Development and Evaluation of an Immersive Virtual Reality Application for Road Crossing Training in Older Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Development of VR Application “Wegfest”
- Region of Warning (ROW): Activates alerts when vehicles approach predefined distance thresholds.
- Region of Interest (ROI): Triggers scene freezing during bounding box overlaps between users and vehicles to simulate near-misses/collisions.
2.2. Research Design
2.3. Participants
2.4. Assessments
- Timed Up and Go (TUG) Test: This test evaluated mobility and fall risk by assessing functional performance in older adults, focusing on flexibility and balance [23]. The TUG test is a widely used clinical assessment that measures a person’s functional mobility. Specifically, it evaluates the time (in seconds) it takes for an individual to stand up from a seated position, walk a distance of three meters, turn around, walk back to the chair, and sit down again. The TUG test provides an objective measure of balance, gait speed, and lower limb function, and is commonly used to assess fall risk in older adults. A cut-off value of <20 s indicated unrestricted mobility in daily activities. The TUG demonstrated excellent reliability (interrater reliability: ICC = 0.99; intrarater reliability) and strong validity correlations with established measures such as the Berg Balance Scale (r = −0.81), Barthel Index of ADL (r = −0.78), and gait speed (r = −0.61) [24].
- Falls Efficacy Scale-International Version (FES-I): The FES-I assessed fall-related self-efficacy using a 16-item questionnaire that evaluated complex functional activities and social aspects of self-efficacy [25]. This instrument demonstrated high internal consistency (Cronbach’s α = 0.96) and excellent test-retest reliability (r = 0.96).
- Montreal Cognitive Assessment (MoCA): The MoCA screened for cognitive deficits across domains such as memory, executive functions, attention, and visuospatial skills. It was particularly relevant for evaluating cognitive abilities required for VR use in “Wegfest” scenarios [26]. A cut-off score > 26 points indicated normal cognitive function. The MoCA showed strong psychometric properties with reliability (r = 0.89) and sensitivity (80%) at this threshold [27].
2.5. Intervention Process
3. Statistical Analysis and Results
Summary of the Results
4. Discussion
Limitations
5. Conclusions
6. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AR | Augmented Reality |
FES-I | Falls Efficacy Scale-International |
MCI | Mild Cognitive Impairment |
MoCA | Montreal Cognitive Assessment |
MR | Mixed Reality |
RCT | Randomized Controlled Trial |
TUG | Timed up and Go test |
VAS | Visual analogue scale |
VR | Virtual Reality |
Appendix A
Study | Locomotion | Interaction | Adaptive Logic | Study Design | Results/Outcomes |
---|---|---|---|---|---|
Optale et al. (2010) [8] | Seated | Joystick navigation, voice input | Progressive levels | RCT, n = 36 | Improved memory and global cognitive functioning in MCI patients. |
Anderson-Hanley et al. (2012) [6] | Stationary cycling | Pedal movement, handlebars | Fixed difficulty | RCT, n = 102 | Improved balance and coordination. |
Cho et al. (2014) [9] | Standing | Wii Fit balance board | Fixed difficulty | RCT, n = 32 | Enhanced balance performance measured by Romberg test; significant improvements in postural control. |
Mirelman et al. (2016) [10] | Treadmill walking | Projected visual stimuli | Adaptive difficulty | RCT, n = 302 | 42% reduction in fall risk over 6 months in older adults using treadmill with VR training compared to treadmill alone. |
Liao et al. (2019) [11] | Seated/standing | Headset, motion sensors | Scenario-based | RCT, n = 34 | Significant improvements in global cognition, delayed verbal memory, and instrumental activities of daily living (IADL) in older adults with mild cognitive impairment (MCI). |
Paletta et al. (2019) [12] | Walking in place/seated | Headset gaze, simple input | No adaptive logic | Pilot, n = 12 | Positive emotions, improved quality of life, social interaction. |
Szczepocka et al. (2024) [13] | Seated | Headset, controller | Progressive tasks | RCT, n = 72 | Positive changes in cognitive functioning, including attention and visual memory, in healthy older adults after VR-based cognitive training. |
Kustanovich et al. (2023) [5] | Seated/standing | Controller-based tasks | Predefined task progression | 10-week intervention | Improved memory and cognitive function in dementia patients |
- Locomotion: How users move within the virtual environment (e.g., physical walking, cycling, standing).
