Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = viscoelastic plastic deformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6127 KiB  
Article
Road Performance and Modification Mechanism of Waste Polyethylene Terephthalate-Modified Asphalt
by Ruiduo Li, Menghao Wang, Dingbin Tan, Yuzhou Sun, Liqin Li, Yanzhao Yuan and Fengzhan Mu
Coatings 2025, 15(8), 902; https://doi.org/10.3390/coatings15080902 (registering DOI) - 2 Aug 2025
Abstract
The incorporation of waste polyethylene terephthalate (PET) as a modifier for asphalt presents a promising approach to addressing the environmental pollution associated with waste plastics while simultaneously extending the service life of road surfaces. This study investigates the fundamental physical properties and rheological [...] Read more.
The incorporation of waste polyethylene terephthalate (PET) as a modifier for asphalt presents a promising approach to addressing the environmental pollution associated with waste plastics while simultaneously extending the service life of road surfaces. This study investigates the fundamental physical properties and rheological properties of asphalt modified with waste PET at both high and low temperatures. Utilizing the theory of fractional derivatives, performance evaluation indicators, such as the deformation factor and viscoelasticity factor, have been developed for the assessment of waste PET-modified asphalt. The underlying mechanism of this modification was examined through scanning electron microscopy and Fourier transform infrared spectroscopy. The results indicate that the addition of waste PET enhances the high-temperature stability of the base asphalt but reduces its resistance to cracking at low temperatures. The fractional derivative model effectively describes the dynamic shear rheological properties of waste PET-modified asphalt, achieving a maximum correlation coefficient of 0.99991. Considering the performance of modified asphalt at both high and low temperatures, the optimal concentration of waste PET was determined to be 6%. At this concentration, the minimum creep stiffness of the PET-modified asphalt was approximately 155 MPa at −6 °C. Additionally, the rutting factor of the waste PET-modified asphalt achieved a maximum value of 527.12 KPa at 52 °C. The interaction between waste PET and base asphalt was primarily physical, with mutual adsorption leading to the formation of a spatial network structure that enhanced the deformation resistance of the asphalt. This study provides a theoretical foundation and technical support for the engineering application of waste PET as a modifier in asphalt. Full article
Show Figures

Figure 1

25 pages, 4297 KiB  
Article
Application of Carbon–Silicon Hybrid Fillers Derived from Carbonised Rice Production Waste in Industrial Tread Rubber Compounds
by Valeryia V. Bobrova, Sergey V. Nechipurenko, Bayana B. Yermukhambetova, Andrei V. Kasperovich, Sergey A. Yefremov, Aigerim K. Kaiaidarova, Danelya N. Makhayeva, Galiya S. Irmukhametova, Gulzhakhan Zh. Yeligbayeva and Grigoriy A. Mun
Polymers 2025, 17(15), 2070; https://doi.org/10.3390/polym17152070 - 29 Jul 2025
Viewed by 272
Abstract
The disposal of agro-industrial waste is a pressing environmental issue. At the same time, due to the high silica content in specific agricultural residues, their processed products can be utilised in various industrial sectors as substitutes for commercial materials. This study investigates the [...] Read more.
The disposal of agro-industrial waste is a pressing environmental issue. At the same time, due to the high silica content in specific agricultural residues, their processed products can be utilised in various industrial sectors as substitutes for commercial materials. This study investigates the key technological, physico-mechanical, and viscoelastic properties of industrial elastomeric compounds based on synthetic styrene–butadiene rubber, intended for the tread of summer passenger car tyres, when replacing the commercially used highly reinforcing silica filler (SF), Extrasil 150VD brand (white carbon black), with a carbon–silica filler (CSF). The CSF is produced by carbonising a finely ground mixture of rice production waste (rice husks and stems) in a pyrolysis furnace at 550–600 °C without oxygen. It was found that replacing 20 wt.pts. of silica filler with CSF in industrial tread formulations improves processing parameters (Mooney viscosity increases by up to 5.3%, optimal vulcanisation time by up to 9.2%), resistance to plastic deformation (by up to 7.7%), and tackiness of the rubber compounds (by 31.3–34.4%). Viscoelastic properties also improved: the loss modulus and mechanical loss tangent decreased by up to 24.0% and 14.3%, respectively; the rebound elasticity increased by up to 6.3% and fatigue resistance by up to 2.7 thousand cycles; and the internal temperature of samples decreased by 7 °C. However, a decrease in tensile strength (by 10.7–27.0%) and an increase in wear rate (up to 43.3% before and up to 22.5% after thermal ageing) were observed. Nevertheless, the overall results of this study indicate that the CSF derived from the carbonisation of rice production waste—containing both silica and carbon components—can effectively be used as a partial replacement for the commercially utilised reinforcing silica filler in the production of tread rubber for summer passenger car tyres. Full article
(This article belongs to the Special Issue Polymeric Composites: Manufacturing, Processing and Applications)
Show Figures

