Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = virgin or recycled polypropylene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 903 KiB  
Article
Preliminary Analysis of Printed Polypropylene Foils and Pigments After Thermal Treatment Using DSC and Ames Tests
by Lukas Prielinger, Eva Ortner, Martin Novak, Lea Markart and Bernhard Rainer
Materials 2025, 18(14), 3325; https://doi.org/10.3390/ma18143325 - 15 Jul 2025
Viewed by 354
Abstract
In order to recycle plastic waste back to food contact materials (FCMs), it is necessary to identify hazardous substances in plastic packaging that pose a toxicological risk. Printing inks on plastics are not yet designed to withstand the high heat stress of mechanical [...] Read more.
In order to recycle plastic waste back to food contact materials (FCMs), it is necessary to identify hazardous substances in plastic packaging that pose a toxicological risk. Printing inks on plastics are not yet designed to withstand the high heat stress of mechanical recycling processes and therefore require hazard identification. In this study, virgin polypropylene (PP) foils were printed with different types of inks (UV-cured, water-based) and colour shades. Thermal analysis of printed foils and pigments was performed using differential scanning calorimetry (DSC). Samples were then thermally treated below and above measured thermal events at 120 °C, 160 °C, 200 °C or 240 °C for 30 min. Subsequently, migration tests and miniaturised Ames tests were performed. Four out of thirteen printed foils and all three pigments showed positive results for mutagenicity in miniaturised Ames tests after thermal treatment at 240 °C. Additionally, pre-incubation Plate Ames tests (according to OECD 471) were performed on three pigments and one printed foil, yielding two positive results after thermal treatment at 240 °C. These results indicate that certain ink components form hazardous decomposition products when heated up to a temperature of 240 °C. However, further research is needed to gain a better understanding of the chemical processes that occur during high thermal treatment. Full article
Show Figures

Graphical abstract

16 pages, 1795 KiB  
Article
Sustainable Polypropylene Blends: Balancing Recycled Content with Processability and Performance
by Tatiana Zhiltsova and Mónica S. A. Oliveira
Polymers 2025, 17(11), 1556; https://doi.org/10.3390/polym17111556 - 3 Jun 2025
Viewed by 906
Abstract
The increasing demand for sustainable materials has renewed interest in recycling polyolefins, particularly polypropylene (PP), due to its widespread use and environmental persistence. Post-consumer recycled polypropylene (PPr), however, often exhibits compromised properties from prior exposure to thermal, oxidative, and mechanical degradation. [...] Read more.
The increasing demand for sustainable materials has renewed interest in recycling polyolefins, particularly polypropylene (PP), due to its widespread use and environmental persistence. Post-consumer recycled polypropylene (PPr), however, often exhibits compromised properties from prior exposure to thermal, oxidative, and mechanical degradation. This study investigates the potential of using post-consumer PPr in melt-blended extrusion formulations with virgin PP (PPv), focusing on how different PPr contents affect processability, thermal stability, oxidative resistance, and mechanical performance. Blends containing 25%, 50%, and 75% PPr, as well as 100% PPr and virgin PP, were evaluated using melt flow index (MFI), differential scanning calorimetry (DSC), oxidation induction time (OIT), thermogravimetric analysis (TGA), and tensile testing. Results show that increasing PPr content improves polymer fluidity and thermal stability under inert conditions but significantly reduces oxidation resistance and ductility. However, the 25% PPr blend demonstrated a favourable balance between performance and recyclability, presenting 96% of the elastic modulus and 101% of the yield strength of PPv. Homogenization by extrusion improved the oxidative stability of recycled PP by 22% compared to its non-extruded form. These findings support the use of low-to-moderate levels of PPr in virgin PP for applications requiring predictable and tunable performance. contributing to circular economy goals. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

