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Abstract: Tropospheric delay information is particularly important for network RTK (Network Real-
time Kinematic) positioning. Conventionally, tropospheric delay information at a virtual reference
station (VRS) is obtained using the linear interpolation method (LIM). However, the conventional
LIM cannot work well when there is a substantial height difference between the rover station and
the reference station. Consequently, we propose a modified linear interpolation method (MLIM) by
carefully handling the height difference between the rover station and the reference station. The new
MLIM method first corrects the systematic error of the double-difference (DD) tropospheric delay
in the elevation direction caused by the height difference, and then utilizes the linear interpolation
algorithm to obtain the tropospheric delay of the VRS station. To determine the parameters of the
low-order surface model (LSM), we also propose a modified LSM (MLSM) interpolation method
in the triangular network and evaluate it in the positioning domains. The two new interpolation
methods are evaluated using two regional GNSS networks with obvious height disparities. Results
show that the DD tropospheric delay interpolation accuracy obtained by the new MLIM and MLSM
is improved by 56.5% and 78.7% on average in the two experiments compared to the conventional
method. The new MLIM and MLSM are more accurate than the traditional LIM (TLIM) in cases with
low elevation satellites. Additionally, the positioning accuracies are improved by using the MLIM
and MLSM methods. The MLIM and MLSM outperform TLIM in the up-component by an average
of 72.8% and 80.7%, respectively.

Keywords: tropospheric delay; interpolation; GPS; BDS; NRTK

1. Introduction

Due to the influence of the atmosphere, orbit, and other distance-related errors, tradi-
tional single-station RTK positioning technology restricts the distance between the mobile
station and the reference station to approximately 10 km in order to achieve centimeter-
level positioning accuracy. Real-time high-precision positioning services can now cover
a range of tens or even hundreds of kilometers thanks to the development of network
RTK technology, which is based on evenly distributed GNSS reference stations within the
regional range [1]. Virtual reference station (VRS) technology is widely promoted and
used in many network RTK solutions [2]. Double-difference (DD) ionosphere, troposphere,
and other delays can be precisely resolved when the ambiguity of the network baseline
generated between the reference stations is accurately determined. These errors are then
interpolated to obtain errors such as atmospheric delays on VRS stations near the rover
station. Lastly, using these interpolated delays, the VRS station’s virtual observations can
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be created. The user can then employ such observations to resolve the short baseline rapidly
and achieve real-time high-precision coordinate information [3–5].

The key issue in network RTK is choosing an effective and appropriate method to cre-
ate virtual observations after successfully resolving the atmospheric delay on the network
baseline [4]. As a result, a variety of interpolation models and methods have been proposed
by researchers for atmospheric delays. Wanninger first proposed the linear interpolation
method (LIM), which requires at least three reference stations around the VRS station. The
LIM uses dual-frequency phase observations and the known coordinate information of the
reference station, thereby establishing a regional atmospheric delay model in the coverage
area of the reference station through the difference in the plane coordinates between the
reference station and the VRS station [5]. Han and Rizos proposed a linear combinatorial
model (LCM), which is mainly used to eliminate orbital errors but can also be used to
model atmospheric delays [6]. Gao et al. considered that a different distance between
each reference station and VRS station and proposed a distance-dependent interpolation
method (DIM). However, this method is mainly used for interpolated ionospheric errors [7].
Wübbena proposed to use an appropriate trend surface or low-order surface model (LSM)
to simulate the trend of distance-related errors in the network, thus achieving the pur-
pose of atmospheric modeling [8]. The benefits and drawbacks of the main atmospheric
interpolation algorithms and models listed above (Dai et al., Fotopoulos et al., Wu et al.,
and Al-Shaery et al.) have been investigated and examined, with research finding simi-
lar impacts between them [9–12]. It is challenging to determine which algorithm is best.
However, in a triangular network divided by traditional triangulation, the rover station
is usually surrounded by a triangular cell, so the linear interpolation method using three
reference stations is widely used due to its simple implementation and strong applicability.