Figure 1

33 pages, 4531 KiB  
Article
Development of the Theory of Additional Impact on the Deformation Zone from the Side of Rolling Rolls
by Valeriy Chigirinsky, Irina Volokitina, Abdrakhman Naizabekov, Sergey Lezhnev and Sergey Kuzmin
Symmetry 2025, 17(8), 1188; https://doi.org/10.3390/sym17081188 - 25 Jul 2025
Viewed by 144
Abstract
The model explicitly incorporates boundary conditions that account for the complex interplay between sections experiencing varying degrees of reduction. This interaction significantly influences the overall deformation behavior and force loading. The control effect is associated with boundary conditions determined by the unevenness of [...] Read more.
The model explicitly incorporates boundary conditions that account for the complex interplay between sections experiencing varying degrees of reduction. This interaction significantly influences the overall deformation behavior and force loading. The control effect is associated with boundary conditions determined by the unevenness of the compression, which have certain quantitative and qualitative characteristics. These include additional loading, which is less than the main load, which implements the process of plastic deformation, and the ratio of control loads from the entrance and exit of the deformation site. According to this criterion, it follows from experimental data that the controlling effect on the plastic deformation site occurs with a ratio of additional and main loading in the range of 0.2–0.8. The next criterion is the coefficient of support, which determines the area of asymmetry of the force load and is in the range of 2.00–4.155. Furthermore, the criterion of the regulating force ratio at the boundaries of the deformation center forming a longitudinal plastic shear is within the limits of 2.2–2.5 forces and 1.3–1.4 moments of these forces. In this state, stresses and deformations of the plastic medium are able to realize the effects of plastic shaping. The force effect reduces with an increase in the unevenness of the deformation. This is due to a change in height of the longitudinal interaction of the disparate sections of the strip. There is an appearance of a new quality of loading—longitudinal plastic shear along the deformation site. The unbalanced additional force action at the entrance of the deformation source is balanced by the force source of deformation, determined by the appearance of a functional shift in the model of the stress state of the metal. The developed theory, using the generalized method of an argument of functions of a complex variable, allows us to characterize the functional shift in the deformation site using invariant Cauchy–Riemann relations and Laplace differential equations. Furthermore, the model allows for the investigation of material properties such as the yield strength and strain hardening, influencing the size and characteristics of the identified limit state zone. Future research will focus on extending the model to incorporate more complex material behaviors, including viscoelastic effects, and to account for dynamic loading conditions, more accurately reflecting real-world milling processes. The detailed understanding gained from this model offers significant potential for optimizing mill roll designs and processes for enhanced efficiency and reduced energy consumption. Full article
(This article belongs to the Special Issue Symmetry in Finite Element Modeling and Mechanics)
Show Figures