15 pages, 3312 KiB  
Article
Recycling of Poly(Propylene) Based Car Bumpers in the Perspective of Polyolefin Nanoclay Composite Film Production
by Nemr El Hajj, Sylvain Seif and Nancy Zgheib
Recycling 2025, 10(3), 95; https://doi.org/10.3390/recycling10030095 - 10 May 2025
Viewed by 753
Abstract
This study uses the melt compounding method to recycle polypropylene-based car bumper waste (PP-CBW) in order to produce nanocomposite films for mulch application. The nanocomposite films were compounded by mixing virgin linear low-density polyethylene (LLDPE) with PP-CBW at a constant ratio of 4:1 [...] Read more.
This study uses the melt compounding method to recycle polypropylene-based car bumper waste (PP-CBW) in order to produce nanocomposite films for mulch application. The nanocomposite films were compounded by mixing virgin linear low-density polyethylene (LLDPE) with PP-CBW at a constant ratio of 4:1 in the presence of different percentages of nanofillers. Nanocomposites reinforced with nanoclays were compatibilized with an anhydride grafted polyethylene (PE-g-MAH), at a constant compatibilizer-to-clay ratio equal to 3, to improve the adherence between the nonpolar matrix and the hydrophilic nanoclay and acrylic paint present in the car bumper. An extruder with a corotating twin screw was used to produce blends of different compositions. To create nanocomposite films, the mixtures were further processed in a blown film extruder. The effect of the presence of nanoclays on the barrier, thermal, and mechanical properties of the nanocomposite films was investigated. The dispersion of clay layers in the matrix was examined by atomic force microscopy (AFM). The results indicate that 3 wt% of clay loading maximized the tensile strength in the transverse direction (TD) and machine direction (MD). A 1 wt% clay loading increased the MD tear resistance by 66% and manifested an optimum dart impact strength. Significant improvements in thermal and barrier properties were also achieved in the presence of 3 wt% clay loading. Full article
(This article belongs to the Special Issue Challenges and Opportunities in Plastic Waste Management)
Show Figures

Graphical abstract

16 pages, 7267 KiB  
Article
Enhancing the Dielectric Properties of Recycled Polyolefin Streams Through Blending
by Iman Shirzaei Sani, Nicole R. Demarquette and Eric David
Sustainability 2025, 17(9), 4123; https://doi.org/10.3390/su17094123 - 2 May 2025
Viewed by 479
Abstract
The extensive use of polyolefins, such as polyethylene (PE) and polypropylene (PP), has led to a substantial accumulation of plastic waste, raising growing concerns about environmental impact and sustainability. In this study, the dielectric, thermal, and chemical properties of recycled materials were investigated, [...] Read more.
The extensive use of polyolefins, such as polyethylene (PE) and polypropylene (PP), has led to a substantial accumulation of plastic waste, raising growing concerns about environmental impact and sustainability. In this study, the dielectric, thermal, and chemical properties of recycled materials were investigated, and blending with virgin polyethylene was examined as a sustainable strategy to enhance their electrical performance and promote material reuse. Dielectric analysis demonstrated that blending recycled materials with virgin polyethylene effectively reduced dielectric losses. With the addition of only 15% virgin HDPE, the dielectric loss was significantly lowered by 40% for recycled HDPE (rHDPE) and 30% for the recycled PE-PP blend (r(PE-PP))—compared to their unblended forms. Although the original recycled materials exhibited much higher dielectric losses than virgin HDPE—24 and 28 times greater for rHDPE and r(PE-PP), respectively, at 60 Hz—the blending approach clearly improved their electrical behavior. Overall, the results highlight blending as a practical and sustainable strategy to improve the dielectric performance of recycled polyolefins, enabling their reuse in applications such as electrical cable insulation while contributing to plastic waste reduction. Full article
Show Figures

