Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,032)

Search Parameters:
Keywords = virtual reality (VR) technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 655 KiB  
Review
Seeing Opportunity in Virtual Reality: A Rapid Review of the Use of VR as a Tool in Vision Care
by Kiana Masoudi, Madeline Wong, Danielle Tchao, Ani Orchanian-Cheff, Michael Reber and Lora Appel
Technologies 2025, 13(8), 342; https://doi.org/10.3390/technologies13080342 - 6 Aug 2025
Abstract
(1) Virtual reality (VR) technologies have shown significant potential for diagnosing and treating vision-related impairments. This rapid review evaluates and characterizes the existing literature on VR technologies for diagnosing and treating vision-based diseases. (2) Methods: A systematic search was conducted across Ovid MEDLINE, [...] Read more.
(1) Virtual reality (VR) technologies have shown significant potential for diagnosing and treating vision-related impairments. This rapid review evaluates and characterizes the existing literature on VR technologies for diagnosing and treating vision-based diseases. (2) Methods: A systematic search was conducted across Ovid MEDLINE, Ovid Embase, the Cochrane Database of Systematic Reviews (Ovid), and the Cochrane Central Register of Controlled Trials (Ovid). Abstracts were screened using Rayyan QCRI, followed by full-text screening and data extraction. Eligible studies were published in peer-reviewed journals, written in English, focused on human participants, used immersive and portable VR devices as the primary intervention, and reported on the clinical effectiveness of VR for therapeutic, diagnostic, or screening purposes for vision or auditory–visual impairments. Various study characteristics, including design and participant details, were extracted, and the MMAT assessment tool was used to evaluate study quality. (3) Results: Seventy-six studies met the inclusion criteria. Among these, sixty-four (84.2%) were non-randomized studies exploring VR’s effectiveness, while twenty-two (15.8%) were randomized-controlled trials. Of the included studies, 38.2% focused on diagnosing, 21.0% on screening, and 38.2% on treating vision impairments. Glaucoma and amblyopia were the most commonly studied visual impairments. (4) Conclusions: The use of standalone, remotely controlled VR headsets for screening and diagnosing visual diseases represents a promising advancement in ophthalmology. With ongoing technological developments, VR has the potential to revolutionize eye care by improving accessibility, efficiency, and personalization. Continued research and innovation in VR applications for vision care are expected to further enhance patient outcomes. Full article
(This article belongs to the Section Assistive Technologies)
Show Figures

Figure 1

23 pages, 3890 KiB  
Article
Evaluating Nursing and Midwifery Students’ Self-Assessment of Clinical Skills Following a Flipped Classroom Intervention with Innovative Digital Technologies in Bulgaria
by Galya Georgieva-Tsaneva, Ivanichka Serbezova and Milka Serbezova-Velikova
Nurs. Rep. 2025, 15(8), 285; https://doi.org/10.3390/nursrep15080285 - 6 Aug 2025
Abstract
Background/Objectives: The transformation of nursing and midwifery education through digital technologies has gained momentum worldwide, with algorithm-based video instruction and virtual reality (VR) emerging as promising tools for improving clinical learning. This quasi-experimental study explores the impact of an enhanced flipped classroom [...] Read more.
Background/Objectives: The transformation of nursing and midwifery education through digital technologies has gained momentum worldwide, with algorithm-based video instruction and virtual reality (VR) emerging as promising tools for improving clinical learning. This quasi-experimental study explores the impact of an enhanced flipped classroom model on Bulgarian nursing and midwifery students’ self-perceived competence. Methods: A total of 228 participants were divided into a control group receiving traditional instruction (lectures and simulations with manikins) and an experimental group engaged in a digitally enhanced preparatory phase. The latter included pre-class video algorithms, VR, and clinical problem-solving tasks for learning and improving nursing skills. A 25-item self-report questionnaire was administered before and after the intervention to measure perceived competence in injection techniques, hygiene care, midwifery skills, and digital readiness. Results: Statistical analysis using Welch’s t-test revealed significant improvements in the experimental group in all domains (p < 0.001). Qualitative data from focus group interviews further confirmed increased student engagement, motivation, and receptiveness to digital learning tools. Conclusions: The findings highlight the pedagogical value of integrating structured video learning, VR components, and case-based learning within flipped classrooms. The study advocates for the wider adoption of blended learning models to foster clinical confidence and digital competence in healthcare education. The results of the study may be useful for curriculum developers aiming to improve clinical readiness through technology-enhanced learning. Full article
Show Figures