Figure 1

27 pages, 3625 KiB  
Article
Effect of Synthetic Wax on the Rheological Properties of Polymer-Modified Bitumen
by Marek Iwański, Małgorzata Cholewińska and Grzegorz Mazurek
Materials 2025, 18(13), 3067; https://doi.org/10.3390/ma18133067 - 27 Jun 2025
Viewed by 339
Abstract
The goal of this study is to evaluate how the inclusion of synthetic wax, added in 0.5% increments from 1.5% to 3.5%, affects the characteristics of PMB 45/80-65 (polymer-modified bitumen) during both short-term (RTFOT) and long-term (PAV) aging processes. Tests were carried out [...] Read more.
The goal of this study is to evaluate how the inclusion of synthetic wax, added in 0.5% increments from 1.5% to 3.5%, affects the characteristics of PMB 45/80-65 (polymer-modified bitumen) during both short-term (RTFOT) and long-term (PAV) aging processes. Tests were carried out to assess the fundamental properties of the binder, leading to the determination of the penetration index (PI) and the plasticity range (PR). The binder’s properties were examined at below-freezing operating temperatures, with creep stiffness measured using a bent beam rheometer (BBR) at −10 °C, −16° C, −22 °C, and −28 °C. The rheological properties of the asphaltenes were evaluated based on both linear and nonlinear viscoelasticity. The experimental study explored temperature effects on the rheological properties of composite materials using a DSR dynamic shear rheometer at 40 °C, 60 °C, and 80 °C over a frequency range of 0.005 to 10 Hz. The main parameters of interest were composite viscosity (η*) and zero shear viscosity (η0). Viscoelastic parameters, including the dynamic modulus (G*) and phase shift angle (δ), were determined, and Black’s curves were used to illustrate the relationship between these parameters, where G*/sinδ was determined. The MSCR test was employed to investigate the impact of bitumen on the asphalt mixture’s resistance to permanent deformation and to assess the degree and efficacy of asphalt modification. The test measured two parameters, irreversible creep compliance (Jnr) and recovery (R), under stress levels of 0.1 kPa (LVE) and 3.2 kPa (N-LVE). The Christensen–Anderson–Marasteanu model was used to describe the bitumen behavior during binder aging, as reflected in the rheological study results. Ultimately, this study revealed that synthetic wax influences the rheological properties of PMB 45/80-65 polymer bitumen. Specifically, it mitigated the stiffness reduction in modified bitumen caused by polymer degradation during aging at an amount less than 2.5% of synthetic wax. Full article
(This article belongs to the Special Issue Advances in Asphalt Materials (Second Volume))
Show Figures

Figure 1

16 pages, 2521 KiB  
Article
Tuning the Gel Network Structure and Rheology of Acid-Induced Casein Gels via Thiol Blocking
by Thomas Pütz and Ronald Gebhardt
Int. J. Mol. Sci. 2025, 26(13), 6206; https://doi.org/10.3390/ijms26136206 - 27 Jun 2025
Viewed by 292
Abstract
This study systematically investigates how thiol–disulfide interactions influence the structure and mechanical properties of casein gels. Acid gels were prepared from suspensions of micellar casein (MC) powder that were heat-treated at 70 °C. Thiol groups were variably blocked with N-ethylmaleimide (NEM). The gels [...] Read more.
This study systematically investigates how thiol–disulfide interactions influence the structure and mechanical properties of casein gels. Acid gels were prepared from suspensions of micellar casein (MC) powder that were heat-treated at 70 °C. Thiol groups were variably blocked with N-ethylmaleimide (NEM). The gels were characterized using stress–strain measurements, rheological analyses, and confocal microscopy. The stress–strain curves exhibited a biphasic behavior, with an initial linear elastic phase followed by a linear plastic region and a nonlinear failure zone. Compared to control samples, the addition of 100 mM NEM reduced the gel strength by 50%, while G′ and G″ increased by around 100%, unexpectedly. NEM-treated gels consist of uniformly sized building blocks coated with a whey protein layer. Strong physical interactions and dense packing enhance viscoelasticity under short deformations but reduce the compressive strength during prolonged loading. In contrast, control samples without NEM demonstrate weak viscoelasticity and increased compressive strength. The former is attributed to a broader particle size distribution from lower acid stability in the untreated gels, while the particularly high compressive strength of heat-treated gels additionally results from disulfide cross-links. The results show that thiol blocking and heating enable the targeted formation of acid casein gels with high shear stability but a low compressive strength. Full article
(This article belongs to the Collection Feature Papers in Materials Science)
Show Figures