Figure 1

22 pages, 5788 KiB  
Article
Analyzing the Tensile Creep Behavior of Different Types of Polypropylenes Using a Simple Fractional Differential Viscoelastic Model
by Yasuhiko Otsuki, Kou Hashimoto, Yutaka Kobayashi, Shotaro Nishitsuji, Hisao Matsuno and Hiroshi Ito
Polymers 2025, 17(8), 1095; https://doi.org/10.3390/polym17081095 - 18 Apr 2025
Cited by 1 | Viewed by 642
Abstract
Fractional differential viscoelastic calculus was used to develop a model for predicting the primary to tertiary creep in the tensile creep deformation of various polypropylenes (PPs). The primary and secondary creep were described via simple fractional differential viscoelasticity with an empirical formula for [...] Read more.
Fractional differential viscoelastic calculus was used to develop a model for predicting the primary to tertiary creep in the tensile creep deformation of various polypropylenes (PPs). The primary and secondary creep were described via simple fractional differential viscoelasticity with an empirical formula for the stress and temperature dependence of the fractional differential order. Tertiary creep was treated as a pure viscous body with damage. The temperature dependence is treated simply, and Arrhenius’s law is applied. As for stress dependence, the Eyring law of the sinh function was applied to the primary and secondary creep processes, while the WLF-type shift function was adopted for tertiary creep. The primary and secondary creep behaviors of each model material showed creep growth rates according to the rigidity of each material. As for the tertiary creep, the homo PP showed a little damage progression with a damage index of 0.17, while the impact-resistant PP showed faster damage progression with a damage index of around 0.5. The three types of post-consumer recycled PPs showed intermediate properties between these virgin PPs, and no peculiarities were confirmed in the static creep behaviors. It was confirmed that the creep experimental results for all model materials fell on the same Monkman–Grant law. The presented creep model can predict the creep strain transition and minimum strain rate well and is effective in predicting the creep characteristics of PPs. Full article
(This article belongs to the Special Issue Polymers, Biomolecules and Nanocomposites: Computational Perspectives)
Show Figures

Figure 1

18 pages, 10933 KiB  
Article
Thermoforming Process Effect on Performances of Thermoplastic/Recycled Carbon Fiber Composites
by Alessandro Canneva, Barbara Palmieri, Fabrizia Cilento, Michele Giordano and Alfonso Martone
Appl. Sci. 2025, 15(8), 4403; https://doi.org/10.3390/app15084403 - 16 Apr 2025
Viewed by 539
Abstract
The reuse of recycled carbon fibers (rCF) is a response to growing environmental concerns associated with the composites industry. Recycling and reusing carbon fibers represents a more sustainable alternative by reducing waste at the end of the life cycle of composite materials and [...] Read more.
The reuse of recycled carbon fibers (rCF) is a response to growing environmental concerns associated with the composites industry. Recycling and reusing carbon fibers represents a more sustainable alternative by reducing waste at the end of the life cycle of composite materials and decreasing dependency on virgin raw materials. This study investigates the influence of process parameters on two different non-woven mats made by carding rCF and blending with thermoplastic filaments: Carbiso TM-PA6/60 and TM-MAPP/60. Two processing methods were examined—one-shot process (M1) and lamination (M2)—to fabricate multilayer coupons. The results indicate that the two-layer panels produced using M2 exhibited a lower porosity (9.9% for PA6/60 and 4.1 for MAPP/60) and superior mechanical performance. However, the differences in performance between the two methods diminished as the number of layers increased. Concerning matrix–fiber compatibility, MAPP/60 showed the best results due to the fiber’s roughness, matrix particles on the fibers, and the incorporation of maleic anhydride in polypropylene (PP), significantly enhancing adhesion. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

21 pages, 3015 KiB  
Article
Monitoring Antioxidant Consumption and Build-Up in Polypropylene During Open-Loop and Closed-Loop Mechanical Recycling
by Niek Knoben, Max Vanhouttem, Aike Wypkema and Nithya Subramanian
Materials 2025, 18(7), 1640; https://doi.org/10.3390/ma18071640 - 3 Apr 2025
Viewed by 1912
Abstract
Polypropylene (PP), a widely used recyclable plastic in packaging and engineering applications, is prone to thermo-oxidative degradation during reprocessing and molding at high temperatures. Antioxidants (AOs) are essential for stabilizing PP in both its virgin and recycled states. The quantity of AO added [...] Read more.
Polypropylene (PP), a widely used recyclable plastic in packaging and engineering applications, is prone to thermo-oxidative degradation during reprocessing and molding at high temperatures. Antioxidants (AOs) are essential for stabilizing PP in both its virgin and recycled states. The quantity of AO added is critical: insufficient amounts can lead to poor stabilization, while excessive amounts can cause safety concerns due to build-up. This study presents a modified approach to measure the Oxidation Induction Temperature (OIT) using Differential Scanning Calorimetry (DSC), particularly for recycled PP from waste that contains unpredictable contaminations. This modified approach ensures the safety of the calorimetry cell by limiting the oxidation reaction and preventing the release of volatile compounds during measurements. By performing DSC measurements in inert environments, we obtain the OIT, which can be correlated to residual intact AO levels. This approach to monitoring AO levels is demonstrated in both open- and closed-loop recycling of rigid PP. Although the presence of contamination is known to catalyze thermo-oxidative degradation in PP, our results indicate that recycled PP from open-loop collection still contains sufficient residual AO that allows it to withstand limited thermal reprocessing. However, this tendency of AO retention leads to significant build-up during closed-loop recycling when AOs are added to each cycle, where the PP grade remains fairly homogeneous and the dispersity (Đ) does not significantly increase over multiple recycling loops. Full article
Show Figures

