Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = virgin cooking oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1099 KiB  
Article
Influence of a Virtual Plant-Based Culinary Medicine Intervention on Mood, Stress, and Quality of Life Among Patients at Risk for Cardiovascular Disease
by Andrea M. Krenek, Monica Aggarwal, Stephanie T. Chung, Amber B. Courville, Nicole Farmer, Juen Guo and Anne Mathews
Nutrients 2025, 17(8), 1357; https://doi.org/10.3390/nu17081357 - 16 Apr 2025
Viewed by 826
Abstract
Background: Cooking and dietary intake may affect psychological well-being. Objective: We evaluated the effects of a virtual culinary medicine teaching kitchen intervention on psychosocial health. Methods: In a randomized crossover trial implementing a vegan diet high or low in extra [...] Read more.
Background: Cooking and dietary intake may affect psychological well-being. Objective: We evaluated the effects of a virtual culinary medicine teaching kitchen intervention on psychosocial health. Methods: In a randomized crossover trial implementing a vegan diet high or low in extra virgin olive oil, adults with ≥5% atherosclerotic cardiovascular disease risk participated in eight weekly group cooking classes. Psychosocial survey assessments of perceived stress, positive and negative affect, and quality of life before and after the intervention were compared using paired t-tests and post hoc linear mixed models. Results: Pre-post analysis among 40 participants (75% female, 64.4 ± 8.6 years) indicated a 19% decrease in perceived stress (p < 0.01), 6–8% increase in positive affect (p < 0.04), and 13% decrease in negative affect (p = 0.02). Energy/fatigue and general health-related quality of life improved post-intervention (both p ≤ 0.02). Conclusions: Participation in a group culinary medicine intervention improved mood, stress, and health-related quality of life, warranting larger, diverse studies. Benefits may relate to social support, improved health status, diet factors, and emerging psychosocial influences of cooking. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

15 pages, 1212 KiB  
Article
Plant-Based Culinary Medicine Intervention Improves Cooking Behaviors, Diet Quality, and Skin Carotenoid Status in Adults at Risk of Heart Disease Participating in a Randomized Crossover Trial
by Andrea M. Krenek, Monica Aggarwal, Stephanie T. Chung, Amber B. Courville, Juen Guo and Anne Mathews
Nutrients 2025, 17(7), 1132; https://doi.org/10.3390/nu17071132 - 25 Mar 2025
Cited by 3 | Viewed by 1357
Abstract
Background: Culinary medicine (CM) interventions in teaching kitchens have emerged as novel approaches for influencing dietary behaviors, but their efficacy, content, and delivery vary. Objective: The effects of a virtual vegan CM intervention on behavioral determinants, cooking competencies, diet quality, and [...] Read more.
Background: Culinary medicine (CM) interventions in teaching kitchens have emerged as novel approaches for influencing dietary behaviors, but their efficacy, content, and delivery vary. Objective: The effects of a virtual vegan CM intervention on behavioral determinants, cooking competencies, diet quality, and skin carotenoid status were assessed. Methods: This analysis from a 9-week randomized crossover study evaluated behavioral survey assessments, Whole Plant Food Density (WPFD) as a diet quality indicator utilizing Automated Self-Administered 24 h Dietary Recall data, and skin carotenoid status (SCS) via pressure-mediated reflection spectroscopy at multiple timepoints. Adults at ≥5% atherosclerotic cardiovascular disease (ASCVD) risk followed a vegan diet pattern that was high or low in extra virgin olive oil (EVOO) for 4 weeks each with weekly virtual cooking classes, separated by a 1-week washout period. Qualitative feedback was collected for thematic analysis. Results: In 40 participants (75% female; body mass index, 32 ± 7 kg/m2; age, 64 ± 9 years mean ± SD), perceived control over trajectory of heart disease, knowledge of lifestyle behaviors for heart health, and confidence in cooking skills and preparing a variety of plant-based foods improved post intervention (all p ≤ 0.001). WPFD increased by 69–118% from baseline. Greater SCS changes occurred after high-EVOO (+51.4 ± 13.9 mean ± SEM, p < 0.001) compared to low-EVOO (+6.0 ± 16.4, p = 0.718) diets. Conclusions: A virtual vegan CM intervention improved dietary behaviors and quality, which was associated with reductions in CVD risk factors. SCS is influenced by EVOO intake, warranting consideration when used to estimate fruit and vegetable intake. The potential impacts of CM on behaviors and health outcomes warrant continued research efforts in medical and public health settings. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

