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Abstract: The aim of this paper is to assess the performance of satellite-based correction service,
Trimble PP-RTX, and Virtual Reference Stations (VRS) for bathymetry determination, and check how
far these techniques meet the minimum standards of the International Hydrography Organization
(IHO) for hydrographic surveys. To this end, a three-hour duration session was conducted at Sharm
Obhur using KAU-Hydrography 1 vessel. This session includes Global Navigation Satellite System
(GNSS) data at the base station using Trimble SPS855 GNSS receiver, multibeam records using
Kongsberg EM 712 multibeam echo sounder, sound velocity profile using Valeport’s sound velocity
profiler, Applanix POS MV measurements, and real-time PP-RTX corrections. Moreover, the VRS
GNSS data was generated using Kingdom of Saudi Arabia Continuous Operation Reference Station
network (KSA-CORS). It is shown that the Total Horizontal Uncertainty (THU) and Total Vertical
Uncertainty (TVU) of the PP-RTX technique are 5.50 cm and 5.90 cm, respectively, which meets the
IHO minimum standards for all survey orders at 95% confidence level. The THU and TVU of the
VRS technique, on the other hand, are 5.75 cm and 7.05 cm at 95% confidence level, respectively.
These values meet the IHO standards for all survey orders as well. Statistical analysis of the seabed
surface differences showed a −0.07 cm average difference between the PP-RTX seabed surface and
the reference seabed surface with a standard deviation of 3.60 cm. However, the average difference
between the VRS-based seabed surface and the reference seabed surface is −0.03 cm and a standard
deviation of 3.61 cm.
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1. Introduction

Safe marine navigation requires an accurate bathymetry determination. Typically, differential
carrier-phased-based Global Navigation Satellite System (GNSS) techniques are used in high-accuracy
surveying applications. These techniques inherit their high accuracy from the fact that both the GNSS
base and rover receivers are close and share the same errors and biases [1]. The shorter the baseline is,
the more there is similarity of errors and biases at both stations. As such, the effects of orbital errors,
ionospheric, and tropospheric errors are significantly reduced by forming differenced observables [2].
However, as the baseline length increases, the errors at the reference and the rover receivers become
less correlated and they would not cancel out sufficiently through differencing [3]. This leads to
unsuccessful fixing for the ambiguity parameters, which in turn deteriorates the positioning accuracy [4].
Therefore, it is very important to have short baselines, by using reference base station close to the
rover. To overcome the baseline length limitation, both global commercial satellite correction services,
e.g., Trimble CenterPoint RTX (Real Time eXtended) and Virtual reference station (VRS) represent
good alternatives.
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1.1. Trimble PP-RTX Technique

Trimble CenterPoint RTX technology utilizes real time GNSS data from globally distributed
network of tracking stations to generate Trimble RTX corrections. Such corrections include precise
satellite orbits, satellite clock corrections, and observation biases for any location on the earth at a rate
of 1 Hz [5]. The corrections are then delivered to subscribers via a set of geostationary satellites or
by the internet [6,7]. The mathematical models for corrections generation are out of the scope of this
paper and may be found in detailed elsewhere [8]. According to a previous study [9], the horizontal
accuracy of Trimble RTX service ranges from 2.00–50.00 cm root mean square (RMS), depending on the
subscription level, and the vertical accuracy is 5.00 cm. However, an initialization time of 1–20 min is
required depending on the subscription level.

PP-RTX is a high accuracy post processed RTX-aided inertial processing method that utilizes the
precise corrections derived from Trimble RTX. This technique has been developed and implemented
in Position and Orientation System Post-Processing Package Mobile Mapping Suite (POSPac MMS)
to enable cm level positioning for mobile mapping without the need for a reference station. Figure 1
shows the PP-RTX implementation in POSPac MMS [10].
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Figure 1. PP-RTX implementation in POSPac MMS [10].

The PP-RTX is available 1 h after data collection and horizontal and vertical accuracies are less
than 3.00 cm and 6.00 cm, respectively. To reach full accuracy, mission duration of about 30 min is
required for standard PP-RTX [10].

1.2. VRS Principles

Virtual reference station (VRS) is one of main important solutions for high precision real-time
kinematic (RTK) applications [11]. The idea is to utilize real observations from an existing network
of multiple reference stations to generate observations at a specific location of a nonexisting station,
i.e., a virtual station [2]. In this case, VRS data will be used as if they were collected from a normal local
reference station [12]. Hence, neither special data format nor software changes in the rover receiver are
required to use the VRS approach [13].