Figure 1

51 pages, 13853 KiB  
Article
Prospective Use and Assessment of Recycled Plastic in Construction Industry
by Aaroon Joshua Das and Majid Ali
Recycling 2025, 10(2), 41; https://doi.org/10.3390/recycling10020041 - 11 Mar 2025
Cited by 3 | Viewed by 3510
Abstract
The accumulation of plastic waste poses a significant environmental challenge, necessitating sustainable solutions. This study investigates the potential of recycling waste plastics for use in the construction industry, emphasizing their integration into building materials and components. Earlier waste plastic recycling was excessively studied [...] Read more.
The accumulation of plastic waste poses a significant environmental challenge, necessitating sustainable solutions. This study investigates the potential of recycling waste plastics for use in the construction industry, emphasizing their integration into building materials and components. Earlier waste plastic recycling was excessively studied as an ingredient in concrete composites, roads, and other use in research. However, in this study, recycled plastic is assessed for use as a sole material for structural products. Raw plastics, including high-density polyethylene, Low-Density Polyethylene, polypropylene, polyolefin, samicanite, and virgin polyethylene, were analyzed for recycling through mechanical extrusion, and their mechanical properties were analyzed to determine their feasibility for construction applications. In this study, the extrusion process, combined with engineered dyes, was investigated with comprehensive material testing as per the ASTM standards to obtain the properties desired for construction. Advanced characterization techniques, including SEM, FTIR, and TGA, were employed to evaluate the chemical composition, thermal stability, and impurities of these waste plastics collected from municipal waste. A gas emission analysis during extrusion confirmed a minimal environmental impact, validating the sustainability of the recycling process. Municipal waste plastic has a considerable quantum of HDPE, PP, and LDPE, which was considered in this research for recycling for construction products. A total of 140 samples were recycled through extrusion and tested across shear, flexural, tensile, and compression categories: 35 samples each. The results showed that rHDPE and PP had good tensile strength and shear resistance. The findings pave the way for developing cost-effective, durable, and eco-friendly building materials, such as rebars, corrugated sheet, blocks, and other products, contributing to environmental conservation and resource efficiency for the construction Industry. Full article
Show Figures

Graphical abstract

17 pages, 6220 KiB  
Article
Characterization of Morphological, Thermal, and Mechanical Performances and UV Ageing Degradation of Post-Consumer Recycled Polypropylene for Automotive Industries
by Matilde Arese, Beatrice Cavallo, Gabriele Ciaccio and Valentina Brunella
Materials 2025, 18(5), 1090; https://doi.org/10.3390/ma18051090 - 28 Feb 2025
Cited by 1 | Viewed by 1078
Abstract
Considering the increasing use of plastics in vehicles, the need for sustainable management is becoming a matter of concern. The reintroduction of plastic originated from post-consumer waste in the vehicle manufacturing loop can also be a solution to meet the recent EU ELVs [...] Read more.
Considering the increasing use of plastics in vehicles, the need for sustainable management is becoming a matter of concern. The reintroduction of plastic originated from post-consumer waste in the vehicle manufacturing loop can also be a solution to meet the recent EU ELVs (end-of-life vehicles) legislation in terms of sustainability. This study focuses on post-consumer polypropylene (PP) compounds destined for automotive applications by assessing their morphological, thermal, and mechanical properties. Field Emission Scanning Electron Microscopy (FE-SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) techniques were used. Since the ageing of these materials, caused by the thermo-oxidative degradation process, may compromise their performances, a comprehensive study of their behavior, in comparison to the virgin compound counterpart, was necessary to evaluate the fossil replacement possibility. Furthermore, an additional investigation was conducted after subjecting the materials to UV ageing in order to simulate the degradation effect of solar radiation, with the aim of determining the suitability of the recycled materials in long-term applications. In summary, the results support the feasibility of using recycled post-consumer materials mixed with virgin grade in automotive production, highlighting the stability of thermal and mechanical properties, critical for efficient manufacturing. This research underlines the noteworthy progress in the circularity of automotive plastics, providing a sustainable solution for integrating plastic material waste into new vehicle production. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