21 pages, 4414 KiB  
Article
Regenerative and Innovative Utilization of Coffee Residue and Waste Cooking Oil: Improving Rheological Properties of Recycled Asphalt
by Ruipeng Zhu and Chunhua Hu
Buildings 2025, 15(1), 54; https://doi.org/10.3390/buildings15010054 - 27 Dec 2024
Viewed by 1353
Abstract
Currently, there is limited research on the utilization of spent coffee grounds (SCG) in asphalt pavement. This study explores using SCG as a novel rejuvenator together with waste cooking oil (WCO) to enhance the performance of aged asphalt (AA). The high-temperature performance of [...] Read more.
Currently, there is limited research on the utilization of spent coffee grounds (SCG) in asphalt pavement. This study explores using SCG as a novel rejuvenator together with waste cooking oil (WCO) to enhance the performance of aged asphalt (AA). The high-temperature performance of recycled asphalt was preserved using SCG containing oily components. However, the low-temperature performance of long-term aged asphalt could not be completely restored to the level of virgin asphalt. Therefore, various dosages of SCG and WCO were utilized to optimize the recovery of low-temperature properties while maintaining high-temperature performance. The recycled asphalt (RA) was analyzed through conventional indexes, microscopic characteristics, and rheological properties using penetration and softening point tests, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and a dynamic shear rheometer (DSR). The results showed that the G* of W7S12 increased by 90% relative to virgin asphalt. Additionally, at strain levels of 2.5% and 5%, the fatigue life of W8S18 was approximately 3.39 times and 2.34 times greater, respectively, than that of the virgin asphalt. The addition of a rejuvenator can enhance the low-temperature cracking resistance of aged asphalt. Moreover, the FTIR results indicated that the regeneration mechanism of recycled asphalt consisted of physical blending. In summary, W7S12 exhibited the highest high-temperature performance, while W8S18 demonstrated superior fatigue life. This study may promote the sustainable development of asphalt pavements by utilizing organic waste as a rejuvenator through resource recovery. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 3925 KiB  
Article
Novel PCR-Based Technology for the Detection of Sunflower in Edible and Used Cooking Oils
by Tamara Kutateladze, Kakha Karchkhadze, Kakha Bitskinashvili, Boris Vishnepolsky, Tata Ninidze, David Mikeladze and Nelly Datukishvili
Foods 2024, 13(23), 3760; https://doi.org/10.3390/foods13233760 - 24 Nov 2024
Viewed by 1263
Abstract
Reliable detection of sunflower (Helianthus annuus) in edible and used cooking oil (UCO) is crucial for the sustainable production of food and biodiesel. In this study, a variety of sunflower oils (crude, cold pressed, extra virgin, refined, and UCO) were examined [...] Read more.
Reliable detection of sunflower (Helianthus annuus) in edible and used cooking oil (UCO) is crucial for the sustainable production of food and biodiesel. In this study, a variety of sunflower oils (crude, cold pressed, extra virgin, refined, and UCO) were examined using different methods of DNA extraction and PCR amplification to develop an efficient technology for the identification of sunflower in oils. DNA extraction kits such as NucleoSpin Food, DNeasy mericon Food, and Olive Oil DNA Isolation as well as modified CTAB method were found to be able to isolate amplifiable genomic DNA from highly processed oils. Novel uniplex, double, and nested PCR systems targeting the sunflower-specific helianthinin gene were developed for efficient identification of sunflower. New sunflower DNA markers were revealed by uniplex PCRs. The combination of modified CTAB and nested PCR was demonstrated as a reliable, rapid, and cost-effective technology for detecting traces of sunflower in 700 μL of highly processed oil, including refined and used cooking oil. The study will contribute to both the food industry and the energy sector as developed methods can be used for oil authenticity testing in food and biodiesel production. Full article
Show Figures

