Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,533)

Search Parameters:
Keywords = virtual activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 892 KB  
Article
Mechanically Activated Transition from Linear Viscoelasticity to Yielding: Correlation-Based Unification
by Maxim S. Arzhakov, Irina G. Panova, Aleksandr A. Kiushov and Aleksandr A. Yaroslavov
Polymers 2025, 17(19), 2665; https://doi.org/10.3390/polym17192665 - 1 Oct 2025
Abstract
The mechanically activated transition (MAT) from linear viscoelasticity to yielding is considered an essential part of the operational behavior of ductile materials. The MAT region is restricted by proportional limit at σ0 and ε0 and the yield point at σy [...] Read more.
The mechanically activated transition (MAT) from linear viscoelasticity to yielding is considered an essential part of the operational behavior of ductile materials. The MAT region is restricted by proportional limit at σ0 and ε0 and the yield point at σy and εy, or, in terms of this paper, E0=σ0/ε0 and ε0 and Ey=σy/εy and εy, respectively. This stage precedes yielding and controls the parameters of the yield point. For bulk plastic (co)polymers and cellular polymeric foams, the quantitative correlations between E0, ε0, Ey, and εy were determined. The ratios E0Ey=1.55±0.15 and εyε0=2.1±0.2 were specified as yielding criteria. For all the samples studied, their mechanical response within the MAT region was unified in terms of master curve constructed via re-calculation of the experimental “stress–strain” diagrams in the reduced coordinates lg Elg E0lg E0lg Ey=flgεlgε0lgεylgε0, where E=σ/ε and ε are the current modulus and strain, respectively. To generalize these regularities found for bulk plastics and foams, our earlier experimental results concerning the rheology of soil-based pastes and data from the literature concerning the computer simulation of plastic deformation were invoked. Master curves for (1) dispersed pastes, (2) bulk plastics, (3) polymeric foams, and (4) various virtual models were shown to be in satisfactory coincidence. For the materials analyzed, this result was considered as the unification of their mechanical response within the MAT region. An algorithm for the express analysis of the mechanical response of plastic systems within the MAT region is proposed. The limitations and advances of the proposed methodological approach based on correlation studies followed by construction of master curves are outlined. Full article
(This article belongs to the Special Issue Mechanic Properties of Polymer Materials)
25 pages, 6901 KB  
Article
Improving Active Support Capability: Optimization and Scheduling of Village-Level Microgrid with Hybrid Energy Storage System Containing Supercapacitors
by Yu-Rong Hu, Jian-Wei Ma, Ling Miao, Jian Zhao, Xiao-Zhao Wei and Jing-Yuan Yin
Eng 2025, 6(10), 253; https://doi.org/10.3390/eng6100253 - 1 Oct 2025
Abstract
With the rapid development of renewable energy and the continuous pursuit of efficient energy utilization, distributed photovoltaic power generation has been widely used in village-level microgrids. As a key platform connecting distributed photovoltaics with users, energy storage systems play an important role in [...] Read more.
With the rapid development of renewable energy and the continuous pursuit of efficient energy utilization, distributed photovoltaic power generation has been widely used in village-level microgrids. As a key platform connecting distributed photovoltaics with users, energy storage systems play an important role in alleviating the imbalance between supply and demand in VMG. However, current energy storage systems rely heavily on lithium batteries, and their frequent charging and discharging processes lead to rapid lifespan decay. To solve this problem, this study proposes a hybrid energy storage system combining supercapacitors and lithium batteries for VMG, and designs a hybrid energy storage scheduling strategy to coordinate the “source–load–storage” resources in the microgrid, effectively cope with power supply fluctuations and slow down the life degradation of lithium batteries. In order to give full play to the active support ability of supercapacitors in suppressing grid voltage and frequency fluctuations, the scheduling optimization goal is set to maximize the sum of the virtual inertia time constants of the supercapacitor. In addition, in order to efficiently solve the high-complexity model, the reason for choosing the snow goose algorithm is that compared with the traditional mathematical programming methods, which are difficult to deal with large-scale uncertain systems, particle swarm optimization, and other meta-heuristic algorithms have insufficient convergence stability in complex nonlinear problems, SGA can balance global exploration and local development capabilities by simulating the migration behavior of snow geese. By improving the convergence effect of SGA and constructing a multi-objective SGA, the effectiveness of the new algorithm, strategy and model is finally verified through three cases, and the loss is reduced by 58.09%, VMG carbon emissions are reduced by 45.56%, and the loss of lithium battery is reduced by 40.49% after active support optimization, and the virtual energy inertia obtained by VMG from supercapacitors during the scheduling cycle reaches a total of 0.1931 s. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

