Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = virtual reference station (VRS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4394 KiB  
Article
Ionosphere-Weighted Network Real-Time Kinematic Server-Side Approach Combined with Single-Differenced Observations of GPS, GAL, and BDS
by Yi Ma, Hongjin Xu, Yifan Wang, Yunbin Yuan, Xingyu Chen, Zelin Dai and Qingsong Ai
Remote Sens. 2024, 16(13), 2269; https://doi.org/10.3390/rs16132269 - 21 Jun 2024
Viewed by 1149
Abstract
Currently, network real-time kinematic (NRTK) technology is one of the primary approaches used to achieve real-time dynamic high-precision positioning, and virtual reference station (VRS) technology, with its high accuracy and compatibility, has become the most important type of network RTK solution. The key [...] Read more.
Currently, network real-time kinematic (NRTK) technology is one of the primary approaches used to achieve real-time dynamic high-precision positioning, and virtual reference station (VRS) technology, with its high accuracy and compatibility, has become the most important type of network RTK solution. The key to its successful implementation lies in correctly fixing integer ambiguities and extracting spatially correlated errors. This paper first introduces real-time data processing flow on the VRS server side. Subsequently, an improved ionosphere-weighted VRS approach is proposed based on single-differenced observations of GPS, GAL, and BDS. With the prerequisite of ensuring estimable integer properties of ambiguities, it directly estimates the single-differenced ionospheric delay and tropospheric delay between reference stations, reducing the double-differenced (DD) observation noise introduced by conventional models and accelerating the system initialization speed. Based on this, we provide an equation for generating virtual observations directly based on single-differenced atmospheric corrections without specifying the pivot satellite. This further simplifies the calculation process and enhances the efficiency of the solution. Using Australian CORS data for testing and analysis, and employing the approach proposed in this paper, the average initialization time on the server side was 40 epochs, and the average number of available satellites reached 23 (with an elevation greater than 20°). Two positioning modes, ‘Continuous’ (CONT) and ‘Instantaneous’ (INST), were employed to evaluate VRS user positioning accuracy, and the distance covered between the user and the master station was between 20 and 50 km. In CONT mode, the average positioning errors in the E/N/U directions were 0.67/0.82/1.98 cm, respectively, with an average success fixed rate of 98.76% (errors in all three directions were within 10 cm). In INST mode, the average positioning errors in the E/N/U directions were 1.29/1.29/2.13 cm, respectively, with an average success fixed rate of 89.56%. The experiments in this study demonstrate that the proposed approach facilitates efficient ambiguity resolution (AR) and atmospheric parameter extraction on the server side, thus enabling users to achieve centimeter-level positioning accuracy instantly. Full article
Show Figures

Figure 1

22 pages, 13665 KiB  
Article
GNSS Signal Quality in Forest Stands for Off-Road Vehicle Navigation
by Marian Rybansky, Vlastimil Kratochvíl, Filip Dohnal, Robin Gerold, Dana Kristalova, Petr Stodola and Jan Nohel
Appl. Sci. 2023, 13(10), 6142; https://doi.org/10.3390/app13106142 - 17 May 2023
Cited by 11 | Viewed by 2555
Abstract
One of the basic possibilities of orientation in forest stands is the use of global navigation satellite systems (GNSS). Today, these systems are used for pedestrian orientation and also for off-road vehicle navigation. This article presents the results of research aimed at measuring [...] Read more.
One of the basic possibilities of orientation in forest stands is the use of global navigation satellite systems (GNSS). Today, these systems are used for pedestrian orientation and also for off-road vehicle navigation. This article presents the results of research aimed at measuring the quality of GNSS signal in different types of coniferous and deciduous vegetation for the purpose of optimizing the navigation of off-road vehicles. To determine the structure (density) of the forest stand, tachymetry was chosen as the reference method. The Trimble Geo 7X cm edition device with Tornado for 7X antenna devices using real time VRS (virtual reference station) method was used to measure GNSS signal quality. This article presents the results of recorded numbers of GNSS satellites (GPS, GLONASS, Galileo and BeiDou) during the driving of a terrain vehicle in two different forest locations. Significant presented results include the deviations of vehicle positions determined by GNSS from tachymetrically precisely measured and marked routes along which the vehicle was moving. The authors of the article focused on the accuracy of determining the position of the vehicle using GNNS, as the most commonly used device for off-road vehicle navigation. The measurement results confirmed the assumption that the accuracy of positioning was better in deciduous forest than in coniferous (spruce) or mixed vegetation. This research was purposefully focused on the possibilities of navigation of military vehicles, but the achieved results can also be applied to the navigation of forestry, rescue and other types of off-road vehicles. Full article
Show Figures