Figure 1

29 pages, 7038 KiB  
Article
Developing a Practice-Based Guide to Terrestrial Laser Scanning (TLS) for Heritage Documentation
by Junshan Liu, Danielle Willkens and Russell Gentry
Heritage 2025, 8(8), 313; https://doi.org/10.3390/heritage8080313 - 6 Aug 2025
Abstract
This research advances the integration of terrestrial laser scanning (TLS) in heritage documentation, targeting the development of holistic and practical guidance for practitioners to adopt the technology effectively. Acknowledging the pivotal role of TLS in capturing detailed and accurate representations of cultural heritage, [...] Read more.
This research advances the integration of terrestrial laser scanning (TLS) in heritage documentation, targeting the development of holistic and practical guidance for practitioners to adopt the technology effectively. Acknowledging the pivotal role of TLS in capturing detailed and accurate representations of cultural heritage, the study emerges against a backdrop of technological progression and the evolving needs of heritage conservation. Through a comprehensive literature review, critical case studies of heritage sites in the U.S., expert interviews, and the development of a TLS for Heritage Documentation Best Practice Guide (the guide), the paper addresses the existing gaps in streamlined practices in the domain of TLS’s applications in heritage documentation. While recognizing and building upon foundational efforts such as international guidelines developed over the past decades, this study contributes a practice-oriented perspective grounded in field experience and case-based analysis. The developed guide seeks to equip practitioners with structured methods and practical tools to optimize the use of TLS, ultimately enhancing the quality and accessibility of heritage documentation. It also sets a foundation for integrating TLS datasets with other technologies, such as Building Information Modeling (BIM), virtual reality (VR), and augmented reality (AR) for heritage preservation, tourism, education, and interpretation, ultimately enhancing access to and engagement with cultural heritage sites. The paper also critically situates this guidance within the evolving theoretical discourse on digital heritage practices, highlighting its alignment with and divergence from existing methodologies. Full article
Show Figures

Figure 1

15 pages, 1726 KiB  
Systematic Review
Application of Augmented Reality in Reverse Total Shoulder Arthroplasty: A Systematic Review
by Jan Orlewski, Bettina Hochreiter, Karl Wieser and Philipp Kriechling
J. Clin. Med. 2025, 14(15), 5533; https://doi.org/10.3390/jcm14155533 - 6 Aug 2025
Abstract
Background: Reverse total shoulder arthroplasty (RTSA) is increasingly used for managing cuff tear arthropathy, osteoarthritis, complex fractures, and revision procedures. As the demand for surgical precision and reproducibility grows, immersive technologies such as virtual reality (VR), augmented reality (AR), and metaverse-based platforms are [...] Read more.
Background: Reverse total shoulder arthroplasty (RTSA) is increasingly used for managing cuff tear arthropathy, osteoarthritis, complex fractures, and revision procedures. As the demand for surgical precision and reproducibility grows, immersive technologies such as virtual reality (VR), augmented reality (AR), and metaverse-based platforms are being explored for surgical training, intraoperative guidance, and rehabilitation. While early data suggest potential benefits, a focused synthesis specific to RTSA is lacking. Methods: This systematic review was conducted in accordance with PRISMA 2020 guidelines. A comprehensive search of PubMed, Scopus, and Cochrane Library databases was performed through 30 May 2025. Eligible studies included those evaluating immersive technologies in the context of RTSA for skill acquisition or intraoperative guidance. Only peer-reviewed articles published in English were included. Data were synthesized narratively due to heterogeneity in study design and outcome metrics. Results: Out of 628 records screened, 21 studies met the inclusion criteria. Five studies evaluated immersive VR for surgical training: four randomized controlled trials and one retrospective case series. VR training improved procedural efficiency and showed non-inferiority to cadaveric training. Sixteen studies investigated intraoperative navigation or AR guidance. Clinical and cadaveric studies consistently reported improved accuracy in glenoid baseplate positioning with reduced angular and linear deviations in postoperative controls as compared to preoperative planning. Conclusions: Immersive technologies show promise in enhancing training, intraoperative accuracy, and procedural consistency in RTSA. VR and AR platforms may support standardized surgical education and precision-based practice, but their broad clinical impact remains limited by small sample sizes, heterogeneous methodologies, and limited long-term outcomes. Further multicenter trials with standardized endpoints and cost-effectiveness analyses are warranted. Postoperative rehabilitation using immersive technologies in RTSA remains underexplored and presents an opportunity for future research. Full article
Show Figures