26 pages, 6503 KB  
Article
Acai Berry Extracts Can Mitigate the L-Glutamate-Induced Neurotoxicity Mediated by N-Methyl-D-Aspartate Receptors
by Maryam N. ALNasser, Nirmal Malik, Abrar Ahmed, Amy Newman, Ian R. Mellor and Wayne G. Carter
Brain Sci. 2025, 15(10), 1073; https://doi.org/10.3390/brainsci15101073 - 1 Oct 2025
Abstract
Background/Objectives: Stroke is the second leading cause of death worldwide. There is an unmet need to manage stroke pathophysiology, including L-glutamate (L-Glu)-mediated neurotoxicity. The acai berry (Euterpe sp.) contains phytochemicals with potentially nutraceutical content. The aim of this study was to assess [...] Read more.
Background/Objectives: Stroke is the second leading cause of death worldwide. There is an unmet need to manage stroke pathophysiology, including L-glutamate (L-Glu)-mediated neurotoxicity. The acai berry (Euterpe sp.) contains phytochemicals with potentially nutraceutical content. The aim of this study was to assess the ability of acai berry extracts to counter L-Glu neurotoxicity using human differentiated TE671 cells. Methods: The cytotoxicity of L-Glu and acai berry extracts was quantified using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Mitochondrial function was examined by a quantitation of cellular ATP levels, the maintenance of the mitochondrial membrane potential (MMP), and the production of reactive oxygen species (ROS). Whole-cell patch-clamp recordings monitored the activation of N-methyl-D-aspartate receptors (NMDARs). Candidate phytochemicals from acai berry extracts were modeled in silico for NMDAR binding. Results: L-Glu significantly reduced cell viability, ATP levels, the MMP, and increased cellular ROS. Generally, acai berry extracts alone were not cytotoxic, although high concentrations were detrimental to ATP production, maintenance of the MMP, and elevated ROS levels. Whole-cell patch-clamp recordings revealed that the combined addition of 300 µM L-Glu and 10 µM glycine activated currents in differentiated TE671 cells, consistent with triggering NMDAR activity. Acai berry extracts ameliorated the L-Glu-induced cytotoxicity, mitochondrial dysfunction, elevated ROS levels, and limited the NMDAR-mediated excitotoxicity (p < 0.001–0.0001). Several virtual ligands from acai berry extracts exhibited high-affinity NMDAR binding (arginine, 2,5-dihydroxybenzoic acid, threonine, protocatechuic acid, and histidine) as possible candidate receptor antagonists. Conclusions: Acai berry phytochemicals could be exploited to reduce the L-Glu-induced neurotoxicity often observed in stroke and other neurodegenerative diseases. Full article
(This article belongs to the Section Neuropharmacology and Neuropathology)
Show Figures