Figure 1

22 pages, 9962 KiB  
Article
A Data Quality Assessment Approach for High-Precision GNSS Continuously Operating Reference Stations (CORS) with Case Studies in Hong Kong and Canada/USA
by Lawrence Lau and Kai-Wing Tai
Remote Sens. 2023, 15(7), 1925; https://doi.org/10.3390/rs15071925 - 3 Apr 2023
Cited by 7 | Viewed by 4867
Abstract
Centimeter-level or better positioning accuracy is needed in engineering surveying applications. When employing the Global Navigation Satellite System (GNSS) in engineering surveying, the high-precision real-time kinematic (RTK) positioning method must be used to achieve such positioning accuracy. Currently, precise point positioning (PPP) cannot [...] Read more.
Centimeter-level or better positioning accuracy is needed in engineering surveying applications. When employing the Global Navigation Satellite System (GNSS) in engineering surveying, the high-precision real-time kinematic (RTK) positioning method must be used to achieve such positioning accuracy. Currently, precise point positioning (PPP) cannot reliably achieve the positioning accuracy needed for engineering surveying in real time. The high-precision RTK positioning method needs carrier-phase measurements and a reference station/network. Surveyors may not need a GNSS receiver in their organizations/companies to act as the reference station. Continuously Operating Reference Stations (CORS), run by international/national organizations/agencies or private companies such as GNSS receiver manufacturers, let users freely access the raw GNSS measurements or corrections for real-time and post-processing applications. The positioning accuracy of the GNSS rover is affected by the data quality of the reference stations, including virtual reference stations (VRS). The International GNSS Service (IGS) currently provides the number of cycle slips and the L1 and L2 average pseudorange multipath errors per station daily. The US National Geodetic Survey (NGS) provides daily station coordinate residuals. Carrier-phase data quality of the CORS stations is not provided by their organizations/agencies. Nowadays, many CORS stations track multi-GNSS satellites. This paper proposes a multi-GNSS and multi-frequency data quality assessment approach for CORS stations with a focus on carrier-phase data quality. The proposed approach is demonstrated with case studies on IGS/CORS networks in Hong Kong and Canada/USA. In other words, a strategy to obtain non-linear combined carrier-phase multipath errors and noise is proposed in this work. The data quality of a CORS station depends on the site environment, monument type and height, and GNSS receiver/antenna. An account of the data quality at some selected stations is given; the main focus of the paper is on the proposed data quality assessment approach. Full article
(This article belongs to the Special Issue Multi-GNSS: Methods, Challenges, and Applications)
Show Figures

Graphical abstract

17 pages, 3994 KiB  
Article
Improvement and Comparison of Multi-Reference Station Regional Tropospheric Delay Modeling Method Considering the Effect of Height Difference
by Yifan Wang, Yakun Pu, Yunbin Yuan, Hongxing Zhang and Min Song
Atmosphere 2023, 14(1), 83; https://doi.org/10.3390/atmos14010083 - 31 Dec 2022
Cited by 3 | Viewed by 1902
Abstract
Tropospheric delay information is particularly important for network RTK (Network Real-time Kinematic) positioning. Conventionally, tropospheric delay information at a virtual reference station (VRS) is obtained using the linear interpolation method (LIM). However, the conventional LIM cannot work well when there is a substantial [...] Read more.
Tropospheric delay information is particularly important for network RTK (Network Real-time Kinematic) positioning. Conventionally, tropospheric delay information at a virtual reference station (VRS) is obtained using the linear interpolation method (LIM). However, the conventional LIM cannot work well when there is a substantial height difference between the rover station and the reference station. Consequently, we propose a modified linear interpolation method (MLIM) by carefully handling the height difference between the rover station and the reference station. The new MLIM method first corrects the systematic error of the double-difference (DD) tropospheric delay in the elevation direction caused by the height difference, and then utilizes the linear interpolation algorithm to obtain the tropospheric delay of the VRS station. To determine the parameters of the low-order surface model (LSM), we also propose a modified LSM (MLSM) interpolation method in the triangular network and evaluate it in the positioning domains. The two new interpolation methods are evaluated using two regional GNSS networks with obvious height disparities. Results show that the DD tropospheric delay interpolation accuracy obtained by the new MLIM and MLSM is improved by 56.5% and 78.7% on average in the two experiments compared to the conventional method. The new MLIM and MLSM are more accurate than the traditional LIM (TLIM) in cases with low elevation satellites. Additionally, the positioning accuracies are improved by using the MLIM and MLSM methods. The MLIM and MLSM outperform TLIM in the up-component by an average of 72.8% and 80.7%, respectively. Full article
(This article belongs to the Special Issue New Insights in Atmospheric Water Vapor Retrieval)
Show Figures