16 pages, 3137 KiB  
Article
Post-Industrial Recycled Polypropylene for Automotive Application: Mechanical Properties After Thermal Ageing
by Matilde Arese, Ilaria Bolliri, Gabriele Ciaccio and Valentina Brunella
Processes 2025, 13(2), 315; https://doi.org/10.3390/pr13020315 - 23 Jan 2025
Cited by 1 | Viewed by 2064
Abstract
The transport sector’s impact on climate change and energy-related greenhouse gas (GHG) emissions has raised significant concerns, prompting the automotive industry to transition towards greener solutions. This includes producing lighter vehicles with sustainable materials, like recycled plastics. Understanding the behavior of these new [...] Read more.
The transport sector’s impact on climate change and energy-related greenhouse gas (GHG) emissions has raised significant concerns, prompting the automotive industry to transition towards greener solutions. This includes producing lighter vehicles with sustainable materials, like recycled plastics. Understanding the behavior of these new recycled compounds is crucial, especially regarding their response to ageing and stress conditions throughout a vehicle’s lifecycle. This study aims to investigate the mechanical property variations of virgin and recycled talc-filled polypropylene (PP) compounds used in the automotive industry, emphasizing the effects of thermal ageing after recycling. Polypropylene samples with different talc concentrations and post-industrial recycled content percentages are examined. Thermal (TGA and DSC) and spectral (FT-IR) analysis reveal structural changes due to recycling-induced thermo-mechanical degradation. A multi-axial impact test shows varied ductile and brittle behaviors between virgin and recycled PP, influenced by filler content. Impact strength, tensile, and flexural properties are assessed, highlighting differences between virgin and recycled PP, but maintaining properties over ageing time. Despite thermo-oxidative degradation from recycling and thermal ageing, the mechanical performance of recycled polypropylene materials remains unaffected, making them a viable sustainable alternative for the automotive industry. Full article
Show Figures

Figure 1

21 pages, 4146 KiB  
Article
How Reducing Fossil-Based Plastic Use Can Help the Overall Sustainability of Oyster Farming: The Case of the Gulf of La Spezia
by Daniela Summa, Elena Tamisari, Mattia Lanzoni, Giuseppe Castaldelli and Elena Tamburini
Resources 2025, 14(1), 10; https://doi.org/10.3390/resources14010010 - 8 Jan 2025
Cited by 1 | Viewed by 1427
Abstract
Oyster farming plays a crucial role in sustainable food production due to its high nutritional value and relatively low environmental impact. However, in a scenario of increasing production, it is necessary to consider the issue of plastic use as a limitation to be [...] Read more.
Oyster farming plays a crucial role in sustainable food production due to its high nutritional value and relatively low environmental impact. However, in a scenario of increasing production, it is necessary to consider the issue of plastic use as a limitation to be addressed. A life cycle assessment (LCA) was conducted on oyster farming in La Spezia (Italy) as a case study, utilizing 1 kg of packaged oysters as the functional unit. Fossil-based plastics and wooden packaging were identified as the primary environmental concerns. To analyze potential strategies for reducing the environmental impact of oyster farming, alternative scenarios were considered wherein fossil-based materials were replaced with bio-based materials. Specifically, this study examined the substitution of the current packaging, consisting of a wooden box and a polypropylene (PP) film, with a fully recyclable PP net. Additionally, polylactic acid (PLA), polyhydroxyalkanoates (PHAs), and bio-based polyethylene terephthalate (Bio-PET) were proposed as alternatives to virgin high-density polyethylene (HDPE) and PP for buoys, oyster bags, and boxes. Among the scenarios analyzed, the sole effective strategy to reduce the impact of plastics on the process is to replace them with PHA. In the other cases, the high energy consumption of their non-optimized production renders them disadvantageous options. However, the assessment must include the effects of degradation that traditional plastics can have in the marine environment, an aspect that potentially renders natural fibers more advantageous. The use of PP net packaging has demonstrated high efficacy in reducing impacts and provides a foundation for considering the need to combine sustainability and marketing with current legislation regarding food packaging. Full article
Show Figures