The correlation of tropospheric delays decreases as the length of the network baseline
increases, resulting in an increase in residual errors in the double-difference observations.
Excessive errors will affect the fuzzy solution and positioning accuracy [13]. Due to the
strong correlation between tropospheric delay and height, the correlation coefficient be-
tween them exceeds 0.9 [14]. Thus, the tropospheric error caused by an obvious height
difference will seriously affect the solution of the station coordinates [15]. Landau ex-
perimented with data from the German SAPOS network and found that when there is a
significant height difference between the reference station and the rover, the tropospheric
systematic error can reach 6.8 cm [16]. Since the above interpolation methods only considers
the distribution of the troposphere in the horizontal direction, if these methods are used
directly within a triangular unit, the troposphere delay on the interpolated VRS station will
be strongly constrained to the plane formed by the reference station, and the tropospheric
delay distributed in the vertical direction will be completely ignored. With this in mind,
Wu et al. proposed a multi-baseline tropospheric delayed interpolation method that is
more accurate than linear interpolation in star networks [17]. In addition, using the BP
neural network method, Qiu et al. obtained better tropospheric delay accuracy by training
sample data and established a spatial tropospheric error model [18]. Shi et al. suggested
an optimal fitting model for obtaining the troposphere’s local fitting coefficients. The user
is then provided determined troposphere fitting coefficients in order to shorten the PPP
convergence time [19]. Based on the PPP model, Zhang and Zheng proposed a large-scale
improved tropospheric model for China [20–22]. These two models can effectively correct
tropospheric delays and enhance PPP precision.

The main purpose of this paper is to use the two proposed interpolation algorithm to
improve the accuracy of tropospheric delay corrections in network RTK and to obtain more
stable and reliable positioning results, especially in the elevation direction. It should be
noted that in NRTK, when there is a significant height difference between the Continuously
Operating Reference Station (CORS) reference station and rover, the conventional tropo-
spheric interpolation method will be affected by the systematic errors caused by the height
difference. Ultimately, when there is a significant height difference between the rover and
the surrounding reference station, the adoption of TLIM will decrease the tropospheric
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interpolation accuracy and cause systematic errors. Considering the height difference
between the reference station and the rover station, in MLIM, an external priori model of
tropospheric delay is first used to correct the tropospheric delay on the solved network
baseline, and then the corrected tropospheric delay is interpolated by linear interpolation.
In the MLSM, the external constraint of troposphere is introduced as an additional equation,
and then the elevation coefficient of the model can be estimated. Finally, the interpolation
value is directly used for the generation of virtual observations and the positioning of the
rover station.

2. Materials and Methods

Here, we first introduce the acquisition process of the tropospheric delay required
to generate the observations on the virtual reference station and then introduce several
commonly used tropospheric interpolation methods and models. Lastly, we introduce the
modified linear interpolation method and low-order surface model proposed in this paper.

2.1. The Process of Calculating and Modeling Tropospheric Delays on VRS

In order to accurately obtain the double-difference tropospheric delay on the network
baseline, an accurate solution for network baseline ambiguity is a prerequisite. The ambi-
guity solution strategy we adopted is to first solve the wide-lane (WL) ambiguity with a
longer wavelength and then use the combined ionosphere-free observations to solve the
basic ambiguity [23]. The specific steps are as follows.

First, we use the following observation equation to solve the WL ambiguity:

Lij
rb,WL = ρ

ij
rb + Tij

rb +
f1
f2
(I j

rb,1 − Ii
rb,1) + λWL(N j

rb,WL − Ni
rb,WL) + ε

ij
rb,WL

Lij
rb,1 = ρ

ij
rb + Tij

rb − (I j
rb,1 − Ii

rb,1) + λ1(N j
rb,1 − Ni

rb,1) + ε
ij
rb,1

Pij
rb,1 = ρ

ij
rb + Tij

rb + (I j
rb,1 − Ii

rb,1) + eij
rb,1

Pij
rb,2 = ρ

ij
rb + Tij

rb +
f 2
1

f 2
2
(I j

rb,1 − Ii
rb,1) + eij

rb,2

Ĩij
rb,1 = I j

rb,1 − Ii
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(1)

where r and b are the base station and rover station at both ends of the network baseline,
and i and j represent the reference satellite and the rover satellite, respectively; Lij

rb,WL, Lij
rb,1,

Pij
rb,1, and Pij

rb,2 are the WL, L1, P1, and P2 DD observations in meters, respectively; and ρ
ij
rb is

the DD geometric distance from the satellite pair to the receivers, Tij
rb is the DD tropospheric

delay for each satellite pair, and Ii
rb,1 and I j

rb,1 are the single-differenced ionospheric delays
of the reference and the rover satellite at the L1 frequency.