Figure 1

27 pages, 10581 KB  
Article
Maintaining Dynamic Symmetry in VR Locomotion: A Novel Control Architecture for a Dual Cooperative Five-Bar Mechanism-Based ODT
by Halit Hülako
Symmetry 2025, 17(10), 1620; https://doi.org/10.3390/sym17101620 - 1 Oct 2025
Abstract
Natural and unconstrained locomotion remains a fundamental challenge in creating truly immersive virtual reality (VR) experiences. This paper presents the design and control of a novel robotic omnidirectional treadmill (ODT) based on the bilateral symmetry of two cooperative five-bar planar mechanisms designed to [...] Read more.
Natural and unconstrained locomotion remains a fundamental challenge in creating truly immersive virtual reality (VR) experiences. This paper presents the design and control of a novel robotic omnidirectional treadmill (ODT) based on the bilateral symmetry of two cooperative five-bar planar mechanisms designed to replicate realistic walking mechanics. The central contribution is a human in the loop control strategy designed to achieve stable walking in place. This framework employs a specific control strategy that actively repositions the footplates along a dynamically defined ‘Line of Movement’ (LoM), compensating for the user’s motion to ensure the midpoint between the feet remains stabilized and symmetrical at the platform’s geometric center. A comprehensive dynamic model of both the ODT and a coupled humanoid robot was developed to validate the system. Numerical simulations demonstrate robust performance across various gaits, including turning and catwalks, maintaining the user’s locomotion center with a maximum resultant drift error of 11.65 cm, a peak value that occurred momentarily during a turning motion and remained well within the ODT’s safe operational boundaries, with peak errors along any single axis remaining below 9 cm. The system operated with notable efficiency, requiring RMS torques below 22 Nm for the primary actuators. This work establishes a viable dynamic and control architecture for foot-tracking ODTs, paving the way for future enhancements such as haptic terrain feedback and elevation simulation. Full article
(This article belongs to the Special Issue Applications Based on Symmetry/Asymmetry in Control Engineering)
Show Figures

Figure 1

20 pages, 1951 KB  
Article
Virtual Prototyping of the Human–Robot Ecosystem for Multiphysics Simulation of Upper Limb Motion Assistance
by Rocco Adduci, Francesca Alvaro, Michele Perrelli and Domenico Mundo
Machines 2025, 13(10), 895; https://doi.org/10.3390/machines13100895 - 1 Oct 2025
Abstract
As stroke is becoming more frequent nowadays, cutting edge rehabilitation approaches are required to recover upper limb functionalities and to support patients during daily activities. Recently, focus has moved to robotic rehabilitation; however, therapeutic devices are still highly expensive, making rehabilitation not easily [...] Read more.
As stroke is becoming more frequent nowadays, cutting edge rehabilitation approaches are required to recover upper limb functionalities and to support patients during daily activities. Recently, focus has moved to robotic rehabilitation; however, therapeutic devices are still highly expensive, making rehabilitation not easily affordable. Moreover, devices are not easily accepted by patients, who can refuse to use them due to not feeling comfortable. The presented work proposes the exploitation of a virtual prototype of the human–robot ecosystem for the study and analysis of patient–robot interactions, enabling their simulation-based investigation in multiple scenarios. For the accomplishment of this task, the Dynamics of Multi-physical Systems platform, previously presented by the authors, is further developed to enable the integration of biomechanical models of the human body with mechatronics models of robotic devices for motion assistance, as well as with PID-based control strategies. The work begins with (1) a description of the background; hence, the current state of the art and purpose of the study; (2) the platform is then presented and the system is formalized, first from a general side and then (3) in the application-specific scenario. (4) The use case is described, presenting a controlled gym weightlifting exercise supported by an exoskeleton and the results are analyzed in a final paragraph (5). Full article
Show Figures