Graphical abstract

20 pages, 3723 KiB  
Article
Effect of Salinity on the Steady-State and Dynamic Rheological Behavior of Illite Clay
by Zhichao Liang, Wenyuan Ren, Sha Li, Aijun Zhang, Wenjing Mi, Yuguo Wang and Bin Dang
Buildings 2025, 15(12), 2067; https://doi.org/10.3390/buildings15122067 - 16 Jun 2025
Viewed by 283
Abstract
The rheological behavior of clay in a water–salt environment determines the long-term deformation and structural stability of building materials and geotechnical engineering. In this study, the effects of salinity on the rheological behavior and microstructure stability of the clay mineral illite were investigated [...] Read more.
The rheological behavior of clay in a water–salt environment determines the long-term deformation and structural stability of building materials and geotechnical engineering. In this study, the effects of salinity on the rheological behavior and microstructure stability of the clay mineral illite were investigated through steady-state and dynamic rheological tests. The results reveal that specimens with different salinities exhibit shear thinning behavior during the steady-state rheological test. When the shear rate is higher than 0.5 s−1, the flow curves are described well by the Herschel–Bulkley model. As the salinity increases from 0 to 1.8 mol/L, the yield stress varies from 1500 to 3500 Pa. With the increase in salinity, the consistency factor of the specimens increases, while the flow coefficient decreases. Under dynamic loading, high-salinity specimens exhibit higher modulus and yield stresses, thereby enhancing the stability of the microstructure. The viscoelastic–plastic constitutive model under dynamic loading has been established, which can effectively describe and calculate the long-term deformation of clay minerals. These research results provide reference and guidance for understanding the rheological behavior of clay. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 3776 KiB  
Article
A Viscoelastic-Plastic Creep Model for Initial Damaged Coal Sample Affected by Loading Rate
by Peng Huang, Yimei Wei, Meng Li, Erkan Topal, Xinyong Teng and Wei Wang
Appl. Sci. 2025, 15(10), 5265; https://doi.org/10.3390/app15105265 - 8 May 2025
Viewed by 395
Abstract
Underground engineering rock masses are significantly affected by stress redistribution induced by mining or adjacent engineering disturbances, leading to initial damage accumulation in coal-rock masses. Under sustained geostress, these masses exhibit pronounced time-dependent creep behavior, posing serious threats to long-term engineering stability. Dynamic [...] Read more.
Underground engineering rock masses are significantly affected by stress redistribution induced by mining or adjacent engineering disturbances, leading to initial damage accumulation in coal-rock masses. Under sustained geostress, these masses exhibit pronounced time-dependent creep behavior, posing serious threats to long-term engineering stability. Dynamic loading effects triggered by adjacent mining activities (manifested as medium strain-rate loading) further exacerbate damage evolution and significantly influence creep characteristics. In this study, coal samples with identical initial damage were prepared, and graded loading creep tests were conducted at rates of 0.005 mm·s−1 (50 microstrains·s−1), 0.01 mm·s−1 (100 microstrains·s−1), 0.05 mm·s−1 (500 microstrains·s−1), and 0.1 mm·s−1 (1000 microstrains·s−1) to systematically analyze the coupled effects of loading rate on creep behavior. Experimental results demonstrate that increased loading rates markedly shorten creep duration, with damage rates during the acceleration phase showing nonlinear surges (e.g., abrupt instability at 0.1 mm·s−1 (1000 microstrains·s−1)). Based on experimental data, an integer-order viscoelastic-plastic creep model incorporating stress-dependent viscosity coefficients and damage correlation functions was developed, fully characterizing four behaviors stages: instantaneous deformation, deceleration, steady-state, and accelerated creep. Optimized via the Levenberg–Marquardt algorithm, the model achieved correlation coefficients exceeding 0.96, validating its accuracy. This model clarifies the impact mechanisms of loading rates on the long-term mechanical behavior of initially damaged coal samples, providing theoretical support for stability assessment and hazard prevention in underground engineering. Full article
(This article belongs to the Special Issue Technologies and Methods for Exploitation of Geological Resources)
Show Figures