Figure 1

31 pages, 4905 KiB  
Article
Multi-Domain Assessment of Thermomechanical Recycling Based on Bio-Based and Petroleum-Based Additively Manufactured Components
by Niko Nagengast, Nicolas Mandel, Christian Bay, Frank Döpper, Christian Neuber, Hans-Werner Schmidt, Clara Usma-Mansfield and Franz Konstantin Fuss
Recycling 2025, 10(1), 3; https://doi.org/10.3390/recycling10010003 - 2 Jan 2025
Viewed by 1208
Abstract
The surge in global population growth and the escalating demand for social and economic prosperity present formidable challenges in the 21st century. However, asserting the sustainability of some ecological impact reduction initiatives, such as recycling, requires a comprehensive evaluation within various domains, including [...] Read more.
The surge in global population growth and the escalating demand for social and economic prosperity present formidable challenges in the 21st century. However, asserting the sustainability of some ecological impact reduction initiatives, such as recycling, requires a comprehensive evaluation within various domains, including performance, ecology, and economics, and contemporary advancements in integrating quantitative assessments of material and manufacturing properties, coupled with mathematical decision-making approaches, contribute to mitigating subjectivity in determining the efficiency of recycling. This paper implements a robust multi-criteria decision-making (MCDM) approach to address the complexities of recycling, validating its implementation and effectiveness through a case study. The focus is set on the application of bio-based polylactic acid (PLA) and petroleum-based polypropylene (PP) additively manufactured (AM) parts produced through Fused Filament Fabrication (an approach to ecology/performance domains). The work introduces a cost analysis focusing on calculating thermomechanical recycling within the economic domain. The well-known Analytical Hierarchical Process (AHP) provides a structured framework for decision-making (the ecological impact domain) with the focus being on application. The assessment or recycling viability, encompassing AHP calculations, preprocessing, and supplementary tools, is provided by developing an open-source software tool for practitioners in the field of material science and manufacturing. The results indicate a preference for industrial-scaled recycling over virgin or lab-recycled manufacturing, particularly for petroleum-based polypropylene. The versatility and simple utilization of the software tool allow seamless integration for diverse use cases involving different materials and processes. Full article
(This article belongs to the Special Issue Challenges and Opportunities in Plastic Waste Management)
Show Figures

Figure 1

15 pages, 6547 KiB  
Article
Green Recycling for Polypropylene Components by Material Extrusion
by Roberto Spina and Nicola Gurrado
Polymers 2024, 16(24), 3502; https://doi.org/10.3390/polym16243502 - 16 Dec 2024
Cited by 1 | Viewed by 1321
Abstract
High volumetric shrinkage and rheological behavior of polypropylene (PP) are the main problems that make material extrusion (MEX) uncommon for this material. The complexity is raised when recycled materials are used. This research covered different aspects of the MEX process of virgin and [...] Read more.
High volumetric shrinkage and rheological behavior of polypropylene (PP) are the main problems that make material extrusion (MEX) uncommon for this material. The complexity is raised when recycled materials are used. This research covered different aspects of the MEX process of virgin and recycled PP, from the analysis of rough materials to the mechanical evaluation of the final products. Two types of virgin PP (one in pellet and the other in filament form) and one recycled PP were analyzed. Thermal characterization and rheological analysis of these materials were initially employed to understand the peculiar properties of all investigated PP and set filament extrusion. The 3D parts were then printed using processed filaments to check fabrication quality through visual analysis and mechanical tests. A well-structured approach was proposed to encompass the limitations of PP 3D printing by accurately evaluating the influence of the material properties on the final part performance. The results revealed that the dimensional and mechanical performances of the recycled PP were comparable with the virgin filament commonly employed in MEX, making it particularly suitable for this application. Full article
Show Figures