Figure 1

23 pages, 2619 KB  
Article
Monitoring of First Responders Biomedical Data During Training with Innovative Virtual Reality Technologies
by Lýdie Leová, Martin Molek, Petr Volf, Marek Sokol, Jan Hejda, Zdeněk Hon, Marek Bureš and Patrik Kutilek
Big Data Cogn. Comput. 2025, 9(10), 251; https://doi.org/10.3390/bdcc9100251 - 30 Sep 2025
Abstract
Traditional training methods for first responders are often limited by time, resources, and safety constraints, which reduces their consistency and effectiveness. This study focused on two main issues: whether exposure to virtual reality training scenarios induces measurable physiological changes in heart rate and [...] Read more.
Traditional training methods for first responders are often limited by time, resources, and safety constraints, which reduces their consistency and effectiveness. This study focused on two main issues: whether exposure to virtual reality training scenarios induces measurable physiological changes in heart rate and heart rate variability, and whether these responses differ between police and firefighter contexts. The aim of this study was to explore the integration of virtual reality technologies into responder training and to evaluate how biomedical monitoring can be used to assess training effectiveness. A pilot measurement was conducted with ten participants who completed systematic crime scene investigation scenarios in both domains. Heart activity was continuously recorded using a wearable sensor and analyzed for heart rate and heart rate variability parameters, while cognitive load and task performance were also assessed. The collected data were statistically evaluated using tests of normality and paired comparisons between baseline and virtual reality phases. The results showed a significant increase in heart rate and a decrease in heart rate variability during virtual reality exposure compared to baseline, with higher cognitive load and success rates in police scenarios compared to firefighter scenarios. These findings indicate that virtual reality scenarios can elicit measurable psychophysiological responses and highlight the potential of combining immersive technologies with biomedical monitoring for the development of adaptive and effective training methods for first responders. Full article
Show Figures

Figure 1

24 pages, 3234 KB  
Systematic Review
Methodological Strategies to Enhance Motivation and Academic Performance in Natural Sciences Didactics: A Systematic and Meta-Analytic Review
by José Gabriel Soriano-Sánchez, Rocío Quijano-López and Manuel Salvador Saavedra Regalado
Educ. Sci. 2025, 15(10), 1289; https://doi.org/10.3390/educsci15101289 - 30 Sep 2025
Abstract
Learning Natural Sciences represents a key opportunity to spark scientific interest and foster fundamental skills across different educational stages. This study aimed to analyze the influence of motivation on academic performance in the learning of Natural Sciences at various educational levels. To this [...] Read more.
Learning Natural Sciences represents a key opportunity to spark scientific interest and foster fundamental skills across different educational stages. This study aimed to analyze the influence of motivation on academic performance in the learning of Natural Sciences at various educational levels. To this end, a systematic review method was employed following PRISMA guidelines, consulting the Web of Science and Scopus databases, identifying four relevant studies. The results showed that high levels of motivation were associated with a more positive classroom attitude and better conceptual understanding, which enhanced academic performance. The use of innovative methodological strategies, such as implementing immersive virtual reality in the classroom, PhET simulations (Physics Educational Technology), and the use of hypertext, significantly increased both student motivation and academic performance. The meta-analysis revealed a favorable effect in experimental groups, showing moderate heterogeneity (I2 = 49) and significance of p = 0.0001. The concurrence analysis reported that current pedagogical practices should focus on strengthening student autonomy and active engagement, integrating critical reflection, the use of innovative methodological strategies, and technological resources that enhance meaningful learning in scientific literacy. Among the instruments used to measure motivation, the Motivation to Learn Science Questionnaire was identified, and for academic performance, the Motivated Strategies for Learning Questionnaire. In conclusion, the importance of implementing the identified methodological strategies across different educational stages is emphasized, in order to promote competency-based learning through meaningful and innovative acquisition of content in Natural Sciences. Full article
Show Figures

Figure 1

17 pages, 572 KB  
Article
Exploring Older Adults’ Interest in Virtual Volunteering: Evidence from a Multi-Theoretical Model Combining TAM, Self-Efficacy, and Digital Divide Perspectives
by Longyu Sui, Jennifer A. Crittenden and Mark A. Hager
Behav. Sci. 2025, 15(10), 1340; https://doi.org/10.3390/bs15101340 - 29 Sep 2025
Abstract
The digital transformation of civic life has created new opportunities for older adults to engage in virtual volunteer activities. However, their participation still remains limited. This study investigates the factors that influence older adults’ interest in virtual volunteering. It integrated theoretical framework combining [...] Read more.
The digital transformation of civic life has created new opportunities for older adults to engage in virtual volunteer activities. However, their participation still remains limited. This study investigates the factors that influence older adults’ interest in virtual volunteering. It integrated theoretical framework combining the Technology Acceptance Model (TAM), Self-Efficacy, and Digital Divide Theories to examine the drivers of virtual volunteerism interest among this target population. This study presents ordered logistic regression models with data on 814 adult volunteers in multiple imputation procedures. The final reduced model identifies two key predictors: a preference for virtual activities and interest in technology training, respectively, representing TAM and the Digital Divide Theory. While the self-efficacy-related variable showed statistical significance in earlier models, its explanatory power diminished when controlling for other factors. The findings indicate that older adults’ interest in virtual volunteering is primarily shaped by perceived usefulness of digital tools and their willingness to improve technical competence. This study confirms the relevance of the TAM and Digital Divide theories regarding virtual volunteerism. In practical terms, the findings indicate that program design should combine usability-focused platform features and targeted support that lower both technological and motivational barriers for older adults interested in virtual volunteering. Full article
Show Figures

