated during the melt mixing, where the shorter molecules acted as a lubricant and decreased the in situ measured processing temperature. The AH-induced decrease in the processing temperature could be beneficial for energy savings and/or possible temperature-sensitive admixtures for TPS systems. Full article
(This article belongs to the Special Issue Optimization, Properties and Application of Polysaccharides)
Show Figures

Figure 1

18 pages, 1616 KiB  
Article
Effect of Brewers’ Spent Grain Addition to a Fermented Form on Dough Rheological Properties from Different Triticale Flour Cultivars
by Aliona Ghendov-Mosanu, Sorina Ropciuc, Adriana Dabija, Olesea Saitan, Olga Boestean, Sergiu Paiu, Iurie Rumeus, Svetlana Leatamborg, Galina Lupascu and Georgiana Gabriela Codină
Foods 2025, 14(1), 41; https://doi.org/10.3390/foods14010041 - 27 Dec 2024
Cited by 1 | Viewed by 1157
Abstract
Triticale grains and brewers’ spent grain (BSG) can be new sources to develop food products. From a socio-economical point of view, this fact is important since triticale is easily adapted to the climatic changes and BSG is a low-cost material which may lead [...] Read more.
Triticale grains and brewers’ spent grain (BSG) can be new sources to develop food products. From a socio-economical point of view, this fact is important since triticale is easily adapted to the climatic changes and BSG is a low-cost material which may lead to a “zero-waste” desiderate. In this study, dough rheological properties obtained from different triticale cultivars (Ingen 33, Ingen 35, Ingen 54, and Ingen 93) cultivated in the Republic of Moldova and BSG in a fermented form (BSF) in an addition level of 10% and 17.5% were analyzed. For this purpose, different rheological devices, such as Mixolab, Alveograph, HAAKE MARS 40 Rheometer, Falling Number, and Rheofermentometer, were used. Also, the pH value of the dough samples with different levels of BSF addition during fermentation was determined. According to the data obtained, BSF addition decreased water absorption values; torques values corresponding to stages 1–5 of the Mixolab curve; and dynamic rheological elastic, viscous, and complex modules. For the 17.5% BSF addition to triticale flour, the best rheological results were obtained for the Ingen 33 and Ingen 54 varieties. In addition, the BSF addition decreased the baking strength and tenacity of the Alveograph curve. The pH values of the dough samples during fermentation significantly decreased (p < 0.05) with the increased amount of BSF incorporated into the dough recipe. The highest pH decreased values were obtained for Ingen 35 with a 17.5% BSF addition, which varied between 5.58 and 5.48. During fermentation, all data recorded by the Rheofermentometer device were improved. The dough samples presented a high retention coefficient, which varied between 99.1 and 99.5%. The falling number decreased with the increasing level of BSF in triticale flour, indicating an increase in α-amylase activity in the mixed flours. The principal component analysis data showed a strong association between triticale flour varieties without a BSF addition and those with a high amount of BSF incorporated into the dough recipe. The results obtained indicate the fact that many mixes between BSF and different triticale varieties may lead to bakery products of a good quality. Full article
Show Figures

Figure 1

21 pages, 2778 KiB  
Article
Research on the Mechanical Parameter Identification and Controller Performance of Permanent Magnet Motors Based on Sensorless Control
by Mingchen Luan, Yun Zhang, Jiuhong Ruan, Yongwu Guo, Long Wang and Huihui Min
Actuators 2024, 13(12), 525; https://doi.org/10.3390/act13120525 - 19 Dec 2024
Cited by 1 | Viewed by 773
Abstract
In order to improve the control performance of the position sensorless control system of permanent magnet synchronous motors and to reduce the influence of external uncertainties on the control system, such as inertia ingestion and load disturbance, this paper proposes a novel position [...] Read more.
In order to improve the control performance of the position sensorless control system of permanent magnet synchronous motors and to reduce the influence of external uncertainties on the control system, such as inertia ingestion and load disturbance, this paper proposes a novel position sensorless control algorithm for permanent magnet synchronous motors based on an interleaved parallel extended sliding mode observer. Firstly, in order to identify the time-varying moment of inertia, load torque and viscous friction coefficient of the system, a novel interleaved parallel extended sliding mode observer based on a single-observer model is proposed, and a robust activator is designed to reduce the coupling between the parameters to be measured. Then, a new predefined-time sliding mode controller is designed for the face-mounted permanent magnet synchronous motor using sliding film control theory, which improves the response speed and control accuracy of the system. Then, the proposed novel interleaved parallel extended sliding mode observer and predefined-time sliding mode controller are used to design the permanent magnet synchronous motor control system, and the stability of the system is proved using the Lyapunov stability theorem. Finally, through simulation analysis and experimental tests, it is verified that the control strategy proposed in this paper can improve the identification accuracy of the motor parameters, reduce the time of identification, and improve the control accuracy and tracking speed. Full article
(This article belongs to the Special Issue Power Electronics and Actuators—Second Edition)
Show Figures

