Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (666)

Search Parameters:
Keywords = viscose fibers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4383 KiB  
Article
High-Yield Precursor-Derived Si-O Ceramics: Processing and Performance
by Xia Zhang, Bo Xiao, Yongzhao Hou and Guangwu Wen
Materials 2025, 18(15), 3666; https://doi.org/10.3390/ma18153666 - 4 Aug 2025
Abstract
The precursor-derived ceramic route is recognized as an advanced and efficient technique for fabricating ceramic matrix composites, particularly suitable for the development and microstructural tailoring of continuous fiber-reinforced ceramic matrix composites. In this work, octamethylcyclotetrasiloxane and tetravinylcyclotetrasiloxane were employed as monomers to synthesize [...] Read more.
The precursor-derived ceramic route is recognized as an advanced and efficient technique for fabricating ceramic matrix composites, particularly suitable for the development and microstructural tailoring of continuous fiber-reinforced ceramic matrix composites. In this work, octamethylcyclotetrasiloxane and tetravinylcyclotetrasiloxane were employed as monomers to synthesize a branched siloxane via ring-opening polymerization. A subsequent hydrosilylation reaction led to the formation of polyvinylsiloxane with a three-dimensional crosslinked structure. The precursor exhibited excellent fluidity, adjustable viscosity, and superior thermosetting characteristics, enabling efficient impregnation and densification of reinforcements through the polymer infiltration and pyrolysis process. Upon pyrolysis, the polyvinylsiloxane gradually converted from an organic polymer to an amorphous inorganic ceramic phase, yielding silicon oxycarbide ceramics with a high ceramic yield of 81.3%. Elemental analysis indicated that the resulting ceramic mainly comprised silicon and oxygen, with a low carbon content. Furthermore, the material demonstrated a stable dielectric constant (~2.5) and low dielectric loss (<0.01), which are beneficial for enhanced thermal stability and dielectric performance. These findings offer a promising precursor system and process reference for the low-cost production of high-performance, multifunctional ceramic matrix composites with strong potential for engineering applications. Full article
(This article belongs to the Special Issue Processing and Microstructure Design of Advanced Ceramics)
Show Figures

Figure 1

21 pages, 2195 KiB  
Article
Physicochemical and Sensory Analysis of Apple Cream Fillings for Use in the Pastry Industry
by Marios Liampotis, Zacharias Ioannou, Kosmas Ellinas and Konstantinos Gkatzionis
Appl. Sci. 2025, 15(15), 8386; https://doi.org/10.3390/app15158386 - 29 Jul 2025
Viewed by 248
Abstract
The sensory and physicochemical properties of three different recipes for apple cream filling were investigated, focusing on their potential to enhance consumer appeal in pastry applications. Two of the recipes incorporate dried apple cubes (AP1, 48% and AP2, 38% w/w, respectively), while [...] Read more.
The sensory and physicochemical properties of three different recipes for apple cream filling were investigated, focusing on their potential to enhance consumer appeal in pastry applications. Two of the recipes incorporate dried apple cubes (AP1, 48% and AP2, 38% w/w, respectively), while the third recipe (PD) features a cube-free formulation with higher quantities of sugar, potato starch, xanthan gum, dextrose, cinnamon and malic acid. The study evaluated the impact of ingredient composition and processing techniques on sensory attributes. The results indicate that AP1 and AP2 resulted in higher moisture, ash and fiber content but lower viscosity, pH values and emulsion stability compared to PD. All samples exhibited pseudoplastic behavior. The AP2 sample exhibited the most hydrophilic behavior. FT-IR spectra have shown three main peaks, i.e., O-H (3300–3320 cm−1), C=O (1640–1730 cm−1) and C-O (1025–1030 cm−1) stretching vibrations. AP1 and AP2 significantly enhanced hardness and cohesion, providing a more engaging sensory experience. PD offers a smoother, creamier texture with lower inhomogeneity compared to AP1 and AP2 samples, making it ideal for consumers who prefer a uniform mouthfeel. This research demonstrates the critical role of formulation choices in tailoring sensory and physicochemical properties of apple cream fillings to meet diverse consumer preferences. Full article
Show Figures