Figure 1

13 pages, 638 KiB  
Article
Implementation and Evaluation of a VR/AR-Based Assistive Technology for Dyslexic Learners: An Exploratory Case Study
by María Lozano-Álvarez, Sonia Rodríguez-Cano, Vanesa Delgado-Benito and Miguel Ángel García-Delgado
Societies 2025, 15(8), 215; https://doi.org/10.3390/soc15080215 - 4 Aug 2025
Abstract
This exploratory case study investigates the implementation and educational impact of a Virtual Reality (VR)- and Augmented Reality (AR)-based assistive technology developed to support learners with dyslexia. The intervention, delivered via mobile devices and VR headsets, incorporated gamified and interactive content aimed at [...] Read more.
This exploratory case study investigates the implementation and educational impact of a Virtual Reality (VR)- and Augmented Reality (AR)-based assistive technology developed to support learners with dyslexia. The intervention, delivered via mobile devices and VR headsets, incorporated gamified and interactive content aimed at enhancing cognitive skills such as attention, inhibition, narrative memory, and phonological awareness. Two in-depth case studies were conducted with primary school students formally diagnosed with dyslexia. Cognitive performance was assessed using the NEPSY-II neuropsychological battery, and user experience was evaluated using the Technology Acceptance Model (TAM). The results showed positive trends in executive function and language-related skills, as well as high motivation and satisfaction. While these findings suggest promising benefits of immersive educational technologies in dyslexia intervention, conclusions regarding efficacy cannot be drawn due to the limited sample size. Further research with larger and controlled designs is needed to validate these initial observations. Full article
Show Figures

Figure 1

24 pages, 3559 KiB  
Article
Advancing Online Road Safety Education: A Gamified Approach for Secondary School Students in Belgium
by Imran Nawaz, Ariane Cuenen, Geert Wets, Roeland Paul and Davy Janssens
Appl. Sci. 2025, 15(15), 8557; https://doi.org/10.3390/app15158557 (registering DOI) - 1 Aug 2025
Viewed by 194
Abstract
Road traffic accidents are a leading cause of injury and death among adolescents, making road safety education crucial. This study assesses the performance of and users’ opinions on the Route 2 School (R2S) traffic safety education program, designed for secondary school students (13–17 [...] Read more.
Road traffic accidents are a leading cause of injury and death among adolescents, making road safety education crucial. This study assesses the performance of and users’ opinions on the Route 2 School (R2S) traffic safety education program, designed for secondary school students (13–17 years) in Belgium. The program incorporates gamified e-learning modules containing, among others, podcasts, interactive 360° visuals, and virtual reality (VR), to enhance traffic knowledge, situation awareness, risk detection, and risk management. This study was conducted across several cities and municipalities within Belgium. More than 600 students from school years 3 to 6 completed the platform and of these more than 200 students filled in a comprehensive questionnaire providing detailed feedback on platform usability, preferences, and behavioral risk assessments. The results revealed shortcomings in traffic knowledge and skills, particularly among older students. Gender-based analysis indicated no significant performance differences overall, though females performed better in risk management and males in risk detection. Furthermore, students from cities outperformed those from municipalities. Feedback on the R2S platform indicated high usability and engagement, with VR-based simulations receiving the most positive reception. In addition, it was highlighted that secondary school students are high-risk groups for distraction and red-light violations as cyclists and pedestrians. This study demonstrates the importance of gamified, technology-enhanced road safety education while underscoring the need for module-specific improvements and regional customization. The findings support the broader application of e-learning methodologies for sustainable, behavior-oriented traffic safety education targeting adolescents. Full article
(This article belongs to the Special Issue Technology Enhanced and Mobile Learning: Innovations and Applications)
Show Figures