Figure 1

15 pages, 2883 KB  
Article
Oscillation Propagation Analysis of Grid-Connected Converter System with New eVSG Control Patterns
by Hong Zhang, Bin Xu, Jinzhong Li, Yuguang Xie and Wei Ma
Electronics 2025, 14(19), 3850; https://doi.org/10.3390/electronics14193850 - 28 Sep 2025
Abstract
The virtual synchronous generator (VSG) technique plays a crucial role in power systems with high penetration of power electronics, as it can provide virtual inertia and damping performance by emulating the swing characteristics of a synchronous generator (SG). However, the VSG faces challenges [...] Read more.
The virtual synchronous generator (VSG) technique plays a crucial role in power systems with high penetration of power electronics, as it can provide virtual inertia and damping performance by emulating the swing characteristics of a synchronous generator (SG). However, the VSG faces challenges due to its inherent limitations, such as vulnerability to disturbances and instability in strong grid conditions. To address these issues, this article proposes an exchanged VSG (eVSG) control strategy. In this approach, the phase information (θ) is derived from reactive power (Q), while the voltage information (E) is derived from active power (P). Furthermore, a Magnitude-Phase Motion Equation (MPME) is introduced to analyze the eVSG system from a physical perspective. Additionally, this article is the first to illustrate the oscillation propagation effect between P and frequency (f) in both VSG and eVSG systems. Finally, the advantages of the eVSG strategy are comprehensively demonstrated through three aspects: (1) comparing the motion trajectory of f using the MPME model, (2) evaluating the oscillation propagation effect between VSG and eVSG systems, and (3) conducting simulations and experiments. Full article
Show Figures

Figure 1

20 pages, 4287 KB  
Article
Transient Stability Enhancement Method for VSGs Based on Power Angle Deviation for Reactive Power Control Loop Modification
by Guanlong Jia, Jingru Shi, Xueying Wang, Feng Niu and Xiaoxue Wang
Electronics 2025, 14(19), 3837; https://doi.org/10.3390/electronics14193837 - 27 Sep 2025
Abstract
Virtual synchronous generators (VSGs) simulate the operating characteristics of conventional synchronous generators to provide inertia, voltage and frequency support for new-type power systems dominated by power electronics. However, in the event of grid faults, VSGs inevitably experience transient angle instability, which leads to [...] Read more.
Virtual synchronous generators (VSGs) simulate the operating characteristics of conventional synchronous generators to provide inertia, voltage and frequency support for new-type power systems dominated by power electronics. However, in the event of grid faults, VSGs inevitably experience transient angle instability, which leads to great challenges to the safe and stable operation of the power system. To address the problem of transient instability so that VSGs can continue to support the power system during a grid fault, this paper firstly analyzes the adverse effect of a reactive power control (RPC) loop on the transient stability of the system and proposes a method for adding the variation in the power angle into RPC to increase the voltage reference of a VSG during grid faults, which can solve the transient instability problem under both equilibrium point existence and nonexistence by increasing the active power output of the VSG. The effect of the additional coefficient on the transient characteristics of the system is then analyzed using a small-signal model, and it is found that this method also enhances the frequency stability of the system. Finally, the feasibility of the proposed method and the correctness of the theoretical analysis are confirmed by a simulation platform. Full article
Show Figures