Figure 1

20 pages, 7581 KiB  
Article
Kinematics Analysis and Oil Film Lubrication Characteristics in the Piston–Cylinder Interface of a Bent-Axis-Type Piston Motor
by Jinlin Yu and Xiaozhou Hu
Energies 2024, 17(23), 6080; https://doi.org/10.3390/en17236080 - 3 Dec 2024
Viewed by 1037
Abstract
Hydraulic piston motors are characterized by their excellent starting performance, high transmission torque, good sealing performance, compact design, and lightweight. These attributes make them highly applicable in fields such as construction machinery and marine applications. With the advancement of hydraulic transmission technology, higher [...] Read more.
Hydraulic piston motors are characterized by their excellent starting performance, high transmission torque, good sealing performance, compact design, and lightweight. These attributes make them highly applicable in fields such as construction machinery and marine applications. With the advancement of hydraulic transmission technology, higher performance requirements have been set for hydraulic motors. While extensive research has been conducted on hydraulic pumps, studies focusing on the performance of hydraulic motors remain relatively limited. Therefore, this paper is novel in that, based on the motion and force conditions of the piston, it differs from previous research on swashplate-type machinery by considering the complex structure of the bent-axis motor; it employs a micro finite element method to analyze the oil film characteristics at the piston–cylinder interface in a bent-axis piston motor, the structural changes in the piston assembly in the bent-axis motor are comprehensively considered, and a fluid–structure coupling model for the piston–cylinder interface is established. The leakage and viscous friction power loss equations for the piston–cylinder interface are derived. Simulation analyses are conducted using MATLAB R2016a to reveal the variation patterns of leakage and viscous friction power loss under different operating conditions and structural parameters, providing valuable insights for the operation analysis, energy loss evaluation, structural design optimization, and engineering applications of bent-axis piston motors. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

20 pages, 11802 KiB  
Article
Thermal–Elastohydrodynamic Lubrication Characteristics of the Flow Distribution Pair of Balanced Double-Row Axial Piston Pumps
by Haishun Deng, Binbin Guo, Zhixiang Huang, Pan Xu and Pengkun Zhu
Lubricants 2024, 12(10), 342; https://doi.org/10.3390/lubricants12100342 - 2 Oct 2024
Cited by 1 | Viewed by 1213
Abstract
A theoretical model for the calculation of thermal elastohydrodynamic lubrication performance of the flow distribution pair of piston pumps is established, which is composed of the oil film pressure governing equation and energy equation, and solved by means of numerical solution and simulation. [...] Read more.
A theoretical model for the calculation of thermal elastohydrodynamic lubrication performance of the flow distribution pair of piston pumps is established, which is composed of the oil film pressure governing equation and energy equation, and solved by means of numerical solution and simulation. We carry out quantitative analysis of the influence of various parameters on the thermal elastohydrodynamic lubrication characteristics of the flow distribution pair. The results indicate that both the oil film thickness and the cylinder tilt angle of the flow distribution pair vary in a periodic manner. The increase in the rotational speed of the cylinder block will increase the film thickness of the oil film and reduce the fluctuation, and the inclination angle of the cylinder block and its fluctuation amplitude will decrease. An increase in working pressure will lead to a decrease in the average oil film thickness, an increase in fluctuations, and an elevation in both the tilt angle of the cylinder block and its fluctuation amplitude. The increase in the rotational speed of the cylinder block and the increase in the working pressure will lead to the increase in the viscous friction dissipation of the flow distribution pair, the increase in the oil film temperature and the increase in the leakage. The reduction in the sealing belt will lead to the reduction in oil film friction torque and leakage. Full article
Show Figures