Figure 1

14 pages, 1261 KiB  
Article
Ultrasonic Processing and Its Impact on the Rheology and Physical Stability of Flaxseed Fiber Dispersions
by Maria-Carmen Alfaro-Rodríguez, Maria-Carmen Garcia-González and José Muñoz
Appl. Sci. 2025, 15(14), 8107; https://doi.org/10.3390/app15148107 - 21 Jul 2025
Viewed by 274
Abstract
Ultrasonic homogenization is an emerging technique with significant potential to modify the structure and functionality of food ingredients. This study evaluated the effect of ultrasonic homogenization on the rheological behavior and physical stability of aqueous dispersions of flaxseed fiber. Flax mucilage, with health-promoting [...] Read more.
Ultrasonic homogenization is an emerging technique with significant potential to modify the structure and functionality of food ingredients. This study evaluated the effect of ultrasonic homogenization on the rheological behavior and physical stability of aqueous dispersions of flaxseed fiber. Flax mucilage, with health-promoting and techno-functional properties, is of growing interest in several industries. The samples were subjected to different ultrasonic treatments, varying in amplitude (from 40 to 100%) and duration (from 2 to 20 min), with and without preliminary rotor–stator homogenization. The rheological properties were analyzed using small-amplitude oscillatory shear (SAOS) tests and steady shear flow curves. Physical stability was assessed by multiple light scattering. The results revealed that short treatment under ultrasonic homogenization had minimal impact on the viscoelastic parameters and viscosity, regardless of the amplitude used. However, longer treatments significantly reduced both values by at least one order of magnitude or more, indicating the occurrence of microstructural degradation. The relevance of this research lies in its direct applicability to the development of functional foods, since it is concluded that control of the ultrasonic homogenization process conditions must be carefully selected to retain the desirable rheological properties and physical stability. Full article
Show Figures

Graphical abstract

11 pages, 1578 KiB  
Article
Impact of Hydrofluoric Acid, Ytterbium Fiber Lasers, and Hydroxyapatite Nanoparticles on Surface Roughness and Bonding Strength of Resin Cement with Different Viscosities to Lithium Disilicate Glass Ceramic: SEM and EDX Analysis
by Abdullah Aljamhan and Fahad Alkhudhairy
Crystals 2025, 15(7), 661; https://doi.org/10.3390/cryst15070661 - 20 Jul 2025
Viewed by 283
Abstract
This study looks at the effect of surface conditioners hydrofluoric acid (HFA), Ytterbium fibre laser (YFL), and Hydroxyapatite nanoparticles (HANPs) on the surface roughness (Ra) and shear bond strength (SBS) of different viscosity resin cements to lithium disilicate glass ceramic (LDC). A total [...] Read more.
This study looks at the effect of surface conditioners hydrofluoric acid (HFA), Ytterbium fibre laser (YFL), and Hydroxyapatite nanoparticles (HANPs) on the surface roughness (Ra) and shear bond strength (SBS) of different viscosity resin cements to lithium disilicate glass ceramic (LDC). A total of 78 IPS Emax discs were prepared and categorized into groups based on conditioning methods. Group 1 HFA–Silane (S), Group 2: YFL-S, and Group 3: HANPs-S. A scanning electron microscope (n = 1) and profilometer (n = 5) were used on each conditioned group for the assessment of surface topography and Ra. A total of 20 LDC discs for each conditioned group were subsequently categorized into two subgroups based on the application of high- and low-viscosity dual-cured resin cement. SBS and failure mode were assessed. ANOVA and post hoc Tukey tests were employed to identify significant differences in Ra and SBS among different groups. LDC conditioned with HFA-S, HANPs-S, and YFL-S demonstrated comparable Ra scores (p > 0.05). Also, irrespective of the type of conditioning regime, the use of low-viscosity cement improves bond values when bonded to the LDC. LDC treated with YFL-S and HANPs-S can serve as an effective substitute for HFA-S in enhancing the Ra and surface characteristics of LDC. The low-viscosity resin cement demonstrated superior performance by achieving greater bond strength. Full article
Show Figures