- Interaction: Methods for interacting with the VR system (e.g., controllers, hand tracking, gaze).
- Adaptive Logic: Whether and how the application adapts to user performance or needs.
- Study Design: Type and size of study.
- Results/Outcomes: Key findings relevant to mobility, cognition, or well-being.
References
- Gentry, S.V.; Barata, G.; L’Ecuyer-Mailloux, J. Serious Games for Health: A Systematic Review on Their Effectiveness in Promoting Health Behaviors among Older Adults. J. Med. Internet Res. 2019, 21, e12345. [Google Scholar]
- Przybylski, A.K.; Weinstein, N. The Impacts of Motivational Framing of Technology Restrictions on Adolescent Concealment: Evidence from a Preregistered Experimental Study. Comput. Hum. Behav. 2019, 90, 170–180. [Google Scholar] [CrossRef]
- González-Erena, P.V.; Fernández-Guinea, S.; Kourtesis, P. Cognitive Assessment and Training in Extended Reality: Multimodal Systems, Clinical Utility, and Current Challenges. Encyclopedia 2025, 5, 8. [Google Scholar] [CrossRef]
- Capterra. Gamification vs Games-Based Learning: What’s the Difference? Available online: https://www.capterra.com/resources/gamification-vs-games-based-learning/ (accessed on 16 July 2025).
- Kustanovich, M.; Posmyk, A.; Didczuneit-Sandhop, B.; Beck, E.; Orlowski, K. Serious Games for Seniors—Influence on the Cognitive Abilities of Seniors with Dementia over a Period of Ten Weeks. In Proceedings of the NWK 2023. Available online: https://www.hs-harz.de/dokumente/extern/Forschung/NWK2023/Beitraege/Serious_Games_fuer_SeniorInnen_-_Einfluss_auf_die_kognitiven_Faehigkeiten.pdf (accessed on 16 July 2025).
- Anderson-Hanley, C.; Arciero, P.J.; Brickman, A.M.; Nimon, J.P.; Heller, W. The Effectiveness of Serious Games for Improving Balance and Coordination in Older Adults: A Pilot Study. J. Neuroeng. Rehabil. 2012, 9, 1. [Google Scholar] [CrossRef]
- Napetschnig, A.; Brixius, K.; Deiters, W. Development of a Core Set of Quality Criteria for Virtual Reality Applications Designed for Older Adults: Multistep Qualitative Study. Interact. J. Med. Res. 2023, 12, e45433. [Google Scholar] [CrossRef] [PubMed]
- Optale, G.; Urgesi, C.; Busato, V.; Marin, S.; Piron, L.; Priftis, K.; Gamberini, L.; Capodieci, S.; Bordin, A. Controlling Memory Impairment in Elderly Adults Using Virtual Reality Memory Training: A Randomized Controlled Pilot Study. Neurorehabil. Neural Repair 2010, 24, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Cho, G.H.; Hwangbo, G.; Shin, H.S. The Effects of Virtual Reality-Based Balance Training on Balance of the Elderly. J. Phys. Ther. Sci. 2014, 26, 615–617. [Google Scholar] [CrossRef] [PubMed]
- Mirelman, A.; Rochester, L.; Maidan, I.; Del Din, S.; Alcock, L.; Nieuwhof, F.; Rikkert, M.O.; Bloem, B.R.; Pelosin, E.; Avanzino, L.; et al. Addition of a Non-Immersive Virtual Reality Component to Treadmill Training to Reduce Fall Risk in Older Adults (V-TIME): A Randomised Controlled Trial. Lancet 2016, 388, 1170–1182. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.Y.; Chen, I.H.; Lin, Y.J.; Chen, Y.; Hsu, W.C. Effects of Virtual Reality-Based Physical and Cognitive Training on Executive Function and Dual-Task Gait Performance in Older Adults with Mild Cognitive Impairment: A Randomized Control Trial. Front. Aging Neurosci. 2019, 11, 162. [Google Scholar] [CrossRef] [PubMed]