Figure 1

13 pages, 4128 KiB  
Article
Fault-Free Protection Level Equation for CLAS PPP-RTK and Experimental Evaluations
by Euiho Kim, Jaeyoung Song, Yujin Shin, Saekyul Kim, Pyo-Woong Son, Sulgee Park and Sanghyun Park
Sensors 2022, 22(9), 3570; https://doi.org/10.3390/s22093570 - 7 May 2022
Cited by 5 | Viewed by 3221
Abstract
Centimeter level augmentation system (CLAS) of the quasi-zenith satellite system (QZSS) is the first precise point positioning-real time kinematic (PPP-RTK) augmentation system of the global navigation satellite system (GNSS), which is currently providing services for Japan. CLAS broadcasts the state-space representation of correction [...] Read more.
Centimeter level augmentation system (CLAS) of the quasi-zenith satellite system (QZSS) is the first precise point positioning-real time kinematic (PPP-RTK) augmentation system of the global navigation satellite system (GNSS), which is currently providing services for Japan. CLAS broadcasts the state-space representation of correction messages along with integrity messages regarding satellite faults and the quality index of each correction. In other GNSS augmentation systems, such as the space-based augmentation system (SBAS) of GNSS, the quality indices of correction messages are used to generate fault-free protection levels that represent a position bound containing a true user position with a probability of missed detections. Although the protection level equations are well defined for the SBAS, a protection level equation for the CLAS PPP-RTK service has not been rigorously discussed in the literature. This paper proposes a fault-free protection level equation for the PPP-RTK methods that considers the probability of correct integer ambiguity fixes in the GNSS carrier phase measurements as well as the CLAS correction quality messages. The computed protection levels with position errors were experimentally compared by processing the GNSS measurements from the GNSS Earth Observation Network (GEONET) stations in Japan and the L6 messages from the CLAS broadcast using the virtual reference station-real time kinematic (VRS-RTK) techniques. Our results, based on the GEONET dataset spanning 7 days, showed that the computed protection levels using the proposed equations were larger than the position errors for all epochs. In the dataset, the RMS errors of the CLAS VRS-RTK position were 4.6 and 14 cm in the horizontal and vertical directions, respectively, whereas the horizontal protection levels ranged from 25 cm to 2.3 m and the vertical protection levels ranged from 50 cm to 5.2 m based on fault-free integrity risk of 107. Full article
(This article belongs to the Special Issue Advances in GNSS Positioning and GNSS Remote Sensing)
Show Figures

Figure 1

16 pages, 5459 KiB  
Technical Note
Garmin GPSMAP 66sr: Assessment of Its GNSS Observations and Centimeter-Accurate Positioning
by Lambert Wanninger, Anja Heßelbarth and Volker Frevert
Sensors 2022, 22(5), 1964; https://doi.org/10.3390/s22051964 - 2 Mar 2022
Cited by 3 | Viewed by 6187
Abstract
In 2020, Garmin released one of the first consumer devices with a dual-frequency GNSS chip and a quadrifilar helix antenna: GPSMAP 66sr. The device is intended to serve as a positioning and navigation device for outdoor recreation purposes with positioning accuracies on the [...] Read more.
In 2020, Garmin released one of the first consumer devices with a dual-frequency GNSS chip and a quadrifilar helix antenna: GPSMAP 66sr. The device is intended to serve as a positioning and navigation device for outdoor recreation purposes with positioning accuracies on the few meter level. However, due to its highly accurate GNSS dual-frequency carrier-phase observations, the equipment can also be used for centimeter-accurate positioning. We performed extensive test measurements and analyzed the quality of its code and carrier-phase observations. We calibrated the Garmin GPSMAP 66sr antenna with respect to its phase-center offset and phase-center variations. We also performed dual-frequency GPS/Galileo precise point positioning (PPP) and precise relative positioning in baselines to virtual reference stations (VRS). We demonstrate and explain how centimeter-accurate positioning can be achieved with this novel kind of equipment. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