Figure 1

21 pages, 646 KB  
Article
Exploring a Systems-Based Model of Care for Effective Healthcare Transformation: A Narrative Review in Implementation Science of Saudi Arabia’s Vision 2030 Experience
by Nawfal A. Aljerian, Anas Mohammad Almasud, Abdulrahman AlQahtani, Kholood Khaled Alyanbaawi, Sumayyah Faleh Almutairi, Khalaf Awadh Alharbi, Aisha Awdha Alshahrani, Muayad Saud Albadrani and Mohammed K. Alabdulaali
Healthcare 2025, 13(19), 2453; https://doi.org/10.3390/healthcare13192453 - 27 Sep 2025
Abstract
Background: Healthcare systems globally face complex challenges including rising costs, increasing chronic disease burden, and fragmentation of care. Systems-based models represent promising approaches to healthcare transformation, yet their implementation remains incompletely understood. Objective: To critically analyze the Saudi model of Care (MoC) as [...] Read more.
Background: Healthcare systems globally face complex challenges including rising costs, increasing chronic disease burden, and fragmentation of care. Systems-based models represent promising approaches to healthcare transformation, yet their implementation remains incompletely understood. Objective: To critically analyze the Saudi model of Care (MoC) as a case study of systems-based healthcare transformation, examining its conceptual framework, implementation strategies, and projected health outcomes. Methods: We conducted a narrative review synthesizing publicly available official documents on the Saudi MoC, primarily the 2017 overview and 2025 revision, identified through targeted searches of Ministry of Health websites and grey literature portals (no date restrictions); formal quality appraisal was not applied as sources were official policy documents, with bias mitigated through cross-verification and critical analysis. Results: The Saudi MoC exemplifies systems-based transformation through its multi-layered framework organized around six patient-centered systems of care spanning the lifecycle. Key innovations include: (1) an architectural approach integrating activated individuals, healthy communities, virtual care, and traditional clinical settings; (2) a comprehensive intervention taxonomy with 42 specific initiatives; (3) explicit contextual adaptations for diverse settings; and (4) a phased implementation approach with detailed performance metrics. National indicators improved during the reform period, including life expectancy and maternal and child health. These are national trends observed during the period of health reforms. Causal attribution to the Model of Care requires a counterfactual evaluation. Conclusions: This analysis of the Saudi MoC contributes to the literature on systems-based healthcare transformation by illuminating how theoretical principles can be operationalized at national scale. The model’s patient-centered design, comprehensive intervention taxonomy, and attention to implementation factors offer valuable insights for other healthcare systems pursuing transformation. Further research should examine actual implementation outcomes as the model matures. Full article
Show Figures

Figure 1

15 pages, 963 KB  
Review
Immunosuppressive Therapies in Pulmonary Sarcoidosis: A Practical, Evidence-Based Review
by Zehra Dhanani and Rohit Gupta
J. Clin. Med. 2025, 14(19), 6828; https://doi.org/10.3390/jcm14196828 - 26 Sep 2025
Abstract
Sarcoidosis is a chronic inflammatory disease of unknown etiology that can involve virtually any organ, with pulmonary involvement seen in over 90% of cases. Although many patients experience spontaneous remission, approximately 10–30% develop progressive pulmonary disease, which may lead to fibrocystic changes, respiratory [...] Read more.
Sarcoidosis is a chronic inflammatory disease of unknown etiology that can involve virtually any organ, with pulmonary involvement seen in over 90% of cases. Although many patients experience spontaneous remission, approximately 10–30% develop progressive pulmonary disease, which may lead to fibrocystic changes, respiratory failure, and death. Oral glucocorticoids remain the cornerstone of treatment for symptomatic patients with pulmonary infiltrates and abnormal pulmonary function tests, with typical starting doses ranging from 20 to 40 mg/day followed by a slow taper over 6–18 months based on clinical and radiographic response. However, prolonged glucocorticoid therapy is associated with significant toxicity, and many patients require additional immunosuppressive agents for disease control or steroid-sparing purposes. Antimetabolites such as methotrexate, azathioprine, mycophenolate mofetil, and leflunomide are commonly used second-line therapies. For refractory disease, particularly in those with metabolically active lesions on FDG-PET, anti-tumor necrosis factor (TNF) agents like infliximab may be effective but carry risks of serious adverse effects. In select cases, newer strategies—including RCI, rituximab, JAKi or investigational regimens—are being explored. Management must also account for non-inflammatory complications such as sarcoidosis-associated pulmonary hypertension and bronchiectasis, which can mimic disease progression and require distinct therapeutic approaches. Given the heterogeneity of sarcoidosis and lack of robust clinical trial data, a stepwise and individualized approach to immunosuppression remains essential in optimizing outcomes while minimizing treatment-related harm. Full article
(This article belongs to the Special Issue Advanced Diagnostic and Therapeutic Strategies for Sarcoidosis)
Show Figures