Figure 1

20 pages, 980 KiB  
Article
Dynamic Decoding of VR Immersive Experience in User’s Technology-Privacy Game
by Shugang Li, Zulei Qin, Meitong Liu, Ziyi Li, Jiayi Zhang and Yanfang Wei
Systems 2025, 13(8), 638; https://doi.org/10.3390/systems13080638 - 1 Aug 2025
Viewed by 204
Abstract
The formation mechanism of Virtual Reality (VR) Immersive Experience (VRIE) is notably complex; this study aimed to dynamically decode its underlying drivers by innovatively integrating Flow Theory and Privacy Calculus Theory, focusing on Perceptual-Interactive Fidelity (PIF), Consumer Willingness to Immerse in Technology (CWTI), [...] Read more.
The formation mechanism of Virtual Reality (VR) Immersive Experience (VRIE) is notably complex; this study aimed to dynamically decode its underlying drivers by innovatively integrating Flow Theory and Privacy Calculus Theory, focusing on Perceptual-Interactive Fidelity (PIF), Consumer Willingness to Immerse in Technology (CWTI), and the applicability of Loss Aversion Theory. To achieve this, we analyzed approximately 30,000 user reviews from Amazon using Latent Semantic Analysis (LSA) and regression analysis. The findings reveal that user attention’s impact on VRIE is non-linear, suggesting an optimal threshold, and confirm PIF as a central influencing mechanism; furthermore, CWTI significantly moderates users’ privacy calculus, thereby affecting VRIE, while Loss Aversion Theory showed limited explanatory power in the VR context. These results provide a deeper understanding of VR user behavior, offering significant theoretical guidance and practical implications for future VR system design, particularly in strategically balancing user cognition, PIF, privacy concerns, and individual willingness. Full article
Show Figures

Figure 1

24 pages, 1008 KiB  
Article
Artificial Intelligence and Immersive Technologies: Virtual Assistants in AR/VR for Special Needs Learners
by Azza Mohamed, Rouhi Faisal, Ahmed Al-Gindy and Khaled Shaalan
Computers 2025, 14(8), 306; https://doi.org/10.3390/computers14080306 - 28 Jul 2025
Viewed by 324
Abstract
This article investigates the revolutionary potential of AI-powered virtual assistants in augmented reality (AR) and virtual reality (VR) environments, concentrating primarily on their impact on special needs schooling. We investigate the complex characteristics of these virtual assistants, the influential elements affecting their development [...] Read more.
This article investigates the revolutionary potential of AI-powered virtual assistants in augmented reality (AR) and virtual reality (VR) environments, concentrating primarily on their impact on special needs schooling. We investigate the complex characteristics of these virtual assistants, the influential elements affecting their development and implementation, and the joint efforts of educational institutions and technology developers, using a rigorous quantitative approach. Our research also looks at strategic initiatives aimed at effectively integrating AI into educational practices, addressing critical issues including infrastructure, teacher preparedness, equitable access, and ethical considerations. Our findings highlight the promise of AI technology, emphasizing the ability of AI-powered virtual assistants to provide individualized, immersive learning experiences adapted to the different needs of students with special needs. Furthermore, we find strong relationships between these virtual assistants’ features and deployment tactics and their subsequent impact on educational achievements. This study contributes to the increasing conversation on harnessing cutting-edge technology to improve educational results for all learners by synthesizing current research and employing a strong methodological framework. Our analysis not only highlights the promise of AI in increasing student engagement and comprehension but also emphasizes the importance of tackling ethical and infrastructure concerns to enable responsible and fair adoption. Full article
Show Figures