Figure 1

20 pages, 5397 KiB  
Article
Continuously Formed Fiber-Reinforced Thermoplastic Composite Rebar for Concrete Reinforcement
by Jacob C. Clark, William G. Davids, Roberto A. Lopez-Anido, Andrew P. Schanck and Cody A. Sheltra
J. Compos. Sci. 2025, 9(7), 378; https://doi.org/10.3390/jcs9070378 - 18 Jul 2025
Viewed by 453
Abstract
Despite the strength and ductility of steel reinforcing bars, their susceptibility to corrosion can limit the long-term durability of reinforced concrete structures. Fiber-reinforced polymer (FRP) reinforcing bars made with a thermosetting matrix offer corrosion resistance but cannot be field-bent, which limits flexibility during [...] Read more.
Despite the strength and ductility of steel reinforcing bars, their susceptibility to corrosion can limit the long-term durability of reinforced concrete structures. Fiber-reinforced polymer (FRP) reinforcing bars made with a thermosetting matrix offer corrosion resistance but cannot be field-bent, which limits flexibility during construction. FRP reinforcing bars made with fiber-reinforced thermoplastic polymers (FRTP) address this limitation; however, their high processing viscosity presents manufacturing challenges. In this study, the Continuous Forming Machine, a novel pultrusion device that uses pre-consolidated fiber-reinforced thermoplastic tapes as feedstock, is described and used to fabricate 12.7 mm nominal diameter thermoplastic composite rebars. Simple bend tests on FRTP rebar that rely on basic equipment are performed to verify its ability to be field-formed. The manual bending technique demonstrated here is practical and straightforward, although it does result in some fiber misalignment. Subsequently, surface deformations are introduced to the rebar to promote mechanical bonding with concrete, and tensile tests of the bars are conducted to determine their mechanical properties. Finally, flexural tests of simply-supported, 6 m long beams reinforced with FRTP rebar are performed to assess their strength and stiffness as well as the practicality of using FRTP rebar. The beam tests demonstrated the prototype FRTP rebar’s potential for reinforcing concrete beams, and the beam load–deformation response and capacity agree well with predictions developed using conventional structural analysis principles. Overall, the results of the research reported indicate that thermoplastic rebars manufactured via the Continuous Forming Machine are a promising alternative to both steel and conventional thermoset composite rebar. However, both the beam and tension test results indicate that improvements in material properties, especially elastic modulus, are necessary to meet the requirements of current FRP rebar specifications. Full article
(This article belongs to the Section Fiber Composites)
Show Figures

Figure 1

22 pages, 4496 KiB  
Article
Non-Isothermal Process of Liquid Transfer Molding: Transient 3D Simulations of Fluid Flow Through a Porous Preform Including a Sink Term
by João V. N. Sousa, João M. P. Q. Delgado, Ricardo S. Gomez, Hortência L. F. Magalhães, Felipe S. Lima, Glauco R. F. Brito, Railson M. N. Alves, Fernando F. Vieira, Márcia R. Luiz, Ivonete B. Santos, Stephane K. B. M. Silva and Antonio G. B. Lima
J. Manuf. Mater. Process. 2025, 9(7), 243; https://doi.org/10.3390/jmmp9070243 - 18 Jul 2025
Viewed by 390
Abstract
Resin Transfer Molding (RTM) is a widely used composite manufacturing process where liquid resin is injected into a closed mold filled with a fibrous preform. By applying this process, large pieces with complex shapes can be produced on an industrial scale, presenting excellent [...] Read more.
Resin Transfer Molding (RTM) is a widely used composite manufacturing process where liquid resin is injected into a closed mold filled with a fibrous preform. By applying this process, large pieces with complex shapes can be produced on an industrial scale, presenting excellent properties and quality. A true physical phenomenon occurring in the RTM process, especially when using vegetable fibers, is related to the absorption of resin by the fiber during the infiltration process. The real effect is related to the slowdown in the advance of the fluid flow front, increasing the mold filling time. This phenomenon is little explored in the literature, especially for non-isothermal conditions. In this sense, this paper does a numerical study of the liquid injection process in a closed and heated mold. The proposed mathematical modeling considers the radial, three-dimensional, and transient flow, variable injection pressure, and fluid viscosity, including the effect of liquid fluid absorption by the reinforcement (fiber). Simulations were carried out using Computational Fluid Dynamic tools. The numerical results of the filling time were compared with experimental results, and a good approximation was obtained. Further, the pressure, temperature, velocity, and volumetric fraction fields, as well as the transient history of the fluid front position and injection fluid volumetric flow rate, are presented and analyzed. Full article
Show Figures