In general, the data from at least three reference stations surrounding the VRS is used to calculate
the measurements at the VRS. Figure 2 shows an example of three reference stations (R1, R2, and R3)
with VRS denoted as V and rover receiver indicated as r. Coordinates of the reference stations are
known and fixed. However, the position of the VRS is assumed as the approximate position of the
rover receiver to assure that short baselines are formed.
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The general form of the mathematical models of the carrier-phase observables can be written as
follows [14]:

Φ(t) = ρ (t) + cdts
r(t) + λNs

r + ∆s
r(t) (1)

where, Φ(t) is the carrier-phase measurements at specific time t, scaled to distance (m); dts
r = [dtr − dts]

represents the difference between receiver clock error dtr and satellite clock error dts;λ is the carrier-phase
wavelength; Ns

r is the carrier-phase ambiguity integer number; c is the speed of light in vacuum (m/sec);
ρ is the true geometric distance between satellite antenna phase center and receiver antenna phase

center at reception time (m); ∆s
r = ∆Trop + ∆Iono + ∆Orbit is the summation of the slant tropospheric

delay ∆Trop, ionospheric delay ∆Iono and orbital error ∆Orbit.
Since the reference stations coordinates are known, baselines of the reference network can be

solved and the carrier-phase ambiguities can be determined. The results of reference network
processing include the residual error for all reference stations and at each processed epoch
∆s

r(R1, t), ∆s
r(R2, t) and ∆s

r(R3, t). Denoting R for reference station and V for virtual reference station,
Equation (1) can be written for both reference and virtual reference stations, as follows:

Φ(R, t) = ρ (R, t) + cdts
r(R, t) + λNs

r(R) + ∆s
r(R, t) (2)

Φ(V, t) = ρ (V, t) + cdts
r(V, t) + λNs

r(V) + ∆s
r(V, t) (3)

Differencing Equations (2) and (3) leads to:

Φ(V, t) −Φ(R, t) = ρ (V, t) − ρ (R, t) + c[dts
r(V, t) − dts

r(R, t)] + λ[Ns
r(V) −Ns

r(R)] + ∆s
r(V, t) − ∆s

r(R, t) (4)

The observations at reference stations Φ(R, t) are measured, i.e., known. The true geometric
range between satellite antenna phase center and both reference and virtual antenna phase center(
ρ (R, t) and ρ (V, t)

)
are known, because the coordinates of both stations are known. The receiver

and satellite clock difference (dts
r(V, t) and dts

r(R, t)) can be eliminated by differencing. The ambiguity
terms (Ns

r(V) and Ns
r(R)) and errors at reference stations ∆s

r(R, t) are resolved by network processing
solution. Thus, Equation (4) can be written as:

Φ(V, t) = Φ(R, t) + ρ (V, t) − ρ (R, t) + ∆s
r(V, t) (5)

From Equation (5), we can notice that the only unknown to estimate the observations at VRS is
the error term ∆s

r(V, t). Many interpolation techniques can be used to compute the corrections at the
VRS location from the errors estimated at the reference stations. Linear combination model (LCM) was
proposed previously [15] to model the orbital error ∆Orbit, ionospheric delay ∆Iono, slant tropospheric
delay ∆Trop, and to significantly reduce the effect of multipath and observation noise. The results
showed a 100% success rate of carrier phase ambiguity resolution for every epoch. The distance-based
linear interpolation method (DIM) was introduced by researchers [16] to estimate the ionospheric
correction at a rover station, based on its distances from a network of reference stations. Further
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improvement to DIM was introduced by other researchers [17], taking into account the spatial correlation
of regional differential ionosphere delays using differential distance and elevation parameters, defined
on a single-layer ionosphere shell at an altitude of 350 km [18]. Linear interpolation method (LIM)
was developed by other investigators [19,20] to produce a regional ionospheric correction model
epoch-by-epoch and satellite-by-satellite, using dual-frequency phase observations from at least three
GPS reference stations. In addition to ionospheric error, researchers [21] extended LIM method to
estimate distance-dependent tropospheric and orbital errors at rover station using network of reference
stations. To consider the spatial correlation of the combined corrections across network of reference
stations, researchers [22] introduced low-order surface model (LSM). The coefficients of LSM can be
estimated using least squares adjustment of the data collected at the reference stations. In addition
to all the previously mentioned methods, least squares collocation method (LCM) can be used to
interpolate distance-dependent errors at rover stations, using such errors at reference stations [23].
The performance of all models discussed in this section is similar [18].