Figure 1

23 pages, 1118 KiB  
Systematic Review
Management of Preoperative Anxiety via Virtual Reality Technology: A Systematic Review
by Elina Christiana Alimonaki, Anastasia Bothou, Athina Diamanti, Anna Deltsidou, Styliani Paliatsiou, Grigorios Karampas and Giannoula Kyrkou
Nurs. Rep. 2025, 15(8), 268; https://doi.org/10.3390/nursrep15080268 - 25 Jul 2025
Viewed by 231
Abstract
Background: Perioperative care is an integral part of the procedure of a surgical operation, with strictly defined rules. The need to upgrade and improve some individual long-term processes aims at optimal patient care and the provision of high-level health services. Therefore, preoperative care [...] Read more.
Background: Perioperative care is an integral part of the procedure of a surgical operation, with strictly defined rules. The need to upgrade and improve some individual long-term processes aims at optimal patient care and the provision of high-level health services. Therefore, preoperative care is drawn up with new data resulting from the evolution of technology to upgrade the procedures that need improvement. According to the international literature, a factor considered to be of major importance is high preoperative anxiety and its effects on the patient’s postoperative course. High preoperative anxiety is postoperatively responsible for prolonged hospital stays, increased postoperative pain, decreased effect of anesthetic agents, increased amounts of analgesics, delayed healing of surgical wounds, and increased risk of infections. The use of Virtual Reality technology appears as a new method of managing preoperative anxiety. Objective: This study investigates the effect and effectiveness of Virtual Reality (VR) technology in managing preoperative anxiety in adult patients. Methods: A literature review was performed on 193 articles, published between 2017 and 2024, sourced from the scientific databases PubMed and Cochrane, as well as the trial registry ClinicalTrials, with a screening and exclusion process to meet the criterion of investigating VR technology’s effectiveness in managing preoperative anxiety in adult patients. This systematic review was conducted under the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines. Results: Out of the 193 articles, 29 were selected. All articles examined the efficacy of VR in adult patients (≥18) undergoing various types of surgery. The studies represent a total of 2.354 participants from 15 countries. There are two types of VR applications: distraction therapy and patient education. From the studies, 14 (48%) used the distraction VR intervention, 14 (48%) used the training VR intervention, and 1 (4%) used both VR interventions, using a range of validated anxiety scales such as the STAI, VAS-A, APAIS, and HADS. Among the 29 studies reviewed, 25 (86%) demonstrated statistically significant reductions in preoperative anxiety levels following the implementation of VR interventions. VR technology appears to manage preoperative anxiety effectively. It is a non-invasive and non-pharmacological intervention with minimal side effects. Conclusions: Based on the review, the management of preoperative anxiety with VR technology shows good levels of effectiveness. Further investigation of the efficacy by more studies and randomized controlled trials, with a larger patient population, is recommended to establish and universally apply VR technology in the preoperative care process as an effective method of managing preoperative anxiety. Full article
Show Figures