Figure 1

19 pages, 5242 KiB  
Article
Polydextrose Addition Improves the Chewiness and Extended Shelf-Life of Chinese Steamed Bread Through the Formation of a Sticky, Elastic Network Structure
by Chang Liu, Bing Dai, Xiaohong Luo, Hongdong Song and Xingjun Li
Gels 2025, 11(7), 545; https://doi.org/10.3390/gels11070545 - 14 Jul 2025
Viewed by 342
Abstract
This study explored the effects of adding a newly developed type of polydextrose on the appearance, sensory score, and textural parameters of steamed bread and the microstructure of dough, as well as the pasting, thermal, and thermal mechanical properties of high-gluten wheat flours. [...] Read more.
This study explored the effects of adding a newly developed type of polydextrose on the appearance, sensory score, and textural parameters of steamed bread and the microstructure of dough, as well as the pasting, thermal, and thermal mechanical properties of high-gluten wheat flours. The results revealed that, compared with a control sample, 3–10% of polydextrose addition significantly increased the hardness, adhesiveness, gumminess, and chewiness of steamed bread, but other textural parameters like springiness, cohesiveness, and resilience remained basically the same. Further, in contrast to the control sample, 3–10% polydextrose addition significantly reduced the specific volume and width/height ratio of steamed bread but increased the brightness index, yellowish color, and color difference; improved the internal structure; and maintained the other sensory parameters and total score. Polydextrose addition decreased the peak, trough, final, breakdown, and setback viscosity of the pasting of wheat flour suspension solutions but increased the pasting temperature. Polydextrose additions significantly reduced the enthalpy of gelatinization and the aging rate of flour paste but increased the peak temperature of gelatinization. A Mixolab revealed that, with increases in the amount of added polydextrose, the dough’s development time and heating rate increased, but the proteins weakened, and the peak torque of gelatinization, starch breakdown, and starch setback torque all decreased. Polydextrose additions increased the crystalline regions of starch, the interaction between proteins and starch, and the β-sheet percentage of wheat dough without yeast and of steamed bread. The amorphous regions of starch were increased in dough through adding polydextrose, but they were decreased in steamed bread. Further, 3–10%of polydextrose addition decreased the random coils, α-helixes, and β-turns in dough, but the 3–7% polydextrose addition maintained or increased these conformations in steamed bread, while 10% polydextrose decreased them. In unfermented dough, as a hydrogel, the 5–7% polydextrose addition resulted in the formation of a continuous three-dimensional network structure with certain adhesiveness and elasticity, with increases in the porosity and gas-holding capacity of the product. Moreover, the 10% polydextrose addition further increased the viscosity, freshness, and looseness of the dough, with smaller and more numerous holes and indistinct boundaries between starch granules. These results indicate that the 3–10% polydextrose addition increases the chewiness and freshness of steamed bread by improving the gluten network structure. This study will promote the addition of polydextrose in steamed bread to improve shelf-life and dietary fiber contents. Full article
Show Figures