Ni
rb,WL, N j

rb,WL, Ni
rb,1, and N j

rb,1 are the WL and L1 ambiguities of the reference satellite
and rover satellite, respectively. f1 and f2 are the signal frequencies of L1 and L2, respec-
tively. λWL and λ1 are the wavelengths of WL and L1, respectively. ε

ij
rb,WL, ε

ij
rb,1, eij

rb,1, and

eij
rb,2 represent observation noise and other errors on phase and pseudorange. Ĩij

rb,1 is the
ionospheric pseudo-observations.

Then, using the solved WL ambiguity in Equation (1), the L1 ambiguity can be solved
with the following observation equation: Lij

rb,IF = ρ
ij
rb + Tij

rb +
C

f1+ f2
(N j

rb,1 − Ni
rb,1) +

C f2
f 2
1 + f 2

2
Nij

rb,WL + ε
ij
rb,IF

Pij
rb,IF = ρ

ij
rb + Tij

rb + eij
rb,IF

(2)

where IF stands for the ionospheric combination, which is the calculated WL ambiguity,
and other symbols have the same meaning as in Equation (1).

Since the distance between reference stations is usually at least tens of kilometers
greater than 100 km, determining ambiguity is challenging. As a result, considering the
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long-wavelength characteristics of the WL ambiguity and the benefits of being simple to
solve, we resolve the single-difference WL ambiguity with Equation (1) and then solve the
L1 ambiguity with Equation (2). Additionally, ionospheric delay is a substantial impediment
to ambiguity resolution. Here, we introduce ionospheric pseudo-observations and employ
an appropriate weighting strategy to deal with the ionosphere. This strategy takes into
consideration the spatial and temporal ionospheric delay [24,25]. Usually, the Klobuchar
model (or BDGIM) or the IGS Global Ionospheric Grid Model (GIM) can provide pseudo-
observations for the ionosphere [26,27]. Since the GIM model has better accuracy, we use
GIM here to obtain ionospheric pseudo-observations [28]. Furthermore, the tropospheric
hydrostatic delay corrections are calculated through the UNB3m model with the Niell
mapping function [29,30], and the residual wet delay part is referred to as the relative
tropospheric wet delay (RZTD), which is estimated using a random walk filter [31].

The SD WL, L1 ambiguity, SD ionospheric delay, and RZTD in the above observation
equations are estimated using the Kalman filter. Then, the SD ambiguity is converted into
DD ambiguity through the transformation matrix, and the DD WL and L1 integer ambiguity
values are obtained via the LAMBDA method [32]. The L2 DD ambiguity is then calculated
using the linear relationship between the WL and L1 DD ambiguities.

After obtaining the L1 and L2 ambiguities that are precisely fixed as integers, we
can calculate the DD tropospheric delay of each satellite pair on each network baseline
as follows:

T̂ij
rb =

f 2
1

f 2
1 − f 2

2
(Lij

rb,2 − λ1Ñij
rb,1)−

f 2
2

f 2
1 − f 2

2
(Lij

rb,2 − λ2Ñij
rb,2)− ρ

ij
rb (3)

where T̂ij
rb represents the calculated DD tropospheric delay, and Ñij

rb,1 and Ñij
rb,2 denote

fixed DD ambiguities on L1 and L2 in units of cycles. Due to the high accuracy of phase
observations, the impacts of errors such as observation noise and multipath effects are
neglected here.

2.2. Traditional Interpolation Techniques and Modified Linear Interpolation Algorithms for
Tropospheric Delay

In the area covered by the reference station, the rover is generally located within a
triangular unit formed by at least three reference stations, with the reference station closest
to the rover referred to as the master reference station and the other two reference stations
referred to as auxiliary reference stations. Using the geometric distribution relationships
between these reference stations and the rover, researchers developed regional tropospheric
models and proposed various representative models. Here, we primarily describe the
linear interpolation model (LIM), the modified linear interpolation model (MLIM), and the
lower-order surface model (LSM).

2.2.1. LIM

In network RTK, the minimal network unit where the user is generally located has at
least three reference stations, and the linear interpolation model of the tropospheric delay
of the rover station can be expressed as

T̂ = BXab

T̂ =


T̂M,1
T̂M,2

...
T̂M,n−1

B =


∆XM,1 ∆YM,1
∆XM,2 ∆YM,2

...
...