- Paletta, L.; Grabher, A.; Dini, A.; Mayr, M.; Taberhofer, A.; Pokvic, E.; Gunzer, W.; Pilz, R. Immersive Imagination in Urban Oases of Mindfulness: The VR-SenseCity Toolbox for Sensible, Emotional and Measurable Experiences in Future Smart Cities. In Proceedings of REAL CORP 2019: Is This the Real World? Perfect Smart Cities vs. Real Emotional Cities, Karlsruhe, Germany, 2–4 April 2019; Schrenk, M., Popovich, V.V., Zeile, P., Elisei, P., Beyer, C., Ryser, J., Eds.; Competence Center of Urban and Regional Planning: Vienna, Austria, 2019; pp. 391–400. Available online: https://www.joanneum.at/publikationen/immersive-imagination-in-urban-oases-of-mindfulness-the-vr-sensecity-toolbox-for-sensible-emotional-and-measurable-experiences-in-future-smart-cities/ (accessed on 8 December 2024).
- Szczepocka, E.; Mokros, Ł.; Kaźmierski, J.; Nowakowska, K.; Łucka, A.; Antoszczyk, A.; Oltra-Cucarella, J.; Werzowa, W.; Hellevik, M.; Skouras, S.; et al. Virtual Reality-Based Training May Improve Visual Memory and Some Aspects of Sustained Attention Among Healthy Older Adults—Preliminary Results of a Randomized Controlled Study. BMC Psychiatry 2024, 24, 347. [Google Scholar] [CrossRef] [PubMed]
- Federal Statistical Office—Destatis. Traffic Accidents: Accidents Involving Senior Citizens in Road Traffic 2019. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Verkehrsunfaelle/Publikationen/Downloads-Verkehrsunfaelle/unfaelle-Senior*innen-5462409197004.pdf (accessed on 8 December 2024).
- Lukas, A. Older Drivers: Danger or Vulnerable? Dtsch. Med. Wochenschr. 2018, 143, 778–782. [Google Scholar] [CrossRef] [PubMed]
- Federal Statistical Office—Destatis. Traffic Accidents: Accidents Involving Senior Citizens in Road Traffic 2020. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Verkehrsunfaelle/Publikationen/Downloads-Verkehrsunfaelle/unfaelle-senioren-5462409207004.pdf (accessed on 8 December 2024).
- Federal Statistical Office—Destatis. Traffic Accidents: Accidents Involving Senior Citizens in Road Traffic 2021. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Verkehrsunfaelle/Publikationen/Downloads-Verkehrsunfaelle/unfaelle-senioren-5462409217004.pdf (accessed on 8 December 2024).
- Kowalski, E.; Catelli, D.S.; Lamontagne, M. A waveform test for variance inequality, with a comparison of ground reaction force during walking in younger vs. older adults. J. Biomech. 2021, 127, 110657. [Google Scholar] [CrossRef] [PubMed]
- Kim, U.; Lim, J.; Park, Y.; Bae, Y. Predicting Fall Risk through Step Width Variability at Increased Gait Speed in Community Dwelling Older Adults. Sci. Rep. 2025, 15, 16915. [Google Scholar] [CrossRef] [PubMed]
- Maki, B.E.; McIlroy, W.E. Control of Rapid Limb Movements for Balance Recovery: Insights from Postural Control Research. Neurosci. Biobehav. Rev. 2007, 31, 556–567. [Google Scholar]
- Tapiro, H.; Oron-Gilad, T.; Parmet, Y. Older Adult Pedestrian Behavior: The Effects of Situation Awareness Training in Virtual Reality. J. Saf. Res. 2020, 72, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Napetschnig, A. Nutzer*Innenorientierte Gestaltung und Bewertung von Virtual Reality-Anwendungen für Senior*Innen unter der Berücksichtigung von Akzeptanzkriterien und Nutzungsbarrieren. Ph.D. Thesis, German Sport University Cologne, Cologne, Germany, 2024. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Schleuter, S.; Röhrig, A. Time Get-Up and Go Test/Timed “Up and Go”-Test (TGUG/TUG). Available online: http://www.assessment-info.de/assessment/seiten/datenbank/vollanzeige/vollanzeige-de.asp?vid=370 (accessed on 12 November 2021).