Figure 1

16 pages, 1476 KiB  
Article
Enrichment of Breadsticks with Flavoured Oils: Chemical Composition, Antioxidant Activity and Technological and Sensory Properties
by Vincenzo Sicari, Antonio Mincione, Irene Maria Grazia Custureri, Roberta Pino and Monica Rosa Loizzo
Antioxidants 2024, 13(12), 1438; https://doi.org/10.3390/antiox13121438 - 22 Nov 2024
Cited by 1 | Viewed by 1163
Abstract
The present work compares the physical–chemical, organoleptic and antioxidant characteristics of breadsticks (Bs) prepared in the traditional way (BCs) with extra virgin olive oil (EVOO), and with mace (BMs), ginger (BGs) and turmeric (BTs) flavoured olive oil (FOO). Breadsticks’ water activity (aw [...] Read more.
The present work compares the physical–chemical, organoleptic and antioxidant characteristics of breadsticks (Bs) prepared in the traditional way (BCs) with extra virgin olive oil (EVOO), and with mace (BMs), ginger (BGs) and turmeric (BTs) flavoured olive oil (FOO). Breadsticks’ water activity (aw), pH, moisture content (U.R.), total phenol (TPC) and total flavonoid (TFC) content, colorimetric analysis and texture and sensory analysis were used to evaluate the impact of the new recipes on consumer acceptance. The radical scavenging activity was also assessed by using 1,1-diphenyl-2-picryl hydrazine (DPPH) and 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonate (ABTS). The use of FOO influenced breadsticks’ colour with reference to the BG and BT enriched breadsticks, and some variability in free acidity values emerged from the comparison between EVOO and FOO. As expected, peroxide values increased in all enriched breadsticks. Moreover, all flavoured breadsticks were more resistant to lipid oxidation than BCs with an IP value of 92.44, 91.26 and 60.07 h, respectively, for BMs, BGs and BTs. The cooking process of the breadsticks at 180 °C for 25 min did not significantly impact the content of bioactive compounds. BMs showed the highest TPC and TFC with values of 996.32 and 534.41 mg/kg, respectively. Moreover, BMs showed the highest DPPH radical scavenging potential with a value of 393.91 µM TEAC/100 g extract, whereas BGs showed the highest ABTS radical scavenging activity (160.13 µM TEAC/100 g extract). Sensory quantitative descriptive analysis showed the most interesting parameters to be the intensity of toasting for BGs and the intensity of spiciness in BMs. Furthermore, BGs and BTs were found to have a slightly more pungent odour. From the texture assessment, the BC was the crumbliest breadstick, while greater crunchiness was found in the BG and BM samples. Full article
Show Figures

Figure 1

17 pages, 3898 KiB  
Article
Effect of Bio-Oils and Wastewater Sludge on the Performance of Binders and Hot Mix Asphalt with High Reclaimed Asphalt Pavement Content
by Robeam S. Melaku, Jun Liu and Daba S. Gedafa
Materials 2024, 17(17), 4276; https://doi.org/10.3390/ma17174276 - 29 Aug 2024
Viewed by 944
Abstract
Waste Cooking Oil (WCO), Soy Oil (SO), and Wastewater Sludge (WWS) have great potential to increase reclaimed asphalt pavement (RAP) content for economic and environmental benefits. This study explored the effects of SO and WCO on rutting, fatigue cracking, and low-temperature cracking performance [...] Read more.
Waste Cooking Oil (WCO), Soy Oil (SO), and Wastewater Sludge (WWS) have great potential to increase reclaimed asphalt pavement (RAP) content for economic and environmental benefits. This study explored the effects of SO and WCO on rutting, fatigue cracking, and low-temperature cracking performance of binders and Hot Mix Asphalt (HMA) with high RAP content. The potential effect of WWS on the performance and compaction efforts of high RAP content mixes at a 10 °C (50 °F) lower compaction temperature than the control compaction temperature was also investigated. The results indicated that 85% of the RAP binders can be incorporated while maintaining similar performance compared to the control by using 15% SO or 12.5% WCO as a rejuvenator with 2.5% virgin binder. Adding 1% WWS by weight of the total binder improved the binder’s rheological properties, the mix’s cracking performance, and the mix’s density at lower compaction temperatures. Full article
(This article belongs to the Special Issue Advances in Concrete and Binders for Sustainable Engineering)
Show Figures