∆XM,n−1 ∆YM,n−1

 Xab =

[
a
b

]
(4)

where M represents the master reference station; 1, 2, . . . , n − 1 represents the auxiliary
reference station; ∆X and ∆Y indicate the differences in horizontal coordinates between
the master and auxiliary reference stations; T̂ represents the calculated tropospheric delay;
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B represents the coefficient matrix; and Xab represents the interpolation model coefficient
matrix, which can be solved using least squares:

Xab =
(

BT B
)−1

BT T̂ (5)

Then, one can derive the tropospheric delay between the master station and the rover
reference station as follows:

Tij
M,u =

[
∆XM,u ∆YM,u

]
· Xab =

[
∆XM,u ∆YM,u

]
·
(

BT B
)−1

BT T̂ (6)

where Tij
M,u is the interpolated DD tropospheric delay between the master reference station

and the user station, and ∆XM,u and ∆YM,u are the horizontal coordinate differences
between the master reference station and the user station, respectively.

2.2.2. Modified LIM

Considering the spatiotemporal properties of the troposphere’s distribution, the tropo-
spheric delay is influenced by both horizontal and vertical directions. It is evident that the
above LIM interpolation model employs only horizontal coordinates to model tropospheric
errors and neglects vertical components. This method restricts tropospheric modeling to a
specific elevation plane established by the reference stations. When there is a significant
height difference between the rover and the selected reference station, there will be a certain
error in the tropospheric delay modeled using the traditional LIM interpolation approach,
which will result in a drop in the user’s positioning accuracy. Consequently, we propose to
first correct the systematic error of tropospheric delay produced by the height difference
between the reference station and the rover and then apply linear interpolation to model
the tropospheric delay.

Assuming that in a triangle network unit, M is the master reference station, and A and
B are the two auxiliary reference stations. V is the VRS station, whose coordinates are the
result of standard point positioning (SPP) of the rover.

Before utilizing LIM interpolation, the tropospheric delay on the baseline of the
master reference station and the auxiliary reference station must be corrected if the height
of the VRS station is significantly higher or lower than the elevation of the reference
station. Taking the baseline MA as an example, the calculated tropospheric delay can be
described as

Tij
MA(∆hMA) = Tij

A(hA)− Tij
M(hM) (7)

where Tij
MA(∆hMA) is the calculated DD tropospheric delay of the satellite pair ij on the

baseline MA under the height difference ∆hMA. Tij
A(hA) and Tij

M(hM) represent the SD
tropospheric delays of stations A and M located at heights hA and hM, respectively. The
correction equation for the SD tropospheric delay for stations A and M is:

Tij
A(hA) = Tij

A(hA) + TCorA (8)

Tij
M(hM) = Tij

M(hM) + TCorM (9)

where Tij
A(hA) and Tij

M(hM) are the corrected SD tropospheric delays at stations A and M.
The following equations are the specific derivations of the correction terms TCorA and

TCorM:

TCorA = Tij
A(hV)− Tij

A(hA)

= ZTDA(hV)× (MFj
A(hV)− MFi

A(hV))− ZTDA(hA)× (MFj
A(hA)− MFi

A(hA))
(10)

TCorM = Tij
M(hV)− Tij

M(hM)

= ZTDM(hV)× (MFj
M(hV)− MFi

M(hV))− ZTDM(hM)× (MFj
M(hM)− MFi

M(hM))
(11)
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where hA and hV are the heights of station A and VRS. ZTDA(hA) and ZTDA(hV) are
the tropospheric zenith delay (ZTD) at station A with heights hA and hV , which can be
determined using the prior model. MFj

A(hA), MFi
A(hA), MFj

A(hV), and MFj
A(hV) represent

the mapping functions corresponding to satellites i and j at station A with heights of hA
and hV , respectively.

Although the ZTD calculated by the prior model contains certain model errors, the
ZTD difference obtained by the prior model at the same horizontal position but at different
heights can effectively represent the systematic errors of the tropospheric delay caused by
the height difference [33]. Therefore, TCorA and TCorM derived by the prior model continue
to possess a high level of corrective accuracy.

We substituted Equations (10) and (11) into Equations (8) and (9), respectively, and
replaced Tij

A(hA) and Tij
M(hM) in Equation (7) with Tij

A(hA) and Tij
M(hM) (10). Equation (7)

thus becomes

Tij
MA(∆hVV) = Tij

A(hA)− Tij
M(hM) = Tij

A(hV)− Tij
M(hV) (12)

where Tij
MA(∆hVV) is the corrected tropospheric delay on the baseline MA. In this paper,

the UNB3m is employed in conjunction with the NMF mapping function to compute
the correction term of tropospheric system errors. When the systematic errors of the
tropospheric delay calculated by the network baseline are corrected, the LIM model is used
for interpolation, and the interpolated tropospheric delay between the VRS station and the
master reference station is not affected by the tropospheric system due to height difference
effect errors.