- Dias, N.; Kempen, G.I.; Todd, C.J.; Beyer, N.; Freiberger, E.; Piot-Ziegler, C.; Yardley, L.; Hauer, K. Die Deutsche Version der Falls Efficacy Scale-International Version (FES-I). Z. Gerontol. Geriatr. 2006, 39, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, V.I.; Wiener, J.M.; Meso, A.I.; Miellet, S. The Relative Contribution of Executive Functions and Aging on Attentional Control During Road Crossing. Front. Psychol. 2022, 13, 912446. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Navarro, S.G.; Mimenza-Alvarado, A.J.; Palacios-García, A.A.; Samudio-Cruz, A.; Gutiérrez-Gutiérrez, L.A.; Ávila-Funes, J.A. Validity and Reliability of the Spanish Version of the Montreal Cognitive Assessment (MoCA) for the Detection of Cognitive Impairment in Mexico. Rev. Colomb. Psiquiatr. 2018, 47, 237–243. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine (ACSM). ACSM’s Guidelines for Exercise Testing and Prescription, 7th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006. [Google Scholar]
- Dommes, A.; Lay, T.L.; Vienne, F.; Dang, N.T.; Beaudoin, A.P.; Do, M.C. Towards an Explanation of Age-Related Difficulties in Crossing a Two-Way Street. Accid. Anal. Prev. 2015, 85, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM); Bundesministerium für Gesundheit (BMG). ICD-10-GM Version 2021, Systematisches Verzeichnis, Internationale Statistische Klassifikation der Krankheiten und Verwandter Gesundheitsprobleme; 10. Revision, Stand: 18. September 2020; BfArM: Bonn, Deutschland, 2021. Available online: https://www.dimdi.de/static/de/klassifikationen/icf/icfhtml2005/ (accessed on 25 November 2024).
- Welzel, F.D.; Schladitz, K.; Förster, F.; Löbner, M.; Riedel-Heller, S.G. Health Consequences of Social Isolation: Qualitative Study on Psychosocial Stress and Resources of Older People in the Context of the COVID-19 Pandemic. Bundesgesundheitsbl 2021, 64, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Glas, O. Fewer Traffic Fatalities in the Corona Year 2020. Available online: https://www.faz.net/aktuell/gesellschaft/ungluecke/weniger-verkehrstote-im-corona-jahr-2020-17426713.html (accessed on 20 November 2024).
- Allgemeiner Deutscher Fahrrad-Club (ADFC). Promotion of Municipal Cycling Infrastructure. Available online: https://www.adfc.de/artikel/foerderung-kommunaler-radverkehrsinfrastruktur (accessed on 29 November 2024).