Figure 1

19 pages, 3869 KiB  
Article
Use of Integral Forage Palm Flour as an Innovative Ingredient in New Fettuccine-Type Pasta: Thermomechanical and Technological Properties, and Sensory Acceptance
by Luiz Eliel Pinheiro da Silva, Sander Rodrigues Moreira, Nathalia de Andrade Neves, Etiene Valéria de Aguiar, Vanessa Dias Capriles, Tatiana Nunes Amaral and Marcio Schmiele
Foods 2024, 13(17), 2683; https://doi.org/10.3390/foods13172683 - 26 Aug 2024
Viewed by 1987
Abstract
Dehydrated integral forage palm cladode flour (FPF) presents a promising nutritional and functional approach to enriching fettuccine-type pasta. This study investigated the use of microwave-dehydrated FPF (at 810 W) as a partial wheat flour substitute (0, 5, 10, 15, and 20% w/ [...] Read more.
Dehydrated integral forage palm cladode flour (FPF) presents a promising nutritional and functional approach to enriching fettuccine-type pasta. This study investigated the use of microwave-dehydrated FPF (at 810 W) as a partial wheat flour substitute (0, 5, 10, 15, and 20% w/w) in fresh and dry fettuccine-type pasta. The thermomechanical properties of flour blends and the technological and sensory attributes of the resulting pasta were evaluated. FPF displayed a high protein (15.80%), mineral (15.13%), dietary fiber (67.35%), and total soluble phenolic compound (251 mg EAG·100 g−1) content. While water absorption (~58%) and dough stability remained consistent across formulations, a decrease in maximum torque during heating was observed (p < 0.05). Fettuccine-type pasta containing 10% FPF exhibited an acceptable optimal cooking time, solid loss, weight gain, and textural properties for both fresh and dry pasta. Sensory evaluation revealed acceptability above 63% for pasta with 10% FPF, with a slight preference for the fresh version. Fresh pasta flavored with garlic and extra virgin olive oil (garlic and oil pasta) achieved a sensory acceptance rate of 79.67%. These findings demonstrate the potential of FPF for fettuccine-type pasta production, contributing desirable technological characteristics and achieving acceptable sensory profiles. Full article
(This article belongs to the Special Issue Formulation and Nutritional Aspects of Cereal-Based Functional Foods)
Show Figures

Figure 1

13 pages, 1178 KiB  
Article
Assessment of Three Recycling Pathways for Waste Cooking Oil as Feedstock in the Production of Biodiesel, Biolubricant, and Biosurfactant: A Multi-Criteria Decision Analysis Approach
by Giovanni De Feo, Carmen Ferrara, Luana Giordano and Libero Sesti Ossèo
Recycling 2023, 8(4), 64; https://doi.org/10.3390/recycling8040064 - 20 Aug 2023
Cited by 32 | Viewed by 8325
Abstract
The management of waste cooking oil (WCO) often poses significant challenges. The improper disposal of WCO results in negative environmental impacts and economic losses. However, from a circular economy perspective, WCO can be recycled and used as a sustainable feedstock for numerous industrial [...] Read more.
The management of waste cooking oil (WCO) often poses significant challenges. The improper disposal of WCO results in negative environmental impacts and economic losses. However, from a circular economy perspective, WCO can be recycled and used as a sustainable feedstock for numerous industrial products, replacing virgin vegetable oils. This approach enables the recovery of resources while simultaneously addressing the problem of WCO disposal. By employing a multi-criteria decision analysis (MCDA) approach, the study assesses three alternative recycling pathways for WCO used as a feedstock in the production of (A1) biodiesel, (A2) biolubricant, and (A3) biosurfactant. The aim is to identify the optimal alternative, taking into account environmental, economic, and technical factors. The procedure involved a team of chemical engineers working in the WCO recycling sector who were selected as decision makers. The ‘priority scale’ combined with the Paired Comparison Technique was employed as a weighting method to evaluate the selected criteria. The results revealed that the decision makers considered environmental sustainability as the most crucial evaluation criterion, followed by the economic criterion. In contrast, the aspect of process management was deemed less significant. Among the compared alternatives, utilizing WCO as a feedstock for biosurfactant production was assessed as the optimal WCO recycling solution. This alternative not only demonstrated the lowest coefficient variation but was also deemed the most favourable option. Biolubricant production was determined to be the second-best alternative. The adopted MCDA approach proved to be a reliable and effective tool, enabling the clear identification of the preferred WCO recycling alternative among those assessed. This was achieved through the utilization of the decision makers’ expertise and knowledge. Full article
(This article belongs to the Special Issue Feature Papers in Recycling 2023)
Show Figures