2.2.3. Modified LSM

The low-order surface fitting model simulates the spatial features of distance-related er-
rors and simplifies the actual error surface to model the dominant spatial-related
error trends.

The interpolation coefficient of LSM is usually obtained by least-squares adjustment.
Since the order and variables of the selected fitting function are optional, a commonly used
fitting function is listed here:

V = a · ∆X + b · ∆Y + c (13)

When there are more than three reference stations distributed near the user station,
the above formula can be written as

V = A · C (14)

where V represents the error vector associated with the spatial distance between the master
reference station m and each auxiliary reference station, such as the tropospheric delay
error. A is the coefficient matrix, which is composed of the reference station coordinate
differences, and C is the estimated model coefficient.

V =


V̂M,1
V̂M,2

...
V̂M,n−1

, A =


∆XM,1 ∆YM,1 1
∆XM,2 ∆YM,2 1

...
...

...
∆XM,n−1 ∆YM,n−1 1

, C =

 a
b
c

 (15)

The model coefficients can be obtained by least-squares adjustment as:

Ĉ =

 â
b̂
ĉ

 = (AT A)
−1

ATV (16)
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The atmospheric interpolation result at the user station is then

Vu,n =
[
∆Xu,n ∆Yu,n 1

]
·
[
â b̂ ĉ

]T
=
[
∆Xu,n ∆Yu,n 1

]
· (AT A)

−1
ATV (17)

However, in a triangle unit, often only two independent atmospheric delays can
be acquired, and only two equations can be established. However, these two equations
cannot solve the three model coefficients of LSM. Therefore, we propose using an external
tropospheric delay model to generate an additional observation as a constraint, which can
compensate for the lack of observations in a triangular unit. Assuming that A is the master
reference station, B and C are the auxiliary reference stations, and v is the VRS station, the
constrained LSM equation is as follows:

VA,B = a · ∆XA,B + b · ∆YA,B + c
VA,C = a · ∆XA,C + b · ∆YA,C + c
ṼA,v = a · ∆XA,v + b · ∆YA,v + c

(18)

where ṼA,v is the tropospheric delay between the master station and the VRS station, which
is calculated by the UNB3m model in this paper. The other parameters are the same as
described above.

3. Results
3.1. Experimental Data

The experimental data were selected from the US CORS network and the Hong Kong
Geodetic CORS network. For the experimental analysis, we chose two triangular unit
datasets. Figures 1 and 2 depict the plane distribution of stations and the baseline length
of the two datasets. The reference station nearest to each rover was chosen as the master
reference station; the stations are linked in the figure by a green dashed line. Dataset
1 stations are located in the mid-latitude region, while the stations of dataset 2 are located
in the low-latitude region. The observation data gathered on day of year (DOY) 067 in 2022
were chosen for analysis. The cut-off angle was set to 15 degrees, and the sampling interval
was 30 s. However, the two datasets correspond to different regions that are affected by the
ionosphere in different ways. The Kp index, introduced by Bartels, is updated every three
hours and provides a measure of geomagnetic activity [34]. We checked the KP index of
DOY 067 in 2022, where the maximum was 2 and the minimum was 0, which indicates that
the ionosphere was quiet on that day. The general assuming ionosphere single-layer model
(SLM) has a height of approximately 350 km; therefore, when different satellite signals pass
through the ionosphere, these ionospheric pierce points (IPP) are approximately distributed
on a plane, and linear interpolation is suited for ionospheric delay modeling. Therefore,
the DD ionospheric delay was sufficiently accurate and did not influence the modeling of
the tropospheric delay.

The station height distribution of the two datasets is shown in Figure 3. The blue bar
indicates the height of the reference stations, whereas the red bar denotes the height of the
rovers. In the US CORS dataset 1, the height difference between the rover and the reference
stations is considerable, reaching a maximum of 672 m. The height difference between the
rover and the reference stations in the Hong Kong CORS dataset 2 is relatively small but
still has a maximum of 224 m. This result shows that there is a significant height difference
between the reference station and the rover in the two datasets.