- Maresova, P.; Krejcar, O.; Maskuriy, R.; Bakar, N.A.A.; Selamat, A.; Truhlarova, Z.; Horak, J.; Joukl, M.; Vítkova, L. Challenges and Opportunity in Mobility among Older Adults—Key Determinant Identification. BMC Geriatr. 2023, 23, 447. [Google Scholar] [CrossRef] [PubMed]
- Bruno, R.R.; Wolff, G.; Wernly, B.; Masyuk, M.; Piayda, K.; Leaver, S.; Erkens, R.; Oehler, D.; Afzal, S.; Heidari, H.; et al. Virtual and Augmented Reality in Critical Care Medicine: The Patient’s, Clinician’s, and Researcher’s Perspective. Crit. Care 2022, 26, 326. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.G.; Wang, X.; Li, P.; Jung, Y.; Bi, L.; Kim, J.; Chen, Y.; Feng, D.D.; Magnenat Thalmann, N.; Wang, J.; et al. A Systematic Review: Virtual-Reality-Based Techniques for Human Exercises and Health Improvement. Front. Public Health 2023, 11, 1143947. [Google Scholar] [CrossRef] [PubMed]
- Benham, T.; Smith, R.; Jones, L. The Effectiveness of Immersive Virtual Reality Interventions for Pain Management in Older Adults: A Systematic Review. Pain Manag. Nurs. 2019, 20, 479–487. [Google Scholar]
- Benoit, M.; Guerchouche, R.; Petit, P.D.; Chapoulie, E.; Manera, V.; Chaurasia, G.; Drettakis, G.; Robert, P. Is It Possible to Use Highly Realistic Virtual Reality in the Elderly? A Feasibility Study with Image-Based Rendering. Neuropsychiatr. Dis. Treat. 2015, 11, 557–563. [Google Scholar] [CrossRef]
- Yap, Y.-Y.; Tan, S.-H.; Choon, S.-W. Elderly’s Intention to Use Technologies: A Systematic Literature Review. Heliyon 2022, 8, e08765. [Google Scholar] [CrossRef] [PubMed]
- Vaportzis, E.; Clausen, M.G.; Gow, A.J. Older Adults Perceptions of Technology and Barriers to Interacting with Tablet Computers: A Focus Group Study. Front. Psychol. 2017, 8, 1687. [Google Scholar] [CrossRef] [PubMed]
- Barry, E.; Galvin, R.; Keogh, C.; Horgan, F.; Fahey, T. Is the Timed Up and Go Test a Useful Predictor of Risk of Falls in Community Dwelling Older Adults? A Systematic Review and Meta-Analysis. BMC Geriatr. 2014, 14, 14. [Google Scholar] [CrossRef] [PubMed]
- Beauchet, O.; Fantino, B.; Allali, G.; Muir, S.W.; Montero-Odasso, M.; Annweiler, C. Timed Up and Go Test and Risk of Falls in Older Adults: A Systematic Review. J. Nutr. Health Aging 2011, 15, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Strojny, P.; Dużmańska-Misiarczyk, N. Measuring the Effectiveness of Virtual Training: A Systematic Review. Comput. Exp. Res. Virtual Environ. 2022, 1, 100006. [Google Scholar] [CrossRef]
- Norman, G.; Dore, K.; Grierson, L. The Minimal Relationship Between Simulation Fidelity and Transfer of Learning. Med. Educ. 2012, 46, 636–647. [Google Scholar] [CrossRef] [PubMed]
- Appel, L.; Appel, E.; Bogler, O.; Wiseman, M.; Cohen, L.; Ein, N.; Campos, J.L. Older Adults with Cognitive and/or Physical Impairments Can Benefit from Immersive Virtual Reality Experiences: A Feasibility Study. Front. Med. 2020, 6, 329. [Google Scholar] [CrossRef] [PubMed]
- Remmy, V.R. Virtual Reality for Seniors: What the Research Says—RemmyVR. Available online: https://www.remmyvr.com (accessed on 16 July 2025).