Figure 1

18 pages, 5650 KiB  
Article
The Influence of the Construction of the Bridge Pile Foundation on the Adjacent Operating Subway Tunnel Considering the Creep Characteristics of the Stratum
by Dandan Wu and Wentian Cui
Buildings 2025, 15(7), 1001; https://doi.org/10.3390/buildings15071001 - 21 Mar 2025
Viewed by 441
Abstract
The pile foundation construction adjacent to an operational subway tunnel can induce the creep effects of the surrounding soil of the tunnel, resulting in the deformation of the existing tunnel lining and potentially compromising the safe operation of the tunnel. Therefore, the Mindlin [...] Read more.
The pile foundation construction adjacent to an operational subway tunnel can induce the creep effects of the surrounding soil of the tunnel, resulting in the deformation of the existing tunnel lining and potentially compromising the safe operation of the tunnel. Therefore, the Mindlin solution and the generalized Kelvin viscoelasticity constitutive model were employed to establish the theoretical calculation model for the deformation of the adjacent subway tunnel caused by the pile construction. Then, the effect of pile construction on the deformation of adjacent tunnels under different pile–tunnel spacing was analyzed via three-dimensional numerical simulation and theoretical calculation methods and compared with the field monitoring data. The results showed that the theoretical and numerical data are in agreement with the field monitoring data. The theoretical model provides closer predictions to the field-measured values than the numerical simulation. As the distance between the pile and the tunnel increases, both the vertical settlement and the horizontal displacement of the subway tunnel lining exhibit a gradual reduction. In the hard plastic clay region of Hefei City (China), pile foundation construction near an operational subway tunnel can be classified into three distinct zones based on proximity to the tunnel: the high-impact zone (<1.0 D), the moderate-impact zone (1.0 D–3.0 D), and the low-impact zone (>3.0 D). The pile foundation in high-, moderate-, and low-impact zones should be monitored for 7 days, 3 days, and 1 day, respectively, to ensure the stable deformation of the lining. Full article
Show Figures

Figure 1

23 pages, 22633 KiB  
Article
The Toppling Deformation and Failure Criteria of a Steep Bedding Rock Slope—The Case of a Bank Slope at the Duonuo Hydropower Station
by Tiantao Li, Xuan Li, Kaihong Wei, Jian Guo, Xi Heng, Jing Yuan, Weiling Ran and Xiangjun Pei
Water 2025, 17(4), 594; https://doi.org/10.3390/w17040594 - 18 Feb 2025
Cited by 1 | Viewed by 684
Abstract
In this study, statistical analysis was conducted to categorize a large number of actual typical cases and analyze the formation conditions of toppling deformation in bedding rock slopes. Based on geological prototypes and similarity theory, a bottom friction test was conducted on the [...] Read more.
In this study, statistical analysis was conducted to categorize a large number of actual typical cases and analyze the formation conditions of toppling deformation in bedding rock slopes. Based on geological prototypes and similarity theory, a bottom friction test was conducted on the toppling deformable body while considering the excavation process. Based on the deformation and failure phenomena observed in the bottom friction test model, along with the displacement curves at key points, the deformation process in steep bedding rock slopes can be divided into the following five distinct stages: the initial phase, the unloading–rebound phase, the tensile failure phase, the bending creep phase, and the bending–toppling damage phase. To evaluate the stability, a new constitutive model of the nonlinear viscoelastic–plastic rheology of rock masses was developed. This model is based on a nonlinear function derived from analyzing the creep test data of rock masses under fractional loading. Furthermore, a mechanical equilibrium differential equation for rock slabs was formulated to quantitatively describe the aging deformation and failure processes of slopes with delayed instability. Finally, a stability criterion and a quantitative evaluation model for toppling deformation slopes that considered time-varying factors were established. The stability of the model was calculated using a hydropower station slope case, and the results were found to be in good agreement with the actual situation. Full article
Show Figures