18 pages, 5843 KiB  
Article
Evaluation of Network RTK Positioning Performance Based on BDS-3 New Signal System
by Pengxu Wang, Hui Liu, Zhixin Yang, Bao Shu, Xintong Xu and Guigen Nie
Remote Sens. 2022, 14(1), 2; https://doi.org/10.3390/rs14010002 - 21 Dec 2021
Cited by 11 | Viewed by 3609
Abstract
The BeiDou navigation satellite system (BDS-3) has been deployed and provides positioning, navigation, and timing (PNT) services for users all over the world. On the basis of BDS-2 system signals, BDS-3 adds B1C, B2a, B2b, and other signals to realize compatibility and interoperability [...] Read more.
The BeiDou navigation satellite system (BDS-3) has been deployed and provides positioning, navigation, and timing (PNT) services for users all over the world. On the basis of BDS-2 system signals, BDS-3 adds B1C, B2a, B2b, and other signals to realize compatibility and interoperability with other global navigation satellite systems (GNSS). Network real-time kinematic (RTK) technology is an important real-time regional high-precision GNSS positioning technology. Combined with the network RTK high-precision service platform software developed by the author’s research group and the measured data of a provincial continuously operating reference station (CORS) in Hubei, this paper preliminarily evaluates the network RTK service performance under the new signal system of BDS-3. The results show that single BDS-3 adopts the new signal combination (B1C+B2a) and transition signal combination (B1I+B3I) when providing virtual reference station (VRS) services, the RTK fixation rate of the terminal is above 95%, and the horizontal and elevation accuracies are within 1cm and 2 cm, respectively, which meets the requirements of providing high-precision network RTK services by a single BDS-3 system. In addition, the positioning accuracy of BDS-2 is relatively poor, while the accuracy of BDS-3 is better than global positioning systems (GPS) and BDS-2. The combined processing effect of the B1I+B3I transition signal of BDS-2/3 is optimal, the accuracy of E and N directions is better than 0.5 cm, and the accuracy of U direction is better than 1.5 cm. It can be seen from the atmosphere correction accuracy, regional error modeling accuracy, and network RTK terminal positioning accuracy that the service effect of the B1C+B2a combination is slightly better than that of the B1I+B3I combination. When a single BDS-3 constellation provides network RTK services, it is recommended to use the B1C+B2a combination as the main frequency solution, and when the BDS-2/3 constellation provides service, it is recommended to use the B1I+B3I combination as the main frequency solution. Full article
Show Figures

Figure 1

19 pages, 4739 KiB  
Article
Experimental Study on the Evaluation and Influencing Factors on Individual’s Emergency Escape Capability in Subway Fire
by Na Chen, Ming Zhao, Kun Gao and Jun Zhao
Int. J. Environ. Res. Public Health 2021, 18(19), 10203; https://doi.org/10.3390/ijerph181910203 - 28 Sep 2021
Cited by 9 | Viewed by 3049
Abstract
Studying an individual’s emergency escape capability and its influencing factors is of great practical significance for evacuation and escape in subway emergencies. Taking Zhengzhou Zijing Mountain Subway station as the prototype, and using VR technology, a virtual subway fire escape scene was built. [...] Read more.
Studying an individual’s emergency escape capability and its influencing factors is of great practical significance for evacuation and escape in subway emergencies. Taking Zhengzhou Zijing Mountain Subway station as the prototype, and using VR technology, a virtual subway fire escape scene was built. Combined with the total escape time, the total contact time with fire, and the total contact time with smoke, it proposed a calculation formula on emergency escape capability. A total of 34 participants with equal gender distribution were recruited to carry out the virtual subway fire escape experiment, and participants’ physiological data (heart rate variability, skin conductance) were real-time recorded by ErgoLAB V3.0 throughout the whole experiment. The emergency escape capability of each participant was evaluated quantitatively, and the related influencing factors were analyzed. The results show that for the age ranges (19–22 years old) in the experiment, the emergency escape capability of women is significantly lower than that of men (p < 0.05); although there is no significance in emergency escape capability in DISC personality types (p > 0.05), the mean emergency escape capability of people with influence personality type is the worst, and that of people with compliance type is the best; during virtual fire escape vs. baseline, Mean_SC and Mean_HR both increased very significantly (all p < 0.01), and participants were under stress during their virtual fire escape. There is a significant negative correlation between emergency escape capability and LF_increase_rate (p < 0.05), and a remarkably significant negative correlation between emergency escape capability and LF/HF_increase_rate (p < 0.01); the greater the increase rate of LF or LF/HF, the smaller the emergency escape capability, with excessive stress probably not being conducive to emergency escape. There is a very significant negative correlation between an individual’s emergency escape capability and the degree of familiarity with the Zijing Mountain subway station (p < 0.01). The findings provide references and suggestions on the emergency management and emergency evacuation for government and subway departments. Full article
Show Figures