We utilized the latest up-to-date Canadian Spatial Reference System Precise Point
Positioning (CSRS-PPP) solution service provided by Natural Resources Canada to obtain
the ZTDs of both the rover and the primary reference station. Since the estimation precision
of this service can approach 0.2 cm, the tropospheric slant DD delay determined by the
projection function can be regarded as the true value [35–39]. During data processing, the
STDs of the phase and pseudorange observations were set to 0.003 and 0.3 m, respectively.
Antenna phase center corrections, and other errors were ignored. In a complicated moun-
tain environment, different components, such as mountain reflection, could lead to the
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multipath effect. Real measurement should be conducted in an environment with an open
sky. This, however, is not the primary error in our research, thus it will not be discussed in
detail here.
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3.2. Comparative Analysis of Different Interpolation Methods

We chose different satellites with different elevation angle changes from the two
datasets in order to compare their interpolated tropospheric delays during a certain time
period. We also calculated the root mean square (RMS) improvement ratio of several
satellites that apply various interpolation methods for tropospheric delay. Meanwhile,
we analyzed the variation of the tropospheric delay error with the elevation angles of all
satellites using different interpolation methods.
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3.2.1. Tropospheric Delay Interpolation Analysis for Dataset 1

Considering the receiver in dataset 1 includes only GPS observations, three continu-
ously observed GPS satellites with different elevation variations during the same period
were selected for analysis. The elevation angles and interpolated tropospheric delays were
obtained by different methods and exhibited various trends. The results were obtained
using traditional LIM, modified LIM, and modified LSM, which are denoted here as TLIM,
MLIM, and MLSM, respectively. Figure 4 shows that, in general, as the satellite elevation
angle increases, the tropospheric delay decreases, and vice versa. The three GPS satellites
can be divided into a low-elevation-angle satellite G05, medium-elevation-angle satellite
G29, and high-elevation-angle satellite G02. For all satellites, the DD tropospheric delay
obtained by the TLIM interpolation method was found to be quite different from the true
value, regardless of whether the satellite elevation angle was rising, falling, or changing
slowly. There was a clear offset between TLIM and the true value. The largest disparity
between TLIM and the real value was observed for G02, G05, and G20 when their elevation
angles were the lowest at approximately 0.05, 0.11, and 0.06 m, respectively. However,
no matter how the elevation angles of the three satellites changed, the tropospheric delay
interpolated by MLIM and MLSM was almost consistent with the true value. Moreover,
the change trend of the interpolated results was nearly identical with the true value.

Figure 5 depicts the RMS statistical results of tropospheric delays for several satellites
calculated by different methods. We mainly calculated the increased RMS ratio of MLIM
and MLSM compared with TLIM. Overall, the RMS of the MLIM and MLSM methods was
found to be much smaller than that of the TLIM, suggesting that the proposed methods
improved the accuracy of tropospheric delay interpolation. Among them, MLIM and
MLSM presented more noticeable RMS improvements than TLIM on the G29 satellite, with
90.5% and 96.6% improvements, respectively. The average RMS improvement ratio of
MLIM and MLSM was 89.1% and 87.8%, respectively, compared to TLIM.

We next analyzed the variation trend of the tropospheric interpolation accuracy of
all satellites along with the elevation angles in the selected time period. Figure 6 shows
the interpolated tropospheric delay errors under the three methods with the satellite
elevation angles. Here, the interpolation accuracy of TLIM increases as the satellite elevation
angle increases. However, the interpolation accuracy of MLIM and MLSM consistently
maintained high accuracy and seldom fluctuated under satellite elevation changes. In terms
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of mean errors, TLIM was 0.08 m, whereas MLIM and MLSM were −0.007 and −0.008 m,
respectively. The corresponding standard deviations (STD) of the three methods were 0.063,
0.006, and 0.012 m, which indicate that MLIM and MLSM were more stable.
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3.2.2. Tropospheric Delay Interpolation Analysis for Dataset 2