Graphical abstract

11 pages, 737 KiB  
Article
Detection of Aroma Profile in Spanish Rice Paella during Socarrat Formation by Electronic Nose and Sensory Panel
by Juan Diego Barea-Ramos, José Pedro Santos, Jesús Lozano, María José Rodríguez, Ismael Montero-Fernández and Daniel Martín-Vertedor
Chemosensors 2023, 11(6), 342; https://doi.org/10.3390/chemosensors11060342 - 11 Jun 2023
Cited by 4 | Viewed by 2956
Abstract
Valencian paella is a world-famous dish that is originally from the Valencia Spanish region, in which rice is the basic ingredient along with others such as extra virgin olive oil, vegetables, seafood and/or meat. During the cooking process, the paella rice suffers a [...] Read more.
Valencian paella is a world-famous dish that is originally from the Valencia Spanish region, in which rice is the basic ingredient along with others such as extra virgin olive oil, vegetables, seafood and/or meat. During the cooking process, the paella rice suffers a loss of moisture and the socarrat is formed, being crunchy and brown in color. The objective of this work was to evaluate the aromas generated during the formation of socarrat in paella rice (P) by an electronic nose (E-nose), discriminating against the aromatic profile of white rice (WR), and validate it with sensory analysis and gas chromatography. The results of the sensory analysis showed a decrease in positive fruity and sweet aromas of some volatile compounds such as hexanal and nonanal, among others, and an increase in roasted aromas due to the appearance of furans and furanones compounds, which is probably associated with socarrat formation. The acrylamide content increased by 33.8–48.3% as the intensity of the thermal treatment rose. The higher value of acrylamide (179.5 ng g−1) was achieved in P. The E-nose was sensitive to changes in the aromatic profile, and the PCA analysis explained 85.7% and 91.6% of the variance for WR and P, respectively. Furthermore, a strong clustering in the thermal treatments was observed, which is related to the composition of volatile compounds. Full article
Show Figures

Figure 1

16 pages, 3254 KiB  
Article
Exploring the Self-Healing Capability and Fatigue Performance of Modified Bitumen Incorporating Waste Cooking Oil and Polyphosphoric Acid
by Wentong Wang, Dedong Guo, Congcong Liu, Augusto Cannone Falchetto, Xinzhou Li and Teng Wang
Buildings 2023, 13(5), 1188; https://doi.org/10.3390/buildings13051188 - 29 Apr 2023
Cited by 4 | Viewed by 2102
Abstract
Bitumen’s self-healing capability is critical to the bitumen industry’s sustainable development. This work attempts to examine the self-healing property and fatigue behavior of bitumen using waste cooking oil (WCO) and polyphosphoric acid (PPA) in bitumen modification. Different components of WCO were mixed with [...] Read more.
Bitumen’s self-healing capability is critical to the bitumen industry’s sustainable development. This work attempts to examine the self-healing property and fatigue behavior of bitumen using waste cooking oil (WCO) and polyphosphoric acid (PPA) in bitumen modification. Different components of WCO were mixed with PPA and bitumen for the initial modification. The linear amplitude sweep (LAS) test was used to evaluate the fatigue behavior of the modified bitumen. To assess the extent of bitumen healing after a fatigue-healing test, evaluation indicators, including fatigue life recovery (FLR), modulus recovery (MR), and dissipated energy recovery (DER), were selected. Meanwhile, a radar chart was used to analyze the integrated performance of WCO/PPA (WP)-modified bitumen. Lastly, the SARA fractions were separated from the bitumen to evaluate the modification mechanism. It was observed that the inclusion of PPA and WCO enhanced fatigue behavior. For 2% PPA and an intermediate component (IC) of WCO, the fatigue life of the LAS prediction model showed extreme values, with an increase of 669% over virgin bitumen. Regardless of the PPA concentration, a considerable increase in FLR, MR, and DER was seen in the bitumen processed with IC compared to virgin bitumen. Additionally, as the healing time was extended, the increment in the virgin bitumen’s healing indicators was higher than that of the modified bitumen. SARA results indicated that adding PPA changes the bitumen from a soluble state to a gel state. An innovative approach has been proposed to promote sustainable development within the bitumen industry. Full article
(This article belongs to the Special Issue Materials and Design for Advanced Functional Pavements)
Show Figures