- Hung, L.; Mann, J.; Wallsworth, C.; Woldum, E.; Phinney, A.; Leitch, S.; Chow, J. Facilitators and Barriers to Using Virtual Reality and Its Impact on Social Engagement in Aged Care Settings: A Scoping Review. Gerontol. Geriatr. Med. 2023, 9, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Bruun-Pedersen, J.R.; Serafin, S.; Kofoed, L.B. Going Outside While Staying Inside—Exercise Motivation with Immersive vs. Non-Immersive Recreational Virtual Environment Augmentation for Older Adult Nursing Home Residents. In Proceedings of the 2016 IEEE International Conference on Healthcare Informatics (ICHI), Chicago, IL, USA, 4–7 October 2016; pp. 216–226. [Google Scholar] [CrossRef]
- Zhou, S.; Gromala, D.; Wang, L. Ethical Challenges of Virtual Reality Technology Interventions for the Vulnerabilities of Patients with Chronic Pain: Exploration of Technician Responsibility. J. Med. Internet Res. 2023, 25, e49237. [Google Scholar] [CrossRef] [PubMed]
- Tabbaa, L.; Ang, C.S.; Rose, V.; Siriaraya, P.; Stewart, I.; Jenkins, K.G.; Matsangidou, M. Bring the Outside In: Providing Accessible Experiences Through VR for People with Dementia in Locked Psychiatric Hospitals; Association for Computing Machinery: New York, NY, USA, 2019. [Google Scholar]
Parameters | Difficulty Level | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Lane width | Single-track | Two-lane | Single lane with cycle path | Two-lane crosswalk with cycle path |
Crossing aids | Traffic light | crosswalk | Traffic island | No crossing aid |
Traffic volume | low | medium | high | - |
Speed zones | 30 km/h zone | 50 km/h zone | 70 km/h zone | - |
Times of day | day | twilight | Night | - |
Electromobility | low | medium | high | - |
Scene | Lane Width | Speed Zones | Crossing Aids | Time of Day | Traffic Volume | Electromobility | Score |
---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | 6 |
2 | 1 | 1 | 1 | 1 | 1 | 2 | 7 |
3 | 1 | 1 | 1 | 1 | 2 | 1 | 7 |
4 | 1 | 1 | 1 | 2 | 1 | 1 | 7 |
5 | 1 | 1 | 2 | 1 | 1 | 1 | 7 |
6 | 1 | 2 | 1 | 1 | 1 | 1 | 7 |
7 | 2 | 1 | 1 | 1 | 1 | 1 | 7 |
48 |
Outcome | Pre (Mean ± SD) | Post (Mean ± SD) | p-Value | Cohen’s d |
---|---|---|---|---|
TUG (s) | 12.1 ± 2.2 | 10.6 ± 2.0 | 0.002 | 0.78 |
FES-I (score) | 27.8 ± 4.1 | 24.9 ± 3.8 | 0.005 | 0.65 |
MoCA (score) | 25.3 ± 2.7 | 25.5 ± 2.8 | 0.56 | 0.10 |
Subjective safety (VAS) | 4.2 ± 1.1 | 6.8 ± 1.2 | <0.001 | 2.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Napetschnig, A.; Deiters, W.; Brixius, K.; Bertram, M.; Vogel, C. Development and Evaluation of an Immersive Virtual Reality Application for Road Crossing Training in Older Adults. Geriatrics 2025, 10, 99. https://doi.org/10.3390/geriatrics10040099
Napetschnig A, Deiters W, Brixius K, Bertram M, Vogel C. Development and Evaluation of an Immersive Virtual Reality Application for Road Crossing Training in Older Adults. Geriatrics. 2025; 10(4):99. https://doi.org/10.3390/geriatrics10040099
Chicago/Turabian StyleNapetschnig, Alina, Wolfgang Deiters, Klara Brixius, Michael Bertram, and Christoph Vogel. 2025. "Development and Evaluation of an Immersive Virtual Reality Application for Road Crossing Training in Older Adults" Geriatrics 10, no. 4: 99. https://doi.org/10.3390/geriatrics10040099
APA StyleNapetschnig, A., Deiters, W., Brixius, K., Bertram, M., & Vogel, C. (2025). Development and Evaluation of an Immersive Virtual Reality Application for Road Crossing Training in Older Adults. Geriatrics, 10(4), 99. https://doi.org/10.3390/geriatrics10040099