Figure 1

17 pages, 2596 KB  
Article
Comparative Assessment of Seismic Damping Scheme for Multi-Storey Frame Structures
by Shuming Jia and Pengfei Ma
Infrastructures 2025, 10(10), 258; https://doi.org/10.3390/infrastructures10100258 - 26 Sep 2025
Abstract
Traditional anti-seismic methods are constrained by high construction costs and the potential for severe structural damage under earthquakes. Energy dissipation technology provides an effective solution for structural earthquake resistance by incorporating energy-dissipating devices within structures to actively absorb seismic energy. However, existing research [...] Read more.
Traditional anti-seismic methods are constrained by high construction costs and the potential for severe structural damage under earthquakes. Energy dissipation technology provides an effective solution for structural earthquake resistance by incorporating energy-dissipating devices within structures to actively absorb seismic energy. However, existing research lacks in-depth analysis of the influence of energy dissipation devices’ placement on structural dynamic response. Therefore, this study investigates the seismic mitigation effectiveness of viscous dampers in multi-storey frame structures and their optimal placement strategies. A comprehensive parametric investigation was conducted using a representative three-storey steel-frame kindergarten facility in Shandong Province as the prototype structure. Advanced finite element modeling was implemented through ETABS software to establish a high-fidelity structural analysis framework. Based on the supplemental virtual damping ratio seismic design method, damping schemes were designed, and the influence patterns of different viscous damper arrangement schemes on the seismic mitigation effectiveness of multi-storey frame structures were systematically investigated. Through rigorous comparative assessment of dynamic response characteristics and energy dissipation mechanisms inherent to three distinct energy dissipation device deployment strategies (perimeter distribution, central concentration, and upper-storey localization), this investigation delineates the governing principles underlying spatial positioning effects on structural seismic mitigation performance. This comprehensive investigation elucidates several pivotal findings: damping schemes developed through the supplemental virtual damping ratio-based design methodology demonstrate excellent applicability and predictive accuracy. All three spatial configurations effectively attenuate structural seismic response, achieving storey shear reductions of 15–30% and inter-storey drift reductions of 19–28%. Damper spatial positioning critically influences mitigation performance, with perimeter distribution outperforming central concentration, while upper-storey localization exhibits optimal overall effectiveness. These findings validate the engineering viability and structural reliability of viscous dampers in multi-storey frame applications, establishing a robust scientific foundation for energy dissipation technology implementation in seismic design practice. Full article
Show Figures