Figure 1

22 pages, 11115 KiB  
Article
Optimised Sunflower Oil Content for Encapsulation by Vibrating Technology as a Rejuvenating Solution for Asphalt Self-Healing
by Jose L. Concha, Rodrigo Delgadillo, Luis E. Arteaga-Pérez, Cristina Segura and Jose Norambuena-Contreras
Polymers 2023, 15(6), 1578; https://doi.org/10.3390/polym15061578 - 22 Mar 2023
Cited by 15 | Viewed by 3203
Abstract
This study aimed to determine an optimal dosage of sunflower oil (i.e., Virgin Cooking Oil, VCO) as a rejuvenator for asphalt self-healing purposes, evaluating its effect on the chemical (carbonyl, and sulfoxide functional groups), physical (penetration, softening point, and viscosity), and rheological (dynamic [...] Read more.
This study aimed to determine an optimal dosage of sunflower oil (i.e., Virgin Cooking Oil, VCO) as a rejuvenator for asphalt self-healing purposes, evaluating its effect on the chemical (carbonyl, and sulfoxide functional groups), physical (penetration, softening point, and viscosity), and rheological (dynamic shear modulus, and phase angle) properties of long-term aged (LTA) bitumen. Five concentrations of sunflower oil (VCO) were used: 1%, 2%, 3%, 4%, and 5% vol. of LTA bitumen. VCO was encapsulated in alginate biopolymer under vibrating jet technology using three biopolymer:oil (B:O) mass ratios: 1:1, 1:5, and 1:9. The physical, thermal, and mechanical properties of the capsules were studied, as well as their effect on the physical properties of dense asphalt mixtures. The main results showed that an optimal VCO content of 4% vol. restored the chemical, physical, and rheological properties of LTA bitumen to a short-term ageing (STA) level. VCO capsules with B:O ratios of 1:5 presented good thermal and mechanical stability, with high encapsulation efficiency. Depending on the B:O ratio, the VCO capsule dosage to rejuvenate LTA bitumen and asphalt mixtures varied between 5.03–15.3% wt. and 0.24–0.74% wt., respectively. Finally, the capsule morphology significantly influenced the bulk density of the asphalt mixtures. Full article
(This article belongs to the Special Issue Polymeric Self-Healing Materials II)
Show Figures

Graphical abstract

22 pages, 1963 KiB  
Review
Review on Performance of Asphalt and Asphalt Mixture with Waste Cooking Oil
by Yaofei Luo and Ke Zhang
Materials 2023, 16(4), 1341; https://doi.org/10.3390/ma16041341 - 4 Feb 2023
Cited by 29 | Viewed by 3835
Abstract
To make full use of the regenerative value of waste cooking oil, and to solve the environmental pollution and food security issues caused by waste cooking oil, waste cooking oil was suggested for use in asphalt. Waste cooking oil was used to adjust [...] Read more.
To make full use of the regenerative value of waste cooking oil, and to solve the environmental pollution and food security issues caused by waste cooking oil, waste cooking oil was suggested for use in asphalt. Waste cooking oil was used to adjust the performance of virgin and aged asphalt. This review article summarizes research progress on the performance of asphalt and asphalt mixture with waste cooking oil. The results showed that a moderate dosage of waste cooking oil will improved the low-temperature performance and construction workability of petroleum asphalt and aged asphalt. The mixing and compaction temperature of asphalt mixture with waste cooking oil are reduced by up to 15 °C. The rutting resistance and fatigue resistance of modified asphalt and modified asphalt mixture with waste cooking oil are damaged. After the addition of waste cooking oil in aged asphalt, the high-temperature performance and shear rheologic property of aged asphalt will be recovered. The regeneration effect of waste cooking oil on aged asphalt and aged asphalt mixture is close to that of a traditional regeneration agent, and the partial performance of asphalt or asphalt mixture with waste cooking oil is better. There is no chemical reaction between waste cooking oil and asphalt, but the asphalt component and absorption peak intensity of partial functional groups are changed. The light components content of asphalt binder is usually increased. Further research regarding the engineering application of asphalt mixture with waste cooking oil should be conducted. The method for improving the performance of asphalt and asphalt mixture with waste cooking oil will be mainly researched. Full article
Show Figures