Figure 1

19 pages, 6209 KiB  
Article
Structural and Thermal Effects of Beeswax Incorporation in Electrospun PVA Nanofibers
by Margarita P. Neznakomova, Fabien Salaün, Peter D. Dineff, Tsvetozar D. Tsanev and Dilyana N. Gospodinova
Materials 2025, 18(14), 3293; https://doi.org/10.3390/ma18143293 - 12 Jul 2025
Viewed by 381
Abstract
This study presents the development and characterization of electrospun nanofibers composed of polyvinyl alcohol (PVA) and natural beeswax (BW). A stable emulsion containing 9 wt% PVA and 5 wt% BW was successfully formulated and electrospun. The effects of beeswax incorporation on solution properties-viscosity, [...] Read more.
This study presents the development and characterization of electrospun nanofibers composed of polyvinyl alcohol (PVA) and natural beeswax (BW). A stable emulsion containing 9 wt% PVA and 5 wt% BW was successfully formulated and electrospun. The effects of beeswax incorporation on solution properties-viscosity, conductivity, and surface tension—were systematically evaluated. Electrospinning was performed at 30 kV and a working distance of 14.5 cm, yielding nanofibers with diameters between 125 and 425 nm. Scanning electron microscopy (SEM) revealed increased surface roughness and diameter variability in PVA/BW fibers compared to the PVA. Fourier transform infrared spectroscopy (FTIR) confirmed physical incorporation of BW without evidence of chemical bonding. Thermogravimetric and differential scanning calorimetry analyses (TGA/DSC) demonstrated altered behavior and an expanded profile of temperature transitions due to the waxy components. The solubility test of the nanofiber mat in saline indicated that BW slows dissolution and improves the structural integrity of the fibers. This study demonstrates, for the first time, the incorporation of beeswax into electrospun PVA nanofibers with improved structural and thermal properties, indicating potential for further exploration in biomedical material design. Full article
Show Figures

Graphical abstract

24 pages, 1159 KiB  
Review
Physicochemical and Functional Properties of Soluble and Insoluble Dietary Fibers in Whole Grains and Their Health Benefits
by Pathumi Ariyarathna, Patryk Mizera, Jarosław Walkowiak and Krzysztof Dziedzic
Foods 2025, 14(14), 2447; https://doi.org/10.3390/foods14142447 - 11 Jul 2025
Viewed by 591
Abstract
The growing global prevalence of non-communicable diseases (NCDs) is drawing an increasing amount of attention to the health-promoting potential of whole-grain dietary fibers. Whole grains are rich sources of both soluble dietary fiber (SDF) and insoluble dietary fiber (IDF), contributing distinct physicochemical properties [...] Read more.
The growing global prevalence of non-communicable diseases (NCDs) is drawing an increasing amount of attention to the health-promoting potential of whole-grain dietary fibers. Whole grains are rich sources of both soluble dietary fiber (SDF) and insoluble dietary fiber (IDF), contributing distinct physicochemical properties and playing vital roles in promoting human health. This review provides a comprehensive analysis of the dietary fiber compositions of various whole grains, including wheat, oats, barley, rye, corn, sorghum, and rice, highlighting their structural characteristics, physiochemical properties, and associated health benefits. The physicochemical properties of dietary fibers, such as solubility, water- and oil-holding capacity, viscosity, swelling ability, and bile-acid-binding capacity, contribute significantly to their technological applications and potential health benefits, particularly in the prevention of NCDs. Although there is growing evidence supporting their health benefits, global whole-grain intake remains below recommended levels. Therefore, promoting whole-grain intake and developing fiber-rich functional foods are essential for enhancing public health and preventing chronic diseases. Future research should focus on enhancing the bioavailability and functionality of whole-grain dietary fibers, optimizing the methods by which they are extracted, and exploring their potential applications in the food and pharmaceutical industries. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