Figure 1

18 pages, 4043 KiB  
Article
Numerical Simulation of Fatigue Damage in Cross-Ply CFRP Laminates: Exploring Frequency Dependence and Internal Heat Generation Effects
by Natsuko Kudo, M. J. Mohammad Fikry, Shinji Ogihara and Jun Koyanagi
Polymers 2025, 17(3), 432; https://doi.org/10.3390/polym17030432 - 6 Feb 2025
Viewed by 1177
Abstract
A numerical simulation investigating the frequency dependence of fatigue damage progression in carbon fiber-reinforced plastics (CFRPs) is conducted in this study. The initiation and propagation of transverse cracks under varying fatigue test frequencies are successfully simulated, consistent with experiments, using an enhanced degradable [...] Read more.
A numerical simulation investigating the frequency dependence of fatigue damage progression in carbon fiber-reinforced plastics (CFRPs) is conducted in this study. The initiation and propagation of transverse cracks under varying fatigue test frequencies are successfully simulated, consistent with experiments, using an enhanced degradable Hashin failure model that was originally developed by the authors in 2022. The results obtained from the numerical simulation in the present study, which employs adjusted numerical values for the purpose of damage acceleration, indicate that the number of cycles required for the formation of three transverse cracks was 174 cycles at 0.1 Hz, 209 cycles at 1 Hz, and 165 cycles at 10 Hz. Based on these results, it is demonstrated that under high-frequency cyclic loading, internal heat generation caused by dissipated energy from mechanical deformation, attributed to the viscoelastic and/or plastic behavior of the material, exceeds thermal dissipation to the environment, leading to an increase in specimen temperature. Consequently, damage progression accelerates under high-frequency fatigue. In contrast, under low-frequency fatigue, viscoelastic dissipation becomes more pronounced, reducing the number of cycles required to reach a similar damage state. The rate of damage accumulation initially increases with test frequency but subsequently decreases. This observation underscores the importance of incorporating these findings into discussions on the fatigue damage of real structural components. Full article
Show Figures

Figure 1

28 pages, 1249 KiB  
Article
Unified Analysis of Viscoelasticity and Viscoplasticity Using the Onsager Variational Principle
by Kwang Soo Cho
Entropy 2025, 27(1), 55; https://doi.org/10.3390/e27010055 - 10 Jan 2025
Viewed by 818
Abstract
This study is the application of the Onsager variational principle to viscoelasticity and viscoplasticity with the minimization of the assumptions which are popularly used in conventional approaches. The conventional approaches assume Kröner–Lee decomposition, incompressible plastic deformation, flowing rule, stress equation and so on. [...] Read more.
This study is the application of the Onsager variational principle to viscoelasticity and viscoplasticity with the minimization of the assumptions which are popularly used in conventional approaches. The conventional approaches assume Kröner–Lee decomposition, incompressible plastic deformation, flowing rule, stress equation and so on. These assumptions have been accumulated by many researchers for a long time and have shown many successful cases. The large number of successful assumptions leads to the conjecture that the mechanics can be described with a smaller number of assumptions. This paper shows that this conjecture is correct by using the Onsager variational principle. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