Figure 1

22 pages, 14450 KiB  
Article
Quality Analysis of Direct Georeferencing in Aspects of Absolute Accuracy and Precision for a UAV-Based Laser Scanning System
by Ansgar Dreier, Jannik Janßen, Heiner Kuhlmann and Lasse Klingbeil
Remote Sens. 2021, 13(18), 3564; https://doi.org/10.3390/rs13183564 - 8 Sep 2021
Cited by 28 | Viewed by 4170
Abstract
The use of UAV-based laser scanning systems is increasing due to the rapid development in sensor technology, especially in applications such as topographic surveys or forestry. One advantage of these multi-sensor systems is the possibility of direct georeferencing of the derived 3D point [...] Read more.
The use of UAV-based laser scanning systems is increasing due to the rapid development in sensor technology, especially in applications such as topographic surveys or forestry. One advantage of these multi-sensor systems is the possibility of direct georeferencing of the derived 3D point clouds in a global reference frame without additional information from Ground Control Points (GCPs). This paper addresses the quality analysis of direct georeferencing of a UAV-based laser scanning system focusing on the absolute accuracy and precision of the system. The system investigated is based on the RIEGL miniVUX-SYS and the evaluation uses the estimated point clouds compared to a reference point cloud from Terrestrial Laser Scanning (TLS) for two different study areas. The precision is estimated by multiple repetitions of the same measurement and the use of artificial objects, such as targets and tables, resulting in a standard deviation of <1.2 cm for the horizontal and vertical directions. The absolute accuracy is determined using a point-based evaluation, which results in the RMSE being <2 cm for the horizontal direction and <4 cm for the vertical direction, compared to the TLS reference. The results are consistent for the two different study areas with similar evaluation approaches but different flight planning and processing. In addition, the influence of different Global Navigation Satellite System (GNSS) master stations is investigated and no significant difference was found between Virtual Reference Stations (VRS) and a dedicated master station. Furthermore, to control the orientation of the point cloud, a parameter-based analysis using planes in object space was performed, which showed a good agreement with the reference within the noise level of the point cloud. The calculated quality parameters are all smaller than the manufacturer’s specifications and can be transferred to other multi-sensor systems. Full article
(This article belongs to the Special Issue Accuracy Assessment of UAS Lidar)
Show Figures