KSA Reference Network

Kingdom of Saudi Arabia continuous operation reference station network (KSA-CORS) includes
more than 200 GNSS stations. All stations are occupied with high end geodetic GNSS receivers.
High rate GNSS data can be obtained from the web site of the general commission for survey (GCS)
https://ksacors.gcs.gov.sa. KSA-CORS is used to generate 1 Hz GNSS data at a virtual location in the
study area, which is denoted as VBase station (the VRS is chosen at the same location as the physical
base station to maintain the same satellite geometry). Figure 3 shows the KSA-CORS network and the
study area location is shown at the red dot.
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The main objective of this paper is to evaluate the performance of satellite-based correction service,
e.g., Trimble PP-RTX, and VRS techniques for bathymetry determination, and assess how far these
techniques meet the minimum IHO standards for hydrographic surveys.

https://ksacors.gcs.gov.sa
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2. Field Test

KAU-Hydrography 1 vessel, Figure 4, was used to carry out a hydrographic surveying session
of 3 h duration at Sharm Obhur where the Faculty of Maritime Studies (FMS) is located. The base
station was setup on the rooftop of FMS main building using Trimble SPS855 GNSS receiver. Figure 5
shows the surveying lines and the base station location during the field test. The distance between
the base station and the vessel was within 2.0 km. Kongsberg EM 712 multibeam echo sounder was
used for bathymetry data collection. Valeport’s sound velocity profiler (SVP) was used to measure und
velocity, temperature, and pressure through water layers. To obtain a robust and accurate position
and orientation solution, Applanix POS MV was used to blend GNSS data with angular rate and
acceleration data from an IMU and heading from GNSS Azimuth Measurement System (GAMS).
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3. Data Processing and Results

Applanix POSPac MMS software was used to process GNSS data from the real base station and
POS MV data to generate the smoothed best estimate of trajectory (SBET) file. The SBET generated
using the real base station is used as a reference in this study. A second SBET file was generated using
the PP-RTX corrections, while a third SBET was generated using the VBase GNSS data. Both PP-RTX
and VBase trajectories were compared with the reference trajectory. Figure 6 shows the easting,
northing, and up difference between Base and PP-RTX trajectories. Additionally, Figure 7 shows the
differences between the Base and VBase trajectories.
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To evaluate whether the PP-RTX and VBase solutions satisfy the IHO’s hydrographic surveys
minimum standards, both the total horizontal uncertainty (THU) and the total vertical uncertainty
(TVU) of both solutions were computed at 95% confidence level, as follows [24]:

THU2D
95% = 2.44

√√√√√√√√√√√√√√√√√√∑n
i=1

N̂Base − N̂ PP−RTX
VBase


2

i

+

ÊBase − Ê PP−RTX
VBase


2

i
n

(6)

TVU1D
95% = 1.96

√√√√√√√√√√√√√√√√√√∑n
i=1

ÛBase − Û PP−RTX
VBase


2

i
n

(7)

where THU2D
95% represents the total 2D horizontal uncertainty of northing and easting position

error at 95% confidence level; N̂Base, ÊBase are the northing and easting coordinates of the real
Base-based trajectory(the reference solution), respectively; N̂PP−RTX, ÊPP−RTX are the northing and
easting coordinates of the PP-RTX-based trajectory; N̂VBase, ÊVBase are the northing and easting
coordinates of the VBase-based trajectory; n is the total number of epochs; TVU1D

95% represents the total
1D vertical uncertainty of the Up component at 95% confidence level.

Typically, the expected accuracy (RMS) using single base station is 0.8 mm + 1 PPM (part per
million) for the horizontal component and 15 mm + 1 PPM for the vertical component [10]. That means
that for a 2.0-km baseline, at one sigma level, 1.0 cm and 1.7 cm RMS is expected for horizonal and
vertical components, respectively. Such accuracy must be considered and added to Equations (6) and
(7) to compute THU and TVU at 95% confidence level. Table 1 summarizes the THU and TVU values
at 95% confidence level estimated for both the PP-RTX and the VBase solutions.

Table 1. Total horizontal uncertainty (THU) and total vertical uncertainty (TVU) of the PP-RTX and
VBase solutions estimated at 95% confidence level.

PP-RTX VBase

THU (cm) 5.50 5.75

TVU (cm) 5.90 7.05

Table 1 shows that both PP-RTX and VBase systems deliver comparable accuracies. Tables 2 and 3,
on the other hand, show the IHO minimum standards for hydrographic surveys. The values of THU
and TVU in these tables are estimated as follows [25]:

THU = const. + % of depth (8)

TVU = ±

√
a2 + (b× d)2 (9)

where a represents that portion of the uncertainty that does not vary with depth; b is a coefficient which
represents that portion of the uncertainty that varies with depth; and d is the depth. The depth values
used in Tables 2 and 3 are 40 m for special order survey and 100 m for other survey orders.
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Table 2. International Hydrography Organization (IHO) minimum standards for hydrographic surveys
(THU) [25].