Figure 1

21 pages, 5734 KiB  
Article
Experimental Study of Kinetic to Thermal Energy Conversion with Fluid Agitation for a Wind-Powered Heat Generator
by Muhammad Haseeb Javed and Xili Duan
Energies 2024, 17(17), 4246; https://doi.org/10.3390/en17174246 - 25 Aug 2024
Cited by 1 | Viewed by 1572
Abstract
In this paper, a heat generator with fluid agitation is developed and experimentally studied. This heat generator can convert kinetic energy from a wind turbine directly to thermal energy through the process of viscous dissipation—a process achieved through the agitation of the working [...] Read more.
In this paper, a heat generator with fluid agitation is developed and experimentally studied. This heat generator can convert kinetic energy from a wind turbine directly to thermal energy through the process of viscous dissipation—a process achieved through the agitation of the working fluid inside a container. In the experimental study, an electric motor (instead of a wind turbine) was used to provide the kinetic energy input to the heat generator. The torque, rotational speed, and temperature rise in the fluid were measured. Using the measured quantities, the efficiency of kinetic energy to sensible heat conversion was calculated. Experiments were conducted to investigate the effects of different impellers, rotational speeds, and working fluids, including distilled water, ethylene glycol (EG), and their respective nanofluids, with Al2O3 nanoparticles at different concentrations. The study also found that the temperature rise in fluids due to viscous dissipation was influenced by the specific heat of the fluid, suggesting that the heat generator can be optimized for energy storage with high-specific-heat fluids, such as water, or for achieving a higher temperature rise with low-specific-heat fluids, such as ethylene glycol. The experimental results indicated that the heat generator was up to 90% efficient in converting kinetic energy to thermal energy. The study revealed that, for constant power input, the heat dissipation rate depends solely on the vessel’s geometry, not the fluid properties. Optimizing the impeller design and baffles within the vessel is crucial for maximizing power input. For applications, a wind turbine can power this heat generator to provide heat to a house or a commercial building. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

15 pages, 7044 KiB  
Article
Fast Detection of the Stick–Slip Phenomenon Associated with Wheel-to-Rail Sliding Using Acceleration Sensors: An Experimental Study
by Gabriel Popa, Mihail Andrei, Emil Tudor, Ionuț Vasile and George Ilie
Technologies 2024, 12(8), 134; https://doi.org/10.3390/technologies12080134 - 13 Aug 2024
Cited by 3 | Viewed by 6051
Abstract
The stick–slip phenomenon, the initial stage when the traction wheel starts sliding on the rail, is a critical operation that needs to be detected quickly to control the traction drive. In this study, we have developed an experimental model that uses acceleration sensors [...] Read more.
The stick–slip phenomenon, the initial stage when the traction wheel starts sliding on the rail, is a critical operation that needs to be detected quickly to control the traction drive. In this study, we have developed an experimental model that uses acceleration sensors mounted on the wheel to evaluate the amplitude of the stick–slip phenomena. These sensors can alert the driver or assist the traction control unit when a stick–slip occurs. We propose a method to reduce the amplitude of the stick–slip phenomenon using special hydraulic dampers and viscous dampers mounted on the tractive axles of the locomotive to prevent slipping during acceleration. This practical solution, validated through numerical simulation, can be readily implemented in railway systems. The paper’s findings can be used to select the necessary sensors and corresponding vibration dampers. By implementing these sliding reducers, a locomotive can significantly improve traction, apply more torque to the wheel, and increase the load of a carrier train, instilling confidence in the efficiency of the proposed solution. Full article
(This article belongs to the Special Issue Advanced Autonomous Systems and Artificial Intelligence Stage)
Show Figures