13 pages, 5715 KiB  
Article
Characterization and Rheological Properties of Ultra-High Molecular Weight Polyethylenes
by Alexander Ya. Malkin, Tatyana A. Ladygina, Sergey S. Gusarov, Dmitry V. Dudka and Anton V. Mityukov
Polymers 2024, 16(24), 3501; https://doi.org/10.3390/polym16243501 - 16 Dec 2024
Cited by 2 | Viewed by 1764
Abstract
The molecular characteristics and rheological properties of three UHMWPE samples were investigated. The high-temperature GPC method was used for characterizing UHMWPE samples used. The interpretation of the measurement results was based on calibration using the PS standard and the approximation of the PS [...] Read more.
The molecular characteristics and rheological properties of three UHMWPE samples were investigated. The high-temperature GPC method was used for characterizing UHMWPE samples used. The interpretation of the measurement results was based on calibration using the PS standard and the approximation of the PS data by linear and cubic polynomials, as well as on the data for linear PE. The assessment of the average MW and MWD depends on the choice of calibration method, so that different methods give different results. Only the results obtained using PS with cubic approximation are close to the characteristics offered by the manufacturer. It was also shown that the obtained MW characteristics depend on the dissolution time. The reason for this may be the presence of any processing-aid compounds or destruction of macromolecules. Measurements of the rheological properties were performed in creep modes for a wide range of shear stresses and harmonic oscillations. It was shown that even at 210 °C, UHMWPE does not flow, and the observed irreversible deformations are due to the plasticity of the polymer, i.e., UHMWPE is in an elastic–plastic state. The ultimate plastic deformations drop sharply with increasing MW of the polymer. The plasticity modulus for the highest molecular weight UHMWPE samples does not depend on stress. Measurements of viscoelastic characteristics confirmed that the terminal region of viscous flow cannot be reached under any conditions. Increasing the duration of holding the polymer at high temperature leads not to flow, but to the destruction of macromolecules. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

19 pages, 6853 KiB  
Article
The Finite Element Method in Thermosetting Polymers’ and FRPs’ Supramolecular Structure and Thermomechanical Properties’ Modeling
by Alexander Korolev, Alexander Zadorin and Maxim Mishnev
Polymers 2024, 16(23), 3443; https://doi.org/10.3390/polym16233443 - 8 Dec 2024
Viewed by 1145
Abstract
The object of research is cured thermosetting epoxy polymer and FRP on the base of the same polymer matrix. The purpose of this research is to develop the finite element (FE) method in the modeling of cured thermosetting polymers and FRPs to predict [...] Read more.
The object of research is cured thermosetting epoxy polymer and FRP on the base of the same polymer matrix. The purpose of this research is to develop the finite element (FE) method in the modeling of cured thermosetting polymers and FRPs to predict their mechanical and thermal properties. The structural mathematical modeling with subsequent computer FE modeling was performed. The results of FE modeling were compared with the experimental data of cured polymer’s and FRP’s tensile strength and deformations under mechanical load at different temperatures. The design of the polymer’s FE model was based on the tetrahedral supramolecular structure and then transformed into FRP’s model by integrating glass fiber rods. Using the structural density as the structure model’s parameter, the relative size and disposition of the finite elements were determined. The viscoelastic properties are set in the model by regulating the structural density and compressive/tensile properties of joints. The long-term plastic deformation and stress relaxation were determined as the result of the supramolecular structure’s inner shearing with the decrease of its structural density. The FE models of the cured epoxy polymer and FRP were developed, making it possible to predict short-term and long-term deformations under load with high accuracy considering the temperature factor. Full article
(This article belongs to the Special Issue Computational and Experimental Approaches in Polymeric Materials)
Show Figures