Survey Order Special 1a 1b 2

Constant [m] 2 5 5 20

Varible
[% of depth] 0 5 5 10

THU (m) 2 10 10 30

Table 3. IHO Minimum standards for hydrographic surveys (TVU) [25].

Survey Order Special 1a 1b 2

Constant (a) [m] 0.25 0.50 0.50 1.00

Varible (b)
[% of depth] 0.75 1.30 1.30 2.30

TVU (m) 0.39 1.39 1.39 2.51

Comparing THU and TVU of both techniques from Table 1 with the minimum IHO standards in
Tables 2 and 3, it is clear that both PP-RTX and VBase techniques meet the IHO minimum standards
for all survey orders at 95% confidence level. To further investigate the difference between the surface
generated using the PP-RTX technique and VBase technique, Caris HIPS and SIPS 11.00 was used to
process the multibeam data and generate three gridded surfaces at a resolution of 0.50 m. Figure 8
shows the bathymetry of the survey area estimated using the first SBET file (the reference surface).J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 9 of 13 
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The main difference between the three surfaces is the source of the SBET file estimated earlier.
Thus, at the end, we have the reference surface, the PP-RTX-based surface, and the VBase-based surface.
Both PP-RTX surface and VBase surface are then compared with the reference surface using Caris
HIPS and SIPS. Figure 9 shows the differences between the PP-RTX surface and the reference surface.
Figure 10, on the other hand, shows the difference between the VBase surface and the reference surface.
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Figure 10. Difference between the VBase-based surface and the reference surface.

Figures 9 and 10 show that the main differences between the PP-RTX-based surface, the VBase
surface, and the reference surface are at the channel edges beams. This is because of the slope is
higher at channel edges and any horizontal shift in position will cause a significant change in depth.
However, these differences are not significant and meet the IHO special order hydrographic survey
standards. Table 4 summarizes the statistical analysis of the PP-RTX and VBase surface differences
with the reference surface. Moreover, Figure 11 illustrates the statistical results of the PP-RTX and
VBase surface differences.
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Table 4. Statistical analysis of surface differences.

PP-RTX VBase

Minimum (m) −3.82 −4.76

Maximum (m) 4.56 4.57

Mean (cm) −0.07 −0.03

Standard Deviation (cm) 3.60 3.61

Total Count 1,375,305 1,375,213
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Figure 11. Histogram of the PP-RTX and VBase surface difference.

Table 4, illustrating a statistical analysis of the seabed surface differences, shows a −0.07 cm
average difference between the PP-RTX seabed surface and the reference seabed surface with a standard
deviation of 3.60 cm. However, the average difference between the VBase seabed surface and the
reference seabed surface is −0.03 cm and a standard deviation of 3.61 cm. It is clear from Table 4 and
Figure 11 that both PP-RTX and VBase techniques could provide very accurate comparable results
without the need for an existing real base station in the survey area.

4. Conclusions

This study aimed to evaluate the performance of a satellite-based correction service, e.g., Trimble
PP-RTX, and a virtual GNSS reference station for bathymetry determination and assess how far these
techniques meet the minimum IHO standards for hydrographic surveys. A three-hour duration session
was conducted at Sharm Obhur using KAU-Hydrography 1 vessel. This session included GNSS data
at a base station using Trimble SPS855 GNSS receiver, multibeam records using Kongsberg EM 712
multibeam echo sounder, sound velocity profile using Valeport’s sound velocity profiler, Applanix
POS MV measurements, and real-time PP-RTX corrections.

Our results showed that THU and TVU of the PP-RTX technique are 5.50 cm and 5.90 cm at
95% confidence level, respectively. The THU and TVU of the VBase technique, on the other hand,
are 5.75 cm and 7.05 cm at 95% confidence level, respectively. These results mean that both the PP-RTX
and VBase techniques meet the IHO minimum standards of all hydrographic survey orders. Statistical
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analysis of the seabed surface differences showed a −0.07 cm average difference between the PP-RTX
seabed surface and the reference seabed surface with a standard deviation of 3.6 cm. However,
the average difference between the VBase seabed surface and the reference seabed surface is −0.03 cm
and a standard deviation of 3.61 cm. From this study, we can conclude that both PP-RTX and VBase
techniques meet the IHO standards for different hydrographic survey orders without the need for
an existing real base station in the survey area.
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