Figure 1

19 pages, 1265 KiB  
Article
Fecal Microbiota, Bile Acids, Sterols, and Fatty Acids in Dogs with Chronic Enteropathy Fed a Home-Cooked Diet Supplemented with Coconut Oil
by Carla Giuditta Vecchiato, Carlo Pinna, Chi-Hsuan Sung, Francesca Borrelli De Andreis, Jan S. Suchodolski, Rachel Pilla, Costanza Delsante, Federica Sportelli, Ludovica Maria Eugenia Mammi, Marco Pietra and Giacomo Biagi
Animals 2023, 13(3), 502; https://doi.org/10.3390/ani13030502 - 31 Jan 2023
Cited by 8 | Viewed by 5442
Abstract
Medium-chain fatty acids (MCFAs) are considered to be interesting energy sources for dogs affected by chronic enteropathies (CE). This study analyzed the clinical scores, fecal microbiota, and metabolomes of 18 CE dogs fed a home-cooked diet (HCD) supplemented with virgin coconut oil (VCO), [...] Read more.
Medium-chain fatty acids (MCFAs) are considered to be interesting energy sources for dogs affected by chronic enteropathies (CE). This study analyzed the clinical scores, fecal microbiota, and metabolomes of 18 CE dogs fed a home-cooked diet (HCD) supplemented with virgin coconut oil (VCO), a source of MCFA, at 10% of metabolizable energy (HCD + VCO). The dogs were clinically evaluated with the Canine Chronic Enteropathy Activity Index (CCECAI) before and at the end of study. Fecal samples were collected at baseline, after 7 days of HCD, and after 30 days of HCD + VCO, for fecal score (FS) assessment, microbial analysis, and determination of bile acids (BA), sterols, and fatty acids (FA). The dogs responded positively to diet change, as shown by the CCECAI improvement (p = 0.001); HCD reduced fecal fat excretion and HCD + VCO improved FS (p < 0.001), even though an increase in fecal moisture occurred due to HCD (p = 0.001). HCD modified fecal FA (C6:0: +79%, C14:0: +74%, C20:0: +43%, C22:0: +58%, C24:0: +47%, C18:3n−3: +106%, C20:4n−6: +56%, and monounsaturated FA (MUFA): −23%, p < 0.05) and sterol profile (coprostanol: −27%, sitostanol: −86%, p < 0.01). VCO increased (p < 0.05) fecal total saturated FA (SFA: +28%, C14:0: +142%, C16:0 +21%, C22:0 +33%) and selected MCFAs (+162%; C10:0 +183%, C12:0 +600%), while reducing (p < 0.05) total MUFA (−29%), polyunsaturated FA (−26%), campesterol (−56%) and phyto-/zoosterols ratio (0.93:1 vs. 0.36:1). The median dysbiosis index was <0 and, together with fecal BA, was not significantly affected by HCD nor by VCO. The HCD diet increased total fecal bacteria (p = 0.005) and the abundance of Fusobacterium spp. (p = 0.028). This study confirmed that clinical signs, and to a lesser extent fecal microbiota and metabolome, are positively influenced by HCD in CE dogs. Moreover, it has been shown that fecal proportions of MCFA increased when MCFAs were supplemented in those dogs. The present results emphasize the need for future studies to better understand the intestinal absorptive mechanism of MCFA in dogs. Full article
Show Figures