19 pages, 4947 KiB  
Article
Injection Molding Simulation of Polycaprolactone-Based Carbon Nanotube Nanocomposites for Biomedical Implant Manufacturing
by Krzysztof Formas, Jarosław Janusz, Anna Kurowska, Aleksandra Benko, Wojciech Piekarczyk and Izabella Rajzer
Materials 2025, 18(13), 3192; https://doi.org/10.3390/ma18133192 - 6 Jul 2025
Viewed by 439
Abstract
This study consisted of the injection molding simulation of polycaprolactone (PCL)-based nanocomposites reinforced with multi-walled carbon nanotubes (MWCNTs) for biomedical implant manufacturing. The simulation was additionally supported by experimental validation. The influence of varying MWCNT concentrations (0.5%, 5%, and 10% by weight) on [...] Read more.
This study consisted of the injection molding simulation of polycaprolactone (PCL)-based nanocomposites reinforced with multi-walled carbon nanotubes (MWCNTs) for biomedical implant manufacturing. The simulation was additionally supported by experimental validation. The influence of varying MWCNT concentrations (0.5%, 5%, and 10% by weight) on key injection molding parameters, i.e., melt flow behavior, pressure distribution, temperature profiles, and fiber orientation, was analyzed with SolidWorks Plastics software. The results proved the low CNT content (0.5 wt.%) to be endowed with stable filling times, complete mold cavity filling, and minimal frozen regions. Thus, this formulation produced defect-free modular filament sticks suitable for subsequent 3D printing. In contrast, higher CNT loadings (particularly 10 wt.%) led to longer fill times, incomplete cavity filling, and early solidification due to increased melt viscosity and thermal conductivity. Experimental molding trials with the 0.5 wt.% CNT composites confirmed the simulation findings. Following minor adjustments to processing parameters, high-quality, defect-free sticks were produced. Overall, the PCL/MWCNT composites with 0.5 wt.% nanotube content exhibited optimal injection molding performance and functional properties, supporting their application in modular, patient-specific biomedical 3D printing. Full article
Show Figures

Graphical abstract

19 pages, 1289 KiB  
Article
Effects of Different Highland Barley Varieties on Quality and Digestibility of Noodles
by Guiyun Wu, Lili Wang, Xueqing Wang, Bin Dang, Wengang Zhang, Jingjing Yang, Lang Jia, Jinbian Wei, Zhihui Han, Xiaopei Chen, Jingfeng Li, Xijuan Yang and Fengzhong Wang
Foods 2025, 14(13), 2163; https://doi.org/10.3390/foods14132163 - 20 Jun 2025
Viewed by 403
Abstract
This study comprehensively assessed the effects of ten highland barley varieties on the quality and digestibility of noodles. The characteristics of highland barley flour, including proximate composition, pasting properties, and dough mixing behavior, were analyzed. The quality of the resulting noodles was evaluated [...] Read more.
This study comprehensively assessed the effects of ten highland barley varieties on the quality and digestibility of noodles. The characteristics of highland barley flour, including proximate composition, pasting properties, and dough mixing behavior, were analyzed. The quality of the resulting noodles was evaluated through cooking and textural property analysis. The digestion characteristics of the noodles were determined to evaluate the starch hydrolysis rate and glycemic index (GI). Additionally, a correlation analysis was conducted among the proximate composition of highland barley flour, the characteristics of flour, and the quality of noodles. The results demonstrate that Chaiqing 1 exhibited superior performance in terms of flour quality and noodle texture compared to other varieties. The noodles produced from this variety possessed an outstanding texture, with moderate hardness and excellent elasticity. Additionally, its noodles also exhibited superior cooking resistance and low cooking loss. Nutritionally, the moderate estimated glycemic index (eGI) and high resistant starch (RS) content of Chaiqing 1 were beneficial for intestinal health. Ximalaya 22 showed good processing performance but slightly inferior texture, whereas Kunlun 14 had a high dietary fiber content, which resulted in noodles prone to breaking. Through a comprehensive variety comparison and screening, Chaiqing 1 emerged as the preferred choice for producing high-quality highland barley noodles. Furthermore, correlation analysis revealed that dietary fiber was significantly and positively correlated with water absorption, stability time (ST), and hardness (p < 0.01). Amylose content was associated with peak temperature and breakdown viscosity. This study provides valuable insights into the selection of highland barley varieties for noodle production. Full article
(This article belongs to the Special Issue Research on the Structure and Physicochemical Properties of Starch)
Show Figures