Figure 1

21 pages, 12810 KiB  
Article
Simulation-Based Prediction of the Cold Start Behavior of Gerotor Pumps for Precise Design of Electric Oil Pumps
by Sven Schumacher, Ralf Stetter, Markus Till, Nicolas Laviolette, Benoît Algret and Stephan Rudolph
Appl. Sci. 2024, 14(15), 6723; https://doi.org/10.3390/app14156723 - 1 Aug 2024
Cited by 3 | Viewed by 1702
Abstract
The development of electric gerotor pumps is a complex multiphysical optimization problem. To develop optimal systems, accurate simulation models are required to increase digital reliability. An important challenge is the accurate prediction of the pump behavior for extreme temperatures in automotive applications from [...] Read more.
The development of electric gerotor pumps is a complex multiphysical optimization problem. To develop optimal systems, accurate simulation models are required to increase digital reliability. An important challenge is the accurate prediction of the pump behavior for extreme temperatures in automotive applications from 40 °C to 110 °C, where the viscosity of the fluid changes significantly. Therefore, simulation-based methods (numerical methods for calculating viscous friction) were developed and validated by measurements, including climatic chamber tests. The results show a strong correlation between simulated and measured performance characteristics, especially in terms of volumetric flow rate (<5%), pump torque and efficiency (<7%) at different temperature and viscosity conditions over a wide speed range (1000–5000 rpm) and different system pressures (0.5–5 bar). A novel method for simulating the cold start behavior of pumps (journal bearing approach for outer gear in pump housing) was introduced and validated by measurements. The methods presented significantly reduce the need for physical testing and accelerate the development process, as the pump behavior at each operating point can be accurately predicted before a hardware prototype is built. This improves the understanding of gerotor pump characteristics and provides insights to further improve the model-based development of electric oil pumps for the automotive industry. Full article
Show Figures

Figure 1

15 pages, 3194 KiB  
Article
Axisymmetric Slow Rotation of Coaxial Soft/Porous Spheres
by Yu F. Chou and Huan J. Keh
Molecules 2024, 29(15), 3573; https://doi.org/10.3390/molecules29153573 - 29 Jul 2024
Cited by 1 | Viewed by 755
Abstract
The steady low-Reynolds-number rotation of a chain of coaxial soft spheres (each with an impermeable hard core covered by a permeable porous layer) about the axis in a viscous fluid is analyzed. The particles may be unequally spaced, and may differ in the [...] Read more.
The steady low-Reynolds-number rotation of a chain of coaxial soft spheres (each with an impermeable hard core covered by a permeable porous layer) about the axis in a viscous fluid is analyzed. The particles may be unequally spaced, and may differ in the permeability and inner and outer radii of the porous surface layer as well as angular velocity. By using a method of boundary collocation, the Stokes and Brinkman equations for the external fluid flow and flow within the surface layers, respectively, are solved semi-analytically. The particle interaction effect increases as the relative gap thickness between adjacent particles or their permeability decreases, which can be significant as the gap thickness approaches zero. A particle’s hydrodynamic torque is reduced (its rotation is enhanced) when other particles rotate in the same direction at equivalent or greater angular velocities, but increases (its rotation is hindered) when other particles rotate in the opposite direction at arbitrary angular velocities. For particles with different radii or permeabilities, the particle interaction has a greater effect on smaller or more permeable particles than on larger or less permeable particles. For the rotation of three particles, the presence of the third particle can significantly affect the hydrodynamic torques acting on the other two particles. For the rotation of numerous particles, shielding effects between particles can be substantial. When the permeability of porous layers is low, relative fluid motion is barely felt by the hard cores of the soft particles. The insights gained from this analysis on the effects of interactions among rotating soft particles may be of great importance in many physicochemical applications of colloidal suspensions. Full article
Show Figures