Figure 1

16 pages, 1622 KiB  
Article
Effect of Oil Type Used in Neapolitan Pizza TSG Topping on Its Physical, Chemical, and Sensory Properties
by Amalia Piscopo, Angela Zappia, Antonio Mincione, Roccangelo Silletti, Carmine Summo and Antonella Pasqualone
Foods 2023, 12(1), 41; https://doi.org/10.3390/foods12010041 - 22 Dec 2022
Cited by 5 | Viewed by 3063
Abstract
Background: According to the regulations of the Neapolitan Pizza TSG, extra virgin olive oil must be exclusively used as topping ingredient, together with tomato for pizza marinara-type production. As, often deliberately, other oils are replaced by pizza makers for economical and organoleptic purposes, [...] Read more.
Background: According to the regulations of the Neapolitan Pizza TSG, extra virgin olive oil must be exclusively used as topping ingredient, together with tomato for pizza marinara-type production. As, often deliberately, other oils are replaced by pizza makers for economical and organoleptic purposes, the present study was conducted to analyze the quality of pizza depending on the oil typology used. Methods: Chemical and sensory analyses were performed on olive oils and on pizza topping mix samples after cooking to detect changes due to the applied cooking processing. Results: The results revealed the best quality of a monovarietal olive oil (Ottobratica cv.) for their peculiar phenolic content related to the best oxidation stability after pizza’s cooking, expressed as bioactive amounts and lower presence of undesired volatile compounds. Conclusions: The use of an extra virgin monovarietal olive oil, such as Ottobratica cv., in the topping of pizza is preferable to other oils, also EVOO, because of its higher quality, which is reflected in greater health and pleasant characteristics from a sensorial point of view. Full article
(This article belongs to the Special Issue Advances in the Quality of the Food Supply Chain for Bakery Products)
Show Figures

Figure 1

20 pages, 5713 KiB  
Article
Biopolymeric Capsules Containing Different Oils as Rejuvenating Agents for Asphalt Self-Healing: A Novel Multivariate Approach
by Jose L. Concha, Luis E. Arteaga-Pérez, Irene Gonzalez-Torre, Quantao Liu and Jose Norambuena-Contreras
Polymers 2022, 14(24), 5418; https://doi.org/10.3390/polym14245418 - 11 Dec 2022
Cited by 14 | Viewed by 2791
Abstract
This study evaluated the effect of two encapsulation methods (i.e., dropping funnel and syringe pump), two concentrations of the alginate-based encapsulating material (2%, and 3%), and three oils as bitumen rejuvenators (virgin sunflower oil, waste cooking oil, and virgin engine oil) on the [...] Read more.
This study evaluated the effect of two encapsulation methods (i.e., dropping funnel and syringe pump), two concentrations of the alginate-based encapsulating material (2%, and 3%), and three oils as bitumen rejuvenators (virgin sunflower oil, waste cooking oil, and virgin engine oil) on the morphological, physical, chemical, thermal, and mechanical properties of encapsulated rejuvenators for asphalt self-healing purposes. A general factorial design 2 × 2 × 3 was proposed to design 12 different Ca-alginate capsules. Significant differences on the morphological, physical, and mechanical properties of the capsules were analysed by three-way ANOVA and Tukey HSD Post Hoc analyses. The effect of the type of oil on the self-healing capacity of cracked bitumen samples was also evaluated. The main results showed that the design parameters and their interactions significantly affected the morphological, physical, and mechanical properties of the capsules. Capsules synthesised via syringe pump method, with virgin cooking oil and 2% alginate was the most appropriate for asphalt self-healing purposes since its uniform morphology, encapsulation efficiency up to 80%, thermal degradation below 5% wt., and compressive strength above the reference asphalt compaction load of 10 N. Finally, the healing tests showed that virgin cooking oil can be potentially used as a rejuvenator to promote asphalt crack-healing. Full article
(This article belongs to the Special Issue Application of Polymer Materials in Pavement Design)
Show Figures

Figure 1

Back to TopTop