Figure 1

16 pages, 1441 KiB  
Article
Effects of Tricholoma Matsutake-Derived Insoluble Fiber on the Pasting Properties, Structural Characteristics, and In Vitro Digestibility of Rice Flour
by Qin Qiu, Jing Chen, Dafeng Sun, Yongshuai Ma, Yujie Zhong, Junjie Yi, Ming Du, Man Zhou and Tao Wang
Foods 2025, 14(12), 2143; https://doi.org/10.3390/foods14122143 - 19 Jun 2025
Viewed by 485
Abstract
This study explores the effects of Tricholoma matsutake-derived insoluble dietary fiber (TMIDF) on the pasting behavior, structural properties, and in vitro digestibility of rice flour. The incorporation of 5% TMIDF significantly increased the peak viscosity (from 2573.21 to 2814.52 mPa·s) by competitively [...] Read more.
This study explores the effects of Tricholoma matsutake-derived insoluble dietary fiber (TMIDF) on the pasting behavior, structural properties, and in vitro digestibility of rice flour. The incorporation of 5% TMIDF significantly increased the peak viscosity (from 2573.21 to 2814.52 mPa·s) by competitively adsorbing water and forming a dense transient network, while simultaneously reducing the final viscosity (from 1998.27 to 1886.18 mPa·s) by inhibiting amylose recrystallization. Multi-scale structural analyses revealed that TMIDF enhanced V-type crystallinity and limited enzyme access via a porous fibrous matrix. Fourier-transform infrared spectroscopy and low-field nuclear magnetic resonance analyses confirmed that hydrogen bonding and water redistribution were key interaction mechanisms. TMIDF significantly lowered in vitro starch digestibility and increased resistant starch content by 16% (from 14.36% to 30.94%) through synergistic effects, including physical encapsulation of starch granules, formation of enzyme-resistant amylose-lipid complexes, and α-amylase inhibition (31.08%). These results demonstrate that TMIDF possesses a unique multi-tiered modulation mechanism, involving structural optimization, enzyme suppression, and diffusion control, which collectively surpasses the functional performance of conventional plant-derived insoluble dietary fibers. This research establishes a theoretical basis for applying fungal insoluble dietary fibers to develop low glycemic index functional foods, highlighting their dual role in improving processing performance and nutritional quality. Full article
Show Figures

Graphical abstract

17 pages, 752 KiB  
Article
Development of a New Tomato Sauce Enriched with Bioactive Compounds Through the Use of Processing By-Products and Vegetables
by Enrico Maria Milito, Lucia De Luca, Giulia Basile, Martina Calabrese, Antonello Santini, Sabato Ambrosio and Raffaele Romano
Foods 2025, 14(12), 2037; https://doi.org/10.3390/foods14122037 - 9 Jun 2025
Viewed by 864
Abstract
In recent years, the development of nutritionally enhanced foods with reduced environmental impact has gained significant importance. This study aimed to produce four types of tomato sauces: traditional, whole (including peels and seeds), traditional with added vegetables, and whole with added vegetables. The [...] Read more.
In recent years, the development of nutritionally enhanced foods with reduced environmental impact has gained significant importance. This study aimed to produce four types of tomato sauces: traditional, whole (including peels and seeds), traditional with added vegetables, and whole with added vegetables. The vegetables included in the latter two variations were pumpkin, carrot, basil, and oregano. The sauces were analyzed for various parameters, such as soluble solids content, viscosity, pH, reducing sugars, titratable acidity, color, sodium, calcium, potassium, magnesium content, total polyphenols, lycopene, beta-carotene, antioxidant activity, dietary fiber content, vitamin C, and volatile organic compounds. Results showed that whole tomato sauces had up to 80% more polyphenols (270.40 vs. 150.30 mg GAE/kg f.w.) and 30% higher DPPH antioxidant activity (87.07 vs. 66.96 µmol TE/100 g) compared to traditional sauces. Vegetable enrichment, particularly with pumpkin and carrot, significantly increased β-carotene levels (up to 68.67 mg/kg f.w.). Incorporating peels and seeds boosted the bioactive components, and adding vegetables provided an additional nutritional benefit. These findings highlight how waste recovery can contribute to the development of products with enhanced health benefits, offering a sustainable approach to food production. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