Figure 1

22 pages, 17406 KiB  
Article
Modified Interpolation Method of Multi-Reference Station Tropospheric Delay Considering the Influence of Height Difference
by Yakun Pu, Min Song and Yunbin Yuan
Remote Sens. 2021, 13(15), 2994; https://doi.org/10.3390/rs13152994 - 29 Jul 2021
Cited by 8 | Viewed by 2443
Abstract
In network real-time kinematic (NRTK) positioning, atmospheric delay information is critical for generating virtual observations at a virtual reference station (VRS). The traditional linear interpolation method (LIM) is widely used to obtain the atmospheric delay correction. However, even though the conventional LIM is [...] Read more.
In network real-time kinematic (NRTK) positioning, atmospheric delay information is critical for generating virtual observations at a virtual reference station (VRS). The traditional linear interpolation method (LIM) is widely used to obtain the atmospheric delay correction. However, even though the conventional LIM is robust in the horizontal direction of the atmospheric error, it ignores the influence of the vertical direction, especially for the tropospheric error. If the height difference between the reference stations and the rover is large and, subsequently, tropospheric error and height are strongly correlated, the performance of the traditional method is degraded for tropospheric delay interpolation at the VRS. Therefore, considering the height difference between the reference stations and the rover, a modified linear interpolation method (MLIM) is proposed to be applied to a conventional single Delaunay triangulated network (DTN). The systematic error of the double-differenced (DD) tropospheric delay in the vertical direction is corrected first. The LIM method is then applied to interpolate the DD tropospheric delay at the VRS. In order to verify the performance of the proposed method, we used two datasets from the American NOAA continuously operating reference stations (CORS) network with significant height differences for experiments and analysis. Results show that the DD tropospheric delay interpolation accuracy obtained by the modified method is improved by 84.1% and 69.6% on average in the two experiments compared to the conventional method. This improvement is significant, especially for low elevation satellites. In rover positioning analysis, the traditional LIM has a noticeable systematic deviation in the up component. Compared to the conventional method, the positioning accuracy of the MLIM method is improved in the horizontal and vertical directions, especially in the up component. The accuracy of the up component is reduced from tens of centimeters to a few centimeters and demonstrates better positioning stability. Full article
(This article belongs to the Special Issue BDS/GNSS for Earth Observation)
Show Figures

Figure 1

12 pages, 5645 KiB  
Article
Accuracy Assessment of Satellite-Based Correction Service and Virtual GNSS Reference Station for Hydrographic Surveying
by Mohamed Elsayed Elsobeiey
J. Mar. Sci. Eng. 2020, 8(7), 542; https://doi.org/10.3390/jmse8070542 - 20 Jul 2020
Cited by 9 | Viewed by 3927
Abstract
The aim of this paper is to assess the performance of satellite-based correction service, Trimble PP-RTX, and Virtual Reference Stations (VRS) for bathymetry determination, and check how far these techniques meet the minimum standards of the International Hydrography Organization (IHO) for hydrographic surveys. [...] Read more.
The aim of this paper is to assess the performance of satellite-based correction service, Trimble PP-RTX, and Virtual Reference Stations (VRS) for bathymetry determination, and check how far these techniques meet the minimum standards of the International Hydrography Organization (IHO) for hydrographic surveys. To this end, a three-hour duration session was conducted at Sharm Obhur using KAU-Hydrography 1 vessel. This session includes Global Navigation Satellite System (GNSS) data at the base station using Trimble SPS855 GNSS receiver, multibeam records using Kongsberg EM 712 multibeam echo sounder, sound velocity profile using Valeport’s sound velocity profiler, Applanix POS MV measurements, and real-time PP-RTX corrections. Moreover, the VRS GNSS data was generated using Kingdom of Saudi Arabia Continuous Operation Reference Station network (KSA-CORS). It is shown that the Total Horizontal Uncertainty (THU) and Total Vertical Uncertainty (TVU) of the PP-RTX technique are 5.50 cm and 5.90 cm, respectively, which meets the IHO minimum standards for all survey orders at 95% confidence level. The THU and TVU of the VRS technique, on the other hand, are 5.75 cm and 7.05 cm at 95% confidence level, respectively. These values meet the IHO standards for all survey orders as well. Statistical analysis of the seabed surface differences showed a −0.07 cm average difference between the PP-RTX seabed surface and the reference seabed surface with a standard deviation of 3.60 cm. However, the average difference between the VRS-based seabed surface and the reference seabed surface is −0.03 cm and a standard deviation of 3.61 cm. Full article
(This article belongs to the Special Issue Advances in Navigability and Mooring)
Show Figures