Figure 1

51 pages, 5654 KiB  
Review
Exploring the Role of Digital Twin and Industrial Metaverse Technologies in Enhancing Occupational Health and Safety in Manufacturing
by Arslan Zahid, Aniello Ferraro, Antonella Petrillo and Fabio De Felice
Appl. Sci. 2025, 15(15), 8268; https://doi.org/10.3390/app15158268 - 25 Jul 2025
Viewed by 422
Abstract
The evolution of Industry 4.0 and the emerging paradigm of Industry 5.0 have introduced disruptive technologies that are reshaping modern manufacturing environments. Among these, Digital Twin (DT) and Industrial Metaverse (IM) technologies are increasingly recognized for their potential to enhance Occupational Health and [...] Read more.
The evolution of Industry 4.0 and the emerging paradigm of Industry 5.0 have introduced disruptive technologies that are reshaping modern manufacturing environments. Among these, Digital Twin (DT) and Industrial Metaverse (IM) technologies are increasingly recognized for their potential to enhance Occupational Health and Safety (OHS). However, a comprehensive understanding of how these technologies integrate to support OHS in manufacturing remains limited. This study systematically explores the transformative role of DT and IM in creating immersive, intelligent, and human-centric safety ecosystems. Following the PRISMA guidelines, a Systematic Literature Review (SLR) of 75 peer-reviewed studies from the SCOPUS and Web of Science databases was conducted. The review identifies key enabling technologies such as Virtual Reality (VR), Augmented Reality (AR), Extended Reality (XR), Internet of Things (IoT), Artificial Intelligence (AI), Cyber-Physical Systems (CPS), and Collaborative Robots (COBOTS), and highlights their applications in real-time monitoring, immersive safety training, and predictive hazard mitigation. A conceptual framework is proposed, illustrating a synergistic digital ecosystem that integrates predictive analytics, real-time monitoring, and immersive training to enhance the OHS. The findings highlight both the transformative benefits and the key adoption challenges of these technologies, including technical complexities, data security, privacy, ethical concerns, and organizational resistance. This study provides a foundational framework for future research and practical implementation in Industry 5.0. Full article
Show Figures

Figure 1

19 pages, 4504 KiB  
Article
Development and Evaluation of an Immersive Virtual Reality Application for Road Crossing Training in Older Adults
by Alina Napetschnig, Wolfgang Deiters, Klara Brixius, Michael Bertram and Christoph Vogel
Geriatrics 2025, 10(4), 99; https://doi.org/10.3390/geriatrics10040099 - 24 Jul 2025
Viewed by 353
Abstract
Background/Objectives: Aging is often accompanied by physical and cognitive decline, affecting older adults’ mobility. Virtual reality (VR) offers innovative opportunities to safely practice everyday tasks, such as street crossing. This study was designed as a feasibility and pilot study to explore acceptance, usability, [...] Read more.
Background/Objectives: Aging is often accompanied by physical and cognitive decline, affecting older adults’ mobility. Virtual reality (VR) offers innovative opportunities to safely practice everyday tasks, such as street crossing. This study was designed as a feasibility and pilot study to explore acceptance, usability, and preliminary effects of a VR-based road-crossing intervention for older adults. It investigates the use of virtual reality (VR) as an innovative training tool to support senior citizens in safely navigating everyday challenges such as crossing roads. By providing an immersive environment with realistic traffic scenarios, VR enables participants to practice in a safe and controlled setting, minimizing the risks associated with real-world road traffic. Methods: A VR training application called “Wegfest” was developed to facilitate targeted road-crossing practice. The application simulates various scenarios commonly encountered by older adults, such as crossing busy streets or waiting at traffic lights. The study applied a single-group pre-post design. Outcomes included the Timed Up and Go test (TUG), Falls Efficacy Scale-International (FES-I), and Montreal Cognitive Assessment (MoCA). Results: The development process of “Wegfest” demonstrates how a highly realistic street environment can be created for VR-based road-crossing training. Significant improvements were found in the Timed Up and Go test (p = 0.002, d = 0.784) and fall-related self-efficacy (FES-I, p = 0.005). No change was observed in cognitive function (MoCA, p = 0.56). Participants reported increased subjective safety (p < 0.001). Discussion: The development of the VR training application “Wegfest” highlights the feasibility of creating realistic virtual environments for skill development. By leveraging immersive technology, both physical and cognitive skills required for road-crossing can be effectively trained. The findings suggest that “Wegfest” has the potential to enhance the mobility and safety of older adults in road traffic through immersive experiences and targeted training interventions. Conclusions: As an innovative training tool, the VR application not only provides an engaging and enjoyable learning environment but also fosters self-confidence and independence among older adults in traffic settings. Regular training within the virtual world enables senior citizens to continuously refine their skills, ultimately improving their quality of life. Full article
Show Figures