22 pages, 4924 KiB  
Article
Electrospun Polybenzimidazole Membranes: Fabrication and Fine-Tuning Through Physical and Statistical Approaches
by Emmanuel De Gregorio, Giuseppina Roviello, Valentina Naticchioni, Viviana Cigolotti, Alfonso Pozio, Luis Alexander Hein, Carlo De Luca, Claudio Ferone, Antonio Rinaldi and Oreste Tarallo
Polymers 2025, 17(12), 1594; https://doi.org/10.3390/polym17121594 - 6 Jun 2025
Viewed by 581
Abstract
Polybenzimidazole (PBI), a high-performance polymer known for its exceptional thermal stability and chemical resistance, was processed by solution electrospinning to manufacture fibrous non-woven membranes. The process was repeated under different conditions by adjusting four main settings: the polymer solution concentration, the flow rate, [...] Read more.
Polybenzimidazole (PBI), a high-performance polymer known for its exceptional thermal stability and chemical resistance, was processed by solution electrospinning to manufacture fibrous non-woven membranes. The process was repeated under different conditions by adjusting four main settings: the polymer solution concentration, the flow rate, the voltage applied between the needle and the collector, and the separating distance. To clarify the interplay between process parameters and material properties, a Design of Experiment (DOE) approach was used to systematically analyze the effects of said parameters on microstructural properties, including fiber diameter, porosity, and air permeability, pointing out that the increase in viscosity improves fiber uniformity, while optimizing the applied voltage and the needle–collector distance enhances jet stability and solvent evaporation, crucial for defect-free fibrous microstructures. Post-processing via calendering further refined the membrane texture and properties, for example by reducing porosity and air permeability without significantly altering the fibrous morphology, particularly at low lamination ratios. Thermal and mechanical evaluations highlighted that the obtained electrospun PBI membranes exhibited enhanced flexibility, but lower tensile strength compared to cast films due to the underlying open pore microstructure. This integrated approach—combining experimental characterization, DOE-guided optimization, and post-processing via calendering—provides a systematic framework for tailoring PBI membranes for specific applications, such as filtration, fuel cells, and molecular sieving. The findings highlight the potential of PBI-based electrospun membranes as versatile materials, offering high thermal stability, chemical resistance, and tunable properties, thereby establishing a foundation for further innovation in advanced polymeric membrane design and applications for energy and sustainability. Full article
Show Figures

Graphical abstract

21 pages, 3701 KiB  
Article
The Nanomechanical Performance and Water Uptake of a Flowable Short Fiber Composite: The Influence of Bulk and Layering Restorative Techniques
by Tamás Tarjányi, András Gábor Jakab, Márton Sámi, Krisztián Bali, Ferenc Rárosi, Maja Laura Jarábik, Gábor Braunitzer, Dániel Palkovics, Lippo Lassila, Edina Lempel, Márk Fráter and Sufyan Garoushi
Polymers 2025, 17(11), 1553; https://doi.org/10.3390/polym17111553 - 2 Jun 2025
Viewed by 747
Abstract
This study aimed to evaluate the nanomechanical surface properties and water uptake of a flowable short-fiber-reinforced composite (SFRC) using various restorative techniques in order to assess its potential as a standalone restorative material. Nanoindentation and compressive creep testing were employed to characterize material [...] Read more.
This study aimed to evaluate the nanomechanical surface properties and water uptake of a flowable short-fiber-reinforced composite (SFRC) using various restorative techniques in order to assess its potential as a standalone restorative material. Nanoindentation and compressive creep testing were employed to characterize material performance. Three resin composites were examined: a flowable SFRC (everX Flow), a bulk-fill particulate filler composite (PFC), and a conventional PFC. Five experimental groups were established based on the restorative technique: layered PFC, layered SFRC, bulk SFRC, bulk PFC, and a bi-structure combining SFRC and PFC. Ninety standardized specimens (n = 18/group) were fabricated. Static and creep nanoindentation tests were conducted to assess surface properties, and water uptake was measured over a 30-day period. Data were analyzed using one-way ANOVA and Bonferroni post hoc tests. Nanoindentation revealed significant differences in hardness, with bulk PFC exhibiting the lowest values (p < 0.001). Creep testing indicated changes in modulus and viscosity following water storage. Notably, bulk SFRC showed the lowest water absorption (p < 0.001). Overall, bulk-applied SFRC demonstrated favorable nanomechanical properties and reduced water uptake, demonstrating its suitability as a standalone restorative material. Further clinical investigations are recommended to validate its long-term performance. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials for Dental Applications III)
Show Figures

Figure 1

Back to TopTop