Figure 1

14 pages, 5445 KiB  
Article
A Variance Model in NRTK-Based Geodetic Positioning as a Function of Baseline Length
by Ömer Gökdaş and M. Tevfik Özlüdemir
Geosciences 2020, 10(7), 262; https://doi.org/10.3390/geosciences10070262 - 9 Jul 2020
Cited by 10 | Viewed by 3967
Abstract
This study examines the effect of baseline length on accuracy and precision in Network Real-Time Kinematic (NRTK) positioning and develops an experimental mathematical model to express this effect. The study also measures the performances of the Flaechen Korrektur Parameter (FKP) and Virtual Reference [...] Read more.
This study examines the effect of baseline length on accuracy and precision in Network Real-Time Kinematic (NRTK) positioning and develops an experimental mathematical model to express this effect. The study also measures the performances of the Flaechen Korrektur Parameter (FKP) and Virtual Reference Stations (VRS) methods at different baseline lengths. The study makes use of the stations that form two Continuously Operating Reference Station (CORS) networks, one of which is local and the other national. Calculations were made to perform various geodetic operations, such as datum transformations between the two networks, identifications of positional velocities, and epoch shifting. BERNESE (v5.2) software was used to identify coordinate values assumed to be true based on International GNSS Service (IGS) products. No significant changes were observed in the RMSE values in baseline lengths of up to 40 km. In contrast, an average linear correlation of 69.2% was determined between precision and baseline length. Measurements were evaluated and tested using the variance model created as a function of the baseline length, in line with the aims of the study, and the results were found to be consistent. Moreover, in an examination of the Root Mean Square Error (RMSE) and precision values of the FKP and VRS measurements, no significant differences were observed. The mean differences were at the millimetre level. Full article
Show Figures

Figure 1

12 pages, 510 KiB  
Article
Evaluating the Correctness of Airborne Laser Scanning Data Heights Using Vehicle-Based RTK and VRS GPS Observations
by Satu Dahlqvist, Petri Rönnholm, Panu Salo and Martin Vermeer
Remote Sens. 2011, 3(9), 1902-1913; https://doi.org/10.3390/rs3091902 - 31 Aug 2011
Cited by 5 | Viewed by 7210
Abstract
In this study, we describe a system in which a GPS receiver mounted on the roof of a car is used to provide reference information to evaluate the elevation accuracy and georeferencing of airborne laser scanning (ALS) point clouds. The concept was evaluated [...] Read more.
In this study, we describe a system in which a GPS receiver mounted on the roof of a car is used to provide reference information to evaluate the elevation accuracy and georeferencing of airborne laser scanning (ALS) point clouds. The concept was evaluated in the Klaukkala test area where a number of roads were traversed to collect real-time kinematic data. Two test cases were evaluated, including one case using the real-time kinematic (RTK) method with a dedicated GPS base station at a known benchmark in the area and another case using the GNSSnet virtual reference station service (VRS). The utility of both GPS methods was confirmed. When all test data were included, the mean difference between ALS data and GPS-based observations was −2.4 cm for both RTK and VRS GPS cases. The corresponding dispersions were ±4.5 cm and ±5.9 cm, respectively. In addition, our examination did not reveal the presence of any significant rotation between ALS and GPS data. Full article
Show Figures

Figure 1

7 pages, 378 KiB  
Article
Compact Integration of a GSM-19 Magnetic Sensor with High-Precision Positioning using VRS GNSS Technology
by Angel Martín, Jorge Padín, Ana Belén Anquela, Juán Sánchez and Santiago Belda
Sensors 2009, 9(4), 2944-2950; https://doi.org/10.3390/s90402944 - 22 Apr 2009
Cited by 9 | Viewed by 15403
Abstract
Magnetic data consists of a sequence of collected points with spatial coordinates and magnetic information. The spatial location of these points needs to be as exact as possible in order to develop a precise interpretation of magnetic anomalies. GPS is a valuable tool [...] Read more.
Magnetic data consists of a sequence of collected points with spatial coordinates and magnetic information. The spatial location of these points needs to be as exact as possible in order to develop a precise interpretation of magnetic anomalies. GPS is a valuable tool for accomplishing this objective, especially if the RTK approach is used. In this paper the VRS (Virtual Reference Station) technique is introduced as a new approach for real-time positioning of magnetic sensors. The main advantages of the VRS approach are, firstly, that only a single GPS receiver is needed (no base station is necessary), reducing field work and equipment costs. Secondly, VRS can operate at distances separated 50-70 km from the reference stations without degrading accuracy. A compact integration of a GSM-19 magnetometer sensor with a geodetic GPS antenna is presented; this integration does not diminish the operational flexibility of the original magnetometer and can work with the VRS approach. The coupled devices were tested in marshlands around Gandia, a city located approximately 100 km South of Valencia (Spain), thought to be the site of a Roman cemetery. The results obtained show adequate geometry and high-precision positioning for the structures to be studied (a comparison with the original low precision GPS of the magnetometer is presented). Finally, the results of the magnetic survey are of great interest for archaeological purposes. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Back to TopTop