Graphical abstract

23 pages, 6450 KiB  
Article
Predicting the Linear Low-Density Polyethylene Content of Custom Polypropylene Blends and Post-Consumer Materials Using Rheological Measurements
by Dominik Kaineder, Christian Marschik, Ingrid Trofin and Sabine Hild
Polymers 2024, 16(22), 3169; https://doi.org/10.3390/polym16223169 - 14 Nov 2024
Viewed by 1088
Abstract
Contributing to a sustainable economy requires the use of pure recycled materials. Analyzing polyolefin post-consumer materials and cross-contaminations in these materials is an essential part in ensuring consistent product quality. Therefore, the aim of this work was to quantify the linear low-density polyethylene [...] Read more.
Contributing to a sustainable economy requires the use of pure recycled materials. Analyzing polyolefin post-consumer materials and cross-contaminations in these materials is an essential part in ensuring consistent product quality. Therefore, the aim of this work was to quantify the linear low-density polyethylene (LLDPE) content in polypropylene (PP)-dominant strips. The materials investigated included virgin PP, custom PP-LLDPE blends and PP post-consumer recyclates. To this end, differential scanning calorimetry (DSC) and parallel-plate rheometry were used. For complementary measurements, Raman spectroscopy and atomic force microscopy (AFM) were employed, confirming the morphological occurrence of LLDPE enclosed in PP up to 30 wt%. The DSC measurements demonstrated that the evaluated specific melt and recrystallization enthalpies alone are insufficient to quantify the LLDPE content, especially at 1–10 wt%. The rheometric results showed a strong correlation between the cross-over point (COP) and zero-shear viscosity for pure PP grades, and there was a deviation from this correlation depending on the LLDPE content in the PP-LLDPE blends. An approach for determining low (1–15 wt%) and medium (up to 30 wt%) LLDPE quantities in PP via two mathematical models is proposed based on the rheometric measurements of custom blends and can be applied to assess the level of LLDPE contamination in PP post-consumer materials. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

17 pages, 9317 KiB  
Article
Development of Technologies for Processing Polypropylene Foil Waste and Their Use in the Production of Finished Products
by Damian Dziadowiec, Karina Walburg, Danuta Matykiewicz, Jacek Andrzejewski and Marek Szostak
Materials 2024, 17(21), 5192; https://doi.org/10.3390/ma17215192 - 24 Oct 2024
Viewed by 1162
Abstract
This work aims to assess the possibility of using packaging industry waste to modify polypropylene products (PPs). The products were made in the form of extruded foil and injected samples. The products were produced using regranulate made of polypropylene cast foil. Maleic anhydride-modified [...] Read more.
This work aims to assess the possibility of using packaging industry waste to modify polypropylene products (PPs). The products were made in the form of extruded foil and injected samples. The products were produced using regranulate made of polypropylene cast foil. Maleic anhydride-modified polypropylene (MAPP) and polyolefin elastomer (POE) with a glycidyl ester functional group were used to modify the polypropylene. The samples were produced based on 50% foil waste reground and 50% pure PP. The rheological properties of the blends were assessed using the melt mass flow rate (MFR) technique; thermal properties using the differential scanning calorimetry method (DSC). The products manufactured using the injection molding method were subjected to an analysis of mechanical properties, such as tensile strength and impact strength. Also, in the case of film samples, tensile strength was assessed. Color-change assessments with CIE L*a*b* were carried out for all materials. Injection-molded products based on recycled metallized cast foil showed favorable mechanical properties such as tensile strength (1 MAPP = 26.7 MPa; 2 MAPP = 27.1 MPa), which was higher than the original material (cPP = 20.7 MPa). Also, for the films produced from regrind, the tensile strength was at a level similar (1 MAPP = 24.6 MPa; 2 MAPP/POE = 25.1 MPa) to the films extruded from virgin materials (cPP = 24.9 MPa). The introduction of a POE additive to the blends resulted in increased impact strength (1 MAPP/POE = 31 kJ/mol; 2MAPP/POE = 18 kJ/mol; 3 MAPP/POE = 11 kJ/mol) in relation to unmodified samples (cPP = 7 kJ/mol). The introduction of a POE additive to the tested mixtures improved the impact strength of the injected products by almost 4 times for sample 1 MAPP/POE and 2.5 times for sample 2 MAPP/POE in comparison to virgin cPP. These studies confirmed that foil waste can be successfully used to modify polypropylene products shaped both in the injection and extrusion processes. Full article
(This article belongs to the Special Issue Processing of End-of-Life Materials and Industrial Wastes–Volume 2)
Show Figures

Figure 1

Back to TopTop