Figure 1

28 pages, 12978 KiB  
Article
A Novel Double Closed Loop Control of Temperature and Rotational Speed for Integrated Multi-Parameter Hydro-Viscous Speed Control System (HSCS)
by Kai Zhao, Yuan Wang, Shoukun Wang, Feiyue Gao, Xiang Feng, Hu Shen, Lin Zhang, Liang Wang, Bin Yu and Kaixian Ba
Machines 2024, 12(6), 394; https://doi.org/10.3390/machines12060394 - 10 Jun 2024
Viewed by 1430
Abstract
Hydro-viscous clutch has already become an inevitable choice for special vehicle transmission in the present and future. As a nonlinear system with a large hysteresis loop, its speed control performance is affected by input rotational speed, lubricating oil temperature, lubrication pressure, and other [...] Read more.
Hydro-viscous clutch has already become an inevitable choice for special vehicle transmission in the present and future. As a nonlinear system with a large hysteresis loop, its speed control performance is affected by input rotational speed, lubricating oil temperature, lubrication pressure, and other factors. The traditional control method cannot adjust the temperature and rotational speed, which will lead to problems of narrow speed range, poor rotational speed stability, and large dynamic load impact. In order to solve the above problems, this paper studies the control method of an integrated multi-parameter hydro-viscous speed control system (HSCS) in a controlled environment. Through the mechanism analysis of the law of HSCS, the influence law of speed and temperature during the system operation is found. The temperature closed loop based on model predictive control (MPC) is introduced to control the rotational speed, and then the traditional PID control results are compensated according to the speed closed loop. Next, a novel double closed loop control method of temperature and rotational speed for HSCS is formed. Finally, the simulating verification is carried out. Compared with the traditional control method, the design method in this paper can adjust the control parameters according to the temperature of the lubricating oil and the input rotational speed and effectively expand the domain of HSCS and the speed control stability. The effective transmission ratio is extended to 0.2~0.8, and the hydro-viscous torque and speed fluctuation under the engine rotational speed fluctuation are reduced by more than 30%. The novel control method of HSCS designed in this paper can effectively improve the influence of input rotational speed and lubricating oil temperature on the speed control performance of HSCS and can be widely used in nonlinear HSCS such as hydro-viscous clutch. Full article
(This article belongs to the Special Issue Control and Mechanical System Engineering)
Show Figures

Figure 1

15 pages, 5730 KiB  
Article
Using Chia Powder as a Binder to Obtain Chewable Tablets Containing Quinoa for Dietary Fiber Supplementation
by Rosana Pereira da Silva, Fanny Judhit Vereau Reyes, Josiane Souza Pereira Daniel, Julia Estevam da Silva Pestana, Samara de Almeida Pires and Humberto Gomes Ferraz
Powders 2024, 3(2), 202-216; https://doi.org/10.3390/powders3020013 - 7 Apr 2024
Viewed by 2110
Abstract
The consumption of fiber in the human diet is a global recommendation to ensure a healthy diet. Quinoa (Chenopodium quinoa Willd.), a gluten-free grain, and chia (Salvia hispanica), a seed, contain a high fiber content, and both have the [...] Read more.
The consumption of fiber in the human diet is a global recommendation to ensure a healthy diet. Quinoa (Chenopodium quinoa Willd.), a gluten-free grain, and chia (Salvia hispanica), a seed, contain a high fiber content, and both have the potential to be used in the development of nutraceutical and pharmaceutical formulations. An interesting characteristic of chia is its ability to form viscous mucilage when in contact with water, making it a potential binder in solid formulations. However, there are no studies on chia as a binder, and therefore, the objective of the present study was to evaluate the feasibility of using chia as a binder to produce quinoa granules and, subsequently, develop chewable tablet formulations. The quinoa and chia were in a powder form and then transformed into a wet mass with the help of mixer torque rheometer (MTR) equipment. In the wet granulation form, the following parameters were tested: multiple additions, 15 g of material, and 25 timepoints for the addition of 1 mL of water. An experimental design was carried out to evaluate the impact of the variables on the MTR results for subsequent granulation. The granulation point was possible for T1–T9, and most formulations gave satisfactory results, such as an acceptable resistance of the granules. In the end, a formulation was selected for the development of chewable tablets containing quinoa and chia fibers. Full article
Show Figures