Figure 1

32 pages, 4241 KiB  
Review
Extended Reality Technologies: Transforming the Future of Crime Scene Investigation
by Xavier Chango, Omar Flor-Unda, Angélica Bustos-Estrella, Pedro Gil-Jiménez and Hilario Gómez-Moreno
Technologies 2025, 13(8), 315; https://doi.org/10.3390/technologies13080315 - 23 Jul 2025
Viewed by 519
Abstract
The integration of extended reality (XR) technologies, including virtual reality (VR), augmented reality (AR), and mixed reality (MR), is transforming forensic investigation by empowering processes such as crime scene reconstruction, evidence analysis, and professional training. This manuscript presents a systematic review of technological [...] Read more.
The integration of extended reality (XR) technologies, including virtual reality (VR), augmented reality (AR), and mixed reality (MR), is transforming forensic investigation by empowering processes such as crime scene reconstruction, evidence analysis, and professional training. This manuscript presents a systematic review of technological advances in XR technologies developed and employed for forensic investigation, their impacts, challenges, and prospects for the future. A systematic review was carried out based on the PRISMA® methodology and considering articles published in repositories and scientific databases such as SCOPUS, Science Direct, PubMed, Web of Science, Taylor and Francis, and IEEE Xplore. Two observers carried out the selection of articles and a Cohen’s Kappa coefficient of 0.7226 (substantial agreement) was evaluated. The results show that XR technologies contribute to improving accuracy, efficiency, and collaboration in forensic investigation processes. In addition, they facilitate the preservation of crime scene data and reduce training costs. Technological limitations, implementation costs, ethical aspects, and challenges persist in the acceptability of these devices. XR technologies have significant transformative potential in forensic investigations, although additional research is required to overcome current barriers and establish standardized protocols that enable their effective integration. Full article
Show Figures

Figure 1

10 pages, 700 KiB  
Article
Neurocognitive Foundations of Memory Retention in AR and VR Cultural Heritage Experiences
by Paula Srdanović, Tibor Skala and Marko Maričević
Electronics 2025, 14(15), 2920; https://doi.org/10.3390/electronics14152920 - 22 Jul 2025
Viewed by 254
Abstract
Immersive technologies such as augmented reality (AR) and virtual reality (VR) have emerged as powerful tools in cultural heritage education and preservation. Building on prior work that demonstrated the effectiveness of gamified XR applications in engaging users with heritage content and drawing on [...] Read more.
Immersive technologies such as augmented reality (AR) and virtual reality (VR) have emerged as powerful tools in cultural heritage education and preservation. Building on prior work that demonstrated the effectiveness of gamified XR applications in engaging users with heritage content and drawing on existing studies in neuroscience and cognitive psychology, this study explores how immersive experiences support multisensory integration, emotional engagement, and spatial presence—all of which contribute to the deeper encoding and recall of heritage narratives. Through a theoretical lens supported by the empirical literature, we argue that the interactive and embodied nature of AR/VR aligns with principles of cognitive load theory, dual coding theory, and affective neuroscience, supporting enhanced learning and memory consolidation. This paper aims to bridge the gap between technological innovation and cognitive understanding in cultural heritage dissemination, identifying concrete design principles for memory-driven digital heritage experiences. While promising, these approaches also raise important ethical considerations, including accessibility, cultural representation, and inclusivity—factors essential for equitable digital heritage dissemination. Full article
(This article belongs to the Special Issue Metaverse, Digital Twins and AI, 3rd Edition)
Show Figures