Figure 1

20 pages, 7227 KiB  
Article
A Physics-Guided Machine Learning Model for Predicting Viscoelasticity of Solids at Large Deformation
by Bao Qin and Zheng Zhong
Polymers 2024, 16(22), 3222; https://doi.org/10.3390/polym16223222 - 20 Nov 2024
Cited by 3 | Viewed by 1666
Abstract
Physics-guided machine learning (PGML) methods are emerging as valuable tools for modelling the constitutive relations of solids due to their ability to integrate both data and physical knowledge. While various PGML approaches have successfully modeled time-independent elasticity and plasticity, viscoelasticity remains less addressed [...] Read more.
Physics-guided machine learning (PGML) methods are emerging as valuable tools for modelling the constitutive relations of solids due to their ability to integrate both data and physical knowledge. While various PGML approaches have successfully modeled time-independent elasticity and plasticity, viscoelasticity remains less addressed due to its dependence on both time and loading paths. Moreover, many existing methods require large datasets from experiments or physics-based simulations to effectively predict constitutive relations, and they may struggle to model viscoelasticity accurately when experimental data are scarce. This paper aims to develop a physics-guided recurrent neural network (RNN) model to predict the viscoelastic behavior of solids at large deformations with limited experimental data. The proposed model, based on a combination of gated recurrent units (GRU) and feedforward neural networks (FNN), utilizes both time and stretch (or strain) sequences as inputs, allowing it to predict stress dependent on time and loading paths. Additionally, the paper introduces a physics-guided initialization approach for GRU–FNN parameters, using numerical stress–stretch data from the generalized Maxwell model for viscoelastic VHB polymers. This initialization is performed prior to training with experimental data, helping to overcome challenges associated with data scarcity. Full article
Show Figures

Figure 1

23 pages, 3437 KiB  
Article
Advanced Asphalt Mixtures for Tropical Climates Incorporating Pellet-Type Slaked Lime and Epoxy Resin
by Sang-Yum Lee and Tri Ho Minh Le
J. Compos. Sci. 2024, 8(11), 442; https://doi.org/10.3390/jcs8110442 - 30 Oct 2024
Viewed by 1304
Abstract
The escalating impacts of climate change have led to significant challenges in maintaining road infrastructure, particularly in tropical climates. Abnormal weather patterns, including increased precipitation and temperature fluctuations, contribute to the accelerated deterioration of asphalt pavements, resulting in cracks, plastic deformation, and potholes. [...] Read more.
The escalating impacts of climate change have led to significant challenges in maintaining road infrastructure, particularly in tropical climates. Abnormal weather patterns, including increased precipitation and temperature fluctuations, contribute to the accelerated deterioration of asphalt pavements, resulting in cracks, plastic deformation, and potholes. This study aims to evaluate the durability of a novel pellet-type stripping prevention material incorporating slaked lime and epoxy resin for pothole restoration in tropical climates. The modified asphalt mixtures were subjected to a series of laboratory tests, including the Tensile Strength Ratio (TSR) test, Indirect Tension Strength (ITS) test, Hamburg Wheel Tracking (HWT) test, Cantabro test, and Dynamic Modulus test, to assess their moisture resistance, rutting resistance, abrasion resistance, and viscoelastic properties. Quantitative results demonstrated significant improvements in the modified mixture’s performance. The TSR test showed a 6.67% improvement in moisture resistance after 10 drying–wetting cycles compared to the control mixture. The HWT test indicated a 10.16% reduction in rut depth under standard conditions and a 27.27% improvement under double load conditions. The Cantabro test revealed a 44.29% reduction in mass loss, highlighting enhanced abrasion resistance. Additionally, the Dynamic Modulus test results showed better stress absorption and reduced likelihood of cracking, with the modified mixture demonstrating superior flexibility and stiffness under varying temperatures and loading frequencies. These findings suggest that the incorporation of slaked lime and epoxy resin significantly enhances the durability and performance of asphalt mixtures for pothole repair, making them a viable solution for sustainable road maintenance in tropical climates. Full article
(This article belongs to the Special Issue Advanced Asphalt Composite Materials)
Show Figures

Figure 1

Back to TopTop