Since dataset 2 contains GPS and BDS satellites, we analyzed the tropospheric delays
obtained by different interpolation methods for satellites in the two systems, and the
results are shown in Figure 7. For GPS satellites, as shown in the results for G22, the DD
tropospheric delays by three interpolation methods were consistent with the true values
due to the higher elevation angle. However, the satellite elevation angles for G31 and G32
exhibited a declining trend. With the satellite elevation angle decreases, the result of TLIM
deviates greatly from the true value, while MLIM and MLSM are closer to the true value.
These results indicate an obvious error gap between the results acquired through the TLIM
and the true value, whereas the results obtained using the MLIM and MLSM methods
were extremely close to the true value and eliminated the systematic errors that occurred
under the TLIM. For example, for G31 and G32, the largest offset between TLIM and the
true values reached 0.04 and 0.03 m, respectively. However, the differences between MLIM
or MLSM and the true values remained within 0.01 m. We also compared three different
types of BDS satellites: C02 (Geostationary Orbit, GEO), C09 (Inclined Geosynchronous
Orbit, IGSO), and C12 (Middle Earth Orbit, MEO). As shown in Figure 7, since C02 is a
GEO satellite, its orbit is geostationary; thus, its elevation angle remains almost constant.
However, the tropospheric interpolation results obtained by TLIM significantly depart from
the true value, and the maximum deviation reaches 0.05 m. Conversely, the interpolated
values obtained by MLIM and MLSM appear nearly identical to the true value. The IGSO
satellite C09 had higher elevation angles, and the interpolation results of the three methods
were congruent with the true value. For the MEO satellite C12, a model error between the
TLIM and the true values was still present, whereas the MLIM and MLSM results were
very consistent with the true values.

Similarly, for all satellites in the selected period, we calculated the RMS and improve-
ment ratios of the tropospheric delays interpolated using MLIM and MLSM relative to the
TLIM. The results are shown in Figure 8. Here, the largest improvements under MLIM and
MLSM compared to TLIM among GPS satellites were observed for G22, with values of
42.1% and 82.4%, respectively. The average improvements under MLIM and MLSM were
observed to be 34.3% and 71.4%, respectively. Overall, the improvements under MLSM
were more obvious than those under MLIM. Among the BDS satellites, C02 presented the
greatest improvements under MLIM and MLSM compared to TLIM, reaching 75.7% and
98.4%, respectively. The average improvements under MLIM and MLSM for BDS satellites
were 46.2% and 77.0%, respectively. Thus, the overall improvement effect of MLSM was
significantly higher under MLIM.

The tropospheric interpolation errors with the elevation angle changes for the GPS
satellites and BDS satellites in dataset 2 using different methods are shown in Figure 9.
Here, since all GPS satellites are MEO satellites, the elevation angles of all satellites are
constantly changing over the time period, leading the interpolation error results to change
continuously. Comparing the mean and standard deviation (STD) of the errors obtained
using the three methods, TLIM and MLIM were 0.025 and 0.015 m, respectively, while the
MLSM results were −0.006 and 0.006 m. The MLIM and MLSM results were much better
than those under TLIM, with MLSM offering a greater improvement effect than TLIM.
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For BDS satellites, since the BDS contains GEO satellites, the elevation angles of these
satellites remained almost unchanged. Hence, the errors of these satellites in the figure
vary vertically. The discontinuous part of the figure was caused by the satellite not being in
the corresponding range of the elevation angle. It can also be seen that the mean error and
STD of the three methods were 0.019 and 0.017 m for TLIM, −0.007 and 0.008 m for MLIM,
and −0.005 and 0.008 m for MLSM. MLSM offered the most accurate improvement effect,
MLIM was second, and TLIM was worst.
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3.3. Comparison of the Positioning Results for Different Interpolation Methods

This section analyzes the positioning performance of the rovers from the two datasets
employing VRS. The VRS observations were derived from interpolated ionospheric delay
and tropospheric delay via TLIM, MLIM, and MLSM. We evaluated the RMS errors of
the positioning results. Table 1 to Table 2 provide the RMS values of the simulated user
station positions in datasets 1 and 2, in which the VRS observations generated by various
interpolation methods were employed for positioning experiments.
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Table 1. GPS Positioning RMS statistical results for the rover station in dataset 1.

Dataset 1 E (cm) N (cm) U (cm)

TLIM 5.4 5.9 40.9
MLIM 1.1 1.6 5.1
MLSM 1.6 1.8 5.1

Table 2. GPS and BDS Positioning RMS statistical results for the rover station in dataset 2.