Figure 1

20 pages, 4420 KiB  
Article
Perception of Light Environment in University Classrooms Based on Parametric Optical Simulation and Virtual Reality Technology
by Zhenhua Xu, Jiaying Chang, Cong Han and Hao Wu
Buildings 2025, 15(15), 2585; https://doi.org/10.3390/buildings15152585 - 22 Jul 2025
Viewed by 297
Abstract
University classrooms, core to higher education, have indoor light environments that directly affect students’ learning efficiency, visual health, and psychological states. This study integrates parametric optical simulation and virtual reality (VR) to explore light environment perception in ordinary university classrooms. Forty college students [...] Read more.
University classrooms, core to higher education, have indoor light environments that directly affect students’ learning efficiency, visual health, and psychological states. This study integrates parametric optical simulation and virtual reality (VR) to explore light environment perception in ordinary university classrooms. Forty college students (18–25 years, ~1:1 gender ratio) participated in real virtual comparative experiments. VR scenarios were optimized via real-time rendering and physical calibration. The results showed no significant differences in subjects’ perception evaluations between environments (p > 0.05), verifying virtual environments as effective experimental carriers. The analysis of eight virtual conditions (varying window-to-wall ratios and lighting methods) revealed that mixed lighting performed best in light perception, spatial perception, and overall evaluation. Light perception had the greatest influence on overall evaluation (0.905), with glare as the core factor (0.68); closure sense contributed most to spatial perception (0.45). Structural equation modeling showed that window-to-wall ratio and lighting power density positively correlated with subjective evaluations. Window-to-wall ratio had a 0.412 direct effect on spatial perception and a 0.84 total mediating effect (67.1% of total effect), exceeding the lighting power density’s 0.57 mediating effect sum. This study confirms mixed lighting and window-to-wall ratio optimization as keys to improving classroom light quality, providing an experimental paradigm and parameter basis for user-perception-oriented design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

40 pages, 16352 KiB  
Review
Surface Protection Technologies for Earthen Sites in the 21st Century: Hotspots, Evolution, and Future Trends in Digitalization, Intelligence, and Sustainability
by Yingzhi Xiao, Yi Chen, Yuhao Huang and Yu Yan
Coatings 2025, 15(7), 855; https://doi.org/10.3390/coatings15070855 - 20 Jul 2025
Viewed by 702
Abstract
As vital material carriers of human civilization, earthen sites are experiencing continuous surface deterioration under the combined effects of weathering and anthropogenic damage. Traditional surface conservation techniques, due to their poor compatibility and limited reversibility, struggle to address the compound challenges of micro-scale [...] Read more.
As vital material carriers of human civilization, earthen sites are experiencing continuous surface deterioration under the combined effects of weathering and anthropogenic damage. Traditional surface conservation techniques, due to their poor compatibility and limited reversibility, struggle to address the compound challenges of micro-scale degradation and macro-scale deformation. With the deep integration of digital twin technology, spatial information technologies, intelligent systems, and sustainable concepts, earthen site surface conservation technologies are transitioning from single-point applications to multidimensional integration. However, challenges remain in terms of the insufficient systematization of technology integration and the absence of a comprehensive interdisciplinary theoretical framework. Based on the dual-core databases of Web of Science and Scopus, this study systematically reviews the technological evolution of surface conservation for earthen sites between 2000 and 2025. CiteSpace 6.2 R4 and VOSviewer 1.6 were used for bibliometric visualization analysis, which was innovatively combined with manual close reading of the key literature and GPT-assisted semantic mining (error rate < 5%) to efficiently identify core research themes and infer deeper trends. The results reveal the following: (1) technological evolution follows a three-stage trajectory—from early point-based monitoring technologies, such as remote sensing (RS) and the Global Positioning System (GPS), to spatial modeling technologies, such as light detection and ranging (LiDAR) and geographic information systems (GIS), and, finally, to today’s integrated intelligent monitoring systems based on multi-source fusion; (2) the key surface technology system comprises GIS-based spatial data management, high-precision modeling via LiDAR, 3D reconstruction using oblique photogrammetry, and building information modeling (BIM) for structural protection, while cutting-edge areas focus on digital twin (DT) and the Internet of Things (IoT) for intelligent monitoring, augmented reality (AR) for immersive visualization, and blockchain technologies for digital authentication; (3) future research is expected to integrate big data and cloud computing to enable multidimensional prediction of surface deterioration, while virtual reality (VR) will overcome spatial–temporal limitations and push conservation paradigms toward automation, intelligence, and sustainability. This study, grounded in the technological evolution of surface protection for earthen sites, constructs a triadic framework of “intelligent monitoring–technological integration–collaborative application,” revealing the integration needs between DT and VR for surface technologies. It provides methodological support for addressing current technical bottlenecks and lays the foundation for dynamic surface protection, solution optimization, and interdisciplinary collaboration. Full article
Show Figures

Graphical abstract

Back to TopTop