Figure 1

16 pages, 806 KB  
Article
Acceptability, Usability, and Effectiveness of a Music Video Game for Pain Management: A Crossover Study
by Jara Esteban-Sopeña, Javier Bravo-Aparicio, Iria Trillo-Charlín, Alberto Roldán-Ruiz, Hector Beltran-Alacreu and Nuria García-Magro
Healthcare 2025, 13(19), 2439; https://doi.org/10.3390/healthcare13192439 - 25 Sep 2025
Abstract
Background: The increasing use of virtual reality (VR) has extended into medical applications, including pain management through immersive mechanisms. This study aimed to evaluate the effectiveness of the Clone Hero for reducing pain intensity, threshold and tolerance. Methods: A randomized crossover trial compared [...] Read more.
Background: The increasing use of virtual reality (VR) has extended into medical applications, including pain management through immersive mechanisms. This study aimed to evaluate the effectiveness of the Clone Hero for reducing pain intensity, threshold and tolerance. Methods: A randomized crossover trial compared three conditions during a cold pressor test in 25 healthy volunteers over 35 years: playing Clone Hero (interactive), watching Clone Hero (control), or no intervention (placebo). Outcome measures included usability and acceptability (qualitative questionnaire), pain intensity (VAS), pain threshold, pain tolerance, physical activity (IPAQ), and adverse effects. Results: Twenty-five participants completed the study. Overall satisfaction was high, with 92% reporting a positive experience. The Clone Hero group showed significantly lower pain intensity scores (4.9 ± 0.49) than the placebo (5.6 ± 0.48; p = 0.037) and control groups (6.1 ± 0.42; p = 0.004). Pain threshold was higher in the Clone Hero group (74.45 ± 20.7 s) compared to the placebo (62.91 ± 18.58; p < 0.001) and control (43 ± 14.77; p = 0.001). Pain tolerance was also greater (127.6 ± 9.46 s) versus the placebo (p = 0.021) and control (p = 0.001). No serious adverse effects were reported. Conclusions: Interactive pain management interventions demonstrated high levels of acceptability and user satisfaction, and may enhance pain modulation more effectively than passive or control. Full article
(This article belongs to the Special Issue Innovative Technologies in Pain Management)
Show Figures

Figure 1

16 pages, 7056 KB  
Article
Molecular Dynamics Simulation Reveals the Mechanism of Substrate Recognition by Lignin-Degrading Enzymes
by Xue Ma, Xueting Cao, Zhenyu Ma, Jingyi Zhu, Letian Yang, Min Xiao and Xukai Jiang
Int. J. Mol. Sci. 2025, 26(19), 9378; https://doi.org/10.3390/ijms26199378 - 25 Sep 2025
Abstract
Lignin, the most abundant aromatic biopolymer, represents a key renewable feedstock for sustainable biorefineries, yet its structural complexity poses a formidable challenge for enzymatic degradation. While ligninolytic enzymes such as laccases (LACs), lignin peroxidases (LiPs), and manganese peroxidases (MnPs) exhibit remarkable catalytic versatility, [...] Read more.
Lignin, the most abundant aromatic biopolymer, represents a key renewable feedstock for sustainable biorefineries, yet its structural complexity poses a formidable challenge for enzymatic degradation. While ligninolytic enzymes such as laccases (LACs), lignin peroxidases (LiPs), and manganese peroxidases (MnPs) exhibit remarkable catalytic versatility, the molecular mechanisms underlying their ability to balance substrate specificity and structural flexibility remain unresolved. Here, we employed all-atom molecular dynamics (MD) simulations and virtual mutagenesis to dissect the dynamic interactions between these enzymes and lignin model compound (β-O-4-linked H-type dimers). Our simulations revealed a dual recognition mechanism in which polar residues (such as Asp, Glu, Arg and His) formed hydrogen bonds with hydroxyl and keto groups near catalytic cleavage sites, ensuring precise alignment for bond scission, while aromatic residues stabilized diverse lignin conformations via hydrophobic interactions with conserved aromatic rings. Conformational dynamics of active-site residues enabled adaptive adjustments to substrate heterogeneity, reconciling enzymatic specificity with structural promiscuity. Virtual mutation experiments further demonstrated that aromatic residues were indispensable for binding stability, whereas polar residues dictated cleavage-site selectivity. These findings provide atomic-scale insights into the catalytic mechanism of ligninolytic enzymes, with implications in the rational design of superior biocatalyst for lignin biorefineries. Full article
(This article belongs to the Special Issue Molecular Dynamics Simulations of Protein Structures)
Show Figures

Figure 1

Back to TopTop