System Method E (cm) N (cm) U (cm)

GPS
TLIM 1.0 1.4 14.6
MLIM 1.0 1.0 6.8
MLSM 1.3 1.3 3.9

BDS
TLIM 0.6 0.7 11.3
MLIM 0.4 0.7 4.2
MLSM 0.6 1.0 2.9

As shown in Table 1, the accuracy of MLIM and MLSM was improved in three direc-
tions when compared to TLIM. However, the improvement in the horizontal direction was
not noticeable, while the accuracy in the up-component showed remarkable improvements.
In the up-component, both MLIM and MLSM improved by 87.5% over TLIM. Table 2
demonstrate the positioning RMS statistics of GPS and BDS in dataset 2. MLIM and MLSM
clearly outperformed TLIM in the up-component when utilizing GPS or BDS. The MLIM
and MLSM is improved by 58.1% and 73.8% on average in the up-component compared to
the TLIM. Regardless of the method utilized, BDS provided slightly greater positioning
accuracy than GPS since it has a larger number of visible satellites in the Asia-Pacific
region, as depicted in Figure 10. The inclusion of more observational data is advantageous
for positioning.
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4. Discussion

When there is a height difference between the reference station and the VRS or user
station in NRTK, the classical LIM ignores the elevation difference between the measure-
ment stations, leading to non-negligible systematic biases in the interpolated troposphere
delays under this method. The user’s positioning accuracy will then decrease, especially in
the up-component. In this study, considering the influence of height differences combined
with previous studies, we proposed using the MLIM and MLSM methods for NRTK tro-
pospheric delay region modeling. Experiments with two real GNSS datasets from CORS
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stations demonstrated that MLIM and MLSM improved tropospheric modeling accuracy
by an average of 56.5% and 78.7%, respectively, compared to classical LIM. Simultaneously,
due to the significant correlation between tropospheric delay and height, the positioning
performance of MLIM and MLSM was also improved, particularly in the height direction.

In general, a traditional Delaunay triangulated network (DTN) places a user or VRS
in a triangle network surrounded by three CORS stations. In this triangle net, only two
independent atmospheric delays can be used for atmosphere modeling. Thus, classical
LIM, LCM, or DIM is commonly employed for interpolating tropospheric delays [5–12].
However, these modeling techniques are all implemented on the plane and do not account
for the error induced by the altitude factor to the tropospheric correction when there is a
considerable height difference between the reference stations. Moreover, the introduction of
extra CORS stations not only violates the principles of DTN but also increases the server’s
baseline calculation burden, which is insufficient for practical applications. Consequently,
we used an a priori tropospheric model, the UNB3m, in combination with approximated
coordinates to offer extra tropospheric delay information. Compared to conventional
solution methods, this idea has made significant improvement in MLIM and MLSM. In the
future, these two improved methods can match the convenience of implementation as well
as the real-time and rapid requirements.

It should be noted that this study analyzed the effects of DD tropospheric delay in-
terpolation in NRTK only under notable height differences between the reference station
and rover. Future studies should focus on investigating how the DD tropospheric inter-
polation accuracy is impacted by the spatial distance and height difference between the
user and CORS stations in NRTK. Furthermore, as with wide-area PPP, exponential models
that more accurately represent the actual variation of tropospheric delays also require
further study.

5. Conclusions

This paper presented two modified methods for obtaining the tropospheric corrections
in NRTK positioning over complex terrains. Using two regional GNSS networks with
obvious height disparities, the performance of the two new methods were analyzed and
compared with the conventional method. The conclusions are as follows. Applying MLIM
and MLSM will eliminate the systematic errors in the troposphere caused by the height
difference and improve the accuracy of tropospheric delay interpolation.

Compared to TLIM, MLIM and MLSM effectively increased the accuracy of tropo-
spheric interpolation for GPS satellites and the three types of satellites (GEO, IGSO, and
MEO) in the BDS system, particularly for low-elevation satellites. The DD tropospheric
delay interpolation accuracy obtained by the new MLIM and MLSM is improved by 56.5%
and 78.7% on average in the two experiments compared to the conventional method.

For the positioning results at the simulated user station, TLIM did not consider the
tropospheric errors caused by a height difference, which resulted in errors in the generated
VRS observations. These incorrect observations affected the positioning accuracy of the
rover and introduced errors to the up-component accuracy. After utilizing MLIM and
MLSM, the positioning accuracy of the two data sets in three directions was improved.
Especially in the up-component, MLIM and MLSM have an average improvement of 72.8%
and 80.7% over TLIM, respectively.

In summary, the proposed two new methods significantly improve the accuracy of
tropospheric delay interpolation and positioning performance in the NRTK positioning.

Further research should be carried out to investigate a more effective and compre-
hensive tropospheric delay modeling method for a larger network of reference stations, in
order to contribute to regional atmospheric monitoring.
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