Figure 1

17 pages, 1130 KiB  
Article
Regression Metamodel-Based Digital Twin for an Industrial Dynamic Crossflow Filtration Process
by Matthias Heusel, Gunnar Grim, Joel Rauhut and Matthias Franzreb
Bioengineering 2024, 11(3), 212; https://doi.org/10.3390/bioengineering11030212 - 23 Feb 2024
Cited by 3 | Viewed by 2500
Abstract
Dynamic crossflow filtration (DCF) is the state-of-the-art technology for solid–liquid separation from viscous and sensitive feed streams in the food and biopharma industry. Up to now, the potential of industrial processes is often not fully exploited, because fixed recipes are usually applied to [...] Read more.
Dynamic crossflow filtration (DCF) is the state-of-the-art technology for solid–liquid separation from viscous and sensitive feed streams in the food and biopharma industry. Up to now, the potential of industrial processes is often not fully exploited, because fixed recipes are usually applied to run the processes. In order to take the varying properties of biological feed materials into account, we aim to develop a digital twin of an industrial brownfield DCF plant, allowing to optimize setpoint decisions in almost real time. The core of the digital twin is a mechanistic–empirical process model combining fundamental filtration laws with process expert knowledge. The effect of variation in the selected process and model parameters on plant productivity has been assessed using a model-based design-of-experiments approach, and a regression metamodel has been trained with the data. A cyclic program that bidirectionally communicates with the DCF asset serves as frame of the digital twin. It monitors the process dynamics membrane torque and transmembrane pressure and feeds back the optimum permeate flow rate setpoint to the physical asset in almost real-time during process runs. We considered a total of 24 industrial production batches from the filtration of grape juice from the years 2022 and 2023 in the study. After implementation of the digital twin on site, the campaign mean productivity increased by 15% over the course of the year 2023. The presented digital twin framework is a simple example how an industrial established process can be controlled by a hybrid model-based algorithm. With a digital process dynamics model at hand, the presented metamodel optimization approach can be easily transferred to other (bio)chemical processes. Full article
(This article belongs to the Special Issue The Role of Digital Twins in Bioprocessing)
Show Figures

Figure 1

26 pages, 9341 KiB  
Article
A Preliminary Approach towards Rotor Icing Modeling Using the Unsteady Vortex Lattice Method
by Abdallah Samad, Eric Villeneuve, François Morency, Mathieu Béland and Maxime Lapalme
Drones 2024, 8(2), 65; https://doi.org/10.3390/drones8020065 - 15 Feb 2024
Cited by 1 | Viewed by 2289
Abstract
UAV rotors are at a high risk of ice accumulation during their operations in icing conditions. Thermal ice protection systems (IPSs) are being employed as a means of protecting rotor blades from ice, yet designing the appropriate IPS with the required heating density [...] Read more.
UAV rotors are at a high risk of ice accumulation during their operations in icing conditions. Thermal ice protection systems (IPSs) are being employed as a means of protecting rotor blades from ice, yet designing the appropriate IPS with the required heating density remains a challenge. In this work, a reduced-order modeling technique based on the Unsteady Vortex Lattice Method (UVLM) is proposed as a way to predicting rotor icing and to calculate the required anti-icing heat loads. The UVLM is gaining recent popularity for aircraft and rotor modeling. This method is flexible enough to model difficult aerodynamic problems, computationally efficient compared to higher-order CFD methods and accurate enough for conceptual design problems. A previously developed implementation of the UVLM for 3D rotor aerodynamic modeling is extended to incorporate a simplified steady-state icing thermodynamic model on the stagnation line of the blade. A viscous coupling algorithm based on a modified α-method incorporates viscous data into the originally inviscid calculations of the UVLM. The algorithm also predicts the effective angle of attack at each blade radial station (r/R), which is, in turn, used to calculate the convective heat transfer for each r/R using a CFD-based correlation for airfoils. The droplet collection efficiency at the stagnation line is calculated using a popular correlation from the literature. The icing mass and heat transfer balance includes terms for evaporation, sublimation, radiation, convection, water impingement, kinetic heating, and aerodynamic heating, as well as an anti-icing heat flux. The proposed UVLM-icing coupling technique is tested by replicating the experimental results for ice accretion and anti-icing of the 4-blade rotor of the APT70 drone. Aerodynamic predictions of the UVLM for the Figure of Merit, thrust, and torque coefficients agree within 10% of the experimental measurements. For icing conditions at −5 °C, the proposed approach overestimates the required anti-icing flux by around 50%, although it sufficiently predicts the effect of aerodynamic heating on the lack of ice formation near the blade tips. At −12 °C, visualizations of ice formation at different anti-icing heating powers agree well with UVLM predictions. However, a large discrepancy was found when predicting the required anti-icing heat load. Discrepancies between the numerical and experimental data are largely owed to the unaccounted transient and 3D effects related to the icing process on the rotating blades, which have been planned for in future work. Full article
Show Figures

Figure 1

Back to TopTop