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Abstract: Valencian paella is a world-famous dish that is originally from the Valencia Spanish region,
in which rice is the basic ingredient along with others such as extra virgin olive oil, vegetables,
seafood and/or meat. During the cooking process, the paella rice suffers a loss of moisture and the
socarrat is formed, being crunchy and brown in color. The objective of this work was to evaluate the
aromas generated during the formation of socarrat in paella rice (P) by an electronic nose (E-nose),
discriminating against the aromatic profile of white rice (WR), and validate it with sensory analysis
and gas chromatography. The results of the sensory analysis showed a decrease in positive fruity
and sweet aromas of some volatile compounds such as hexanal and nonanal, among others, and
an increase in roasted aromas due to the appearance of furans and furanones compounds, which is
probably associated with socarrat formation. The acrylamide content increased by 33.8–48.3% as the
intensity of the thermal treatment rose. The higher value of acrylamide (179.5 ng g−1) was achieved
in P. The E-nose was sensitive to changes in the aromatic profile, and the PCA analysis explained
85.7% and 91.6% of the variance for WR and P, respectively. Furthermore, a strong clustering in the
thermal treatments was observed, which is related to the composition of volatile compounds.

Keywords: acrylamide; sensory analysis; socarrat; volatile compounds; principal component analysis

1. Introduction

Paella is a typical Spanish dish of Valencian origin that became a national dish during
the early years of the dictatorship in Spain, making it the culinary embodiment of the
concept of Spanish nationality that persists to this day. Nowadays, all foreigners visiting
Spain know that paella is the emblematic dish of Spain [1]. For the preparation of paella,
a specific variety of rice, called bomba rice, is used due to its organoleptic and physical
properties [2]. The main ingredients used in paella are extra virgin olive oil, peppers,
crushed tomato, prawns, clams, mussels and crustaceans. Other ingredients such as
chicken or rabbit can also be added, making it a mixed paella [1]. For a 100 g portion of
paella, it contains 176 kcal, 7.7% protein and 6.2% lipids [3].

On the other hand, the surface of the paella pan is very important as it must allow the
liquid in which the rice is cooked to evaporate. This therefore leads to the formation of
socarrat. The socarrat is formed when the rice sticks to the bottom and the side of the pan.
The socarrat has a brown color and a crispy quality [4]. Therefore, the heat provided to the
rice must be sufficient to form a crust on the pan and it must be prevented from burning
excessively [5].
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Although there are studies on the effect of the roasting of rice kernels [6], there are
no studies on the effect of socarrat on the aroma sensory properties of rice. According to
Li et al. (2021) [7] the contaminants that are prominent in processed foods subjected to
high temperatures are acrylamide, polycyclic aromatic hydrocarbons, heterocyclic aromatic
amines, chloropropanol ester and N-nitroso compounds. Furthermore, several researchers
have determined the concentration of various toxic compounds such as acrylamide, furfuryl
alcohol, furan and 5-hydroxymethylfurfural in heat-induced coffee [8]. In paella rice, due
to the high heat treatment used, acrylamide and furfural are found as major chemical
contaminants.

Solid-phase extraction techniques and gas chromatography–mass spectrometry are
used for the identification of different volatile organic compounds, some of which are toxic.
Ramírez-Guízar et al. [9] used this method for the identification of nitrosamines, methanol
and furfural. However, some researchers have used liquid chromatography with mass
spectroscopy for acrylamide evaluation in food [10]. These traditional techniques require
specialized technical staff and long analysis times [11].

Therefore, non-destructive techniques are available as an alternative. The most used
non-destructive techniques for quality assessment are near-infrared spectroscopy, ultra-
sound measurement, machine vision, hyperspectral imaging, and electronic noses [12]. The
electronic nose (E-nose) was used in several research works for determining the quality of
table olive [13], virgin olive oil [14], carrots [15] and coffee [16]. This electronic device is
powerful, useful and fast, and could be used to assist in gas chromatography and sensory
evaluation. Thus, the purpose of this study was to evaluate the aromas during the forma-
tion of socarrat in Paella rice using an electronic nose to discriminate between the aromatic
profile of white rice and paella, and validating the results with sensory analysis and gas
chromatography with MS detection.

2. Materials and Methods
2.1. Elaboration of Paella

Commercial rice of the ‘bomba’ variety was selected to carry out this experiment. Two
different experiments were carried out: (i) cooking white rice (WR) without the paella
ingredients, and (ii) cooking paella (P) with its characteristic ingredients. Extra virgin
olive oil was added to the pan over the heat, and when it was hot, 100 g of chopped squid
was fried with salt and pepper. When it was cooked, the squid was placed on the plate.
Then, two chopped garlic cloves were cooked in the pan for a few minutes along with two
chopped red peppers. Next, 200 g of rice was added to the pan and it was fried for a few
minutes, and 50 g of natural tomato, dusted saffron and salt was added. The entire mixture
was gently mixed until 300 mL of commercial broth was added. It was cooked well for
10 min, and another 50 mL of broth was incorporated to ensure the rice cooked well and
was then cooked for another 5 min. This is the time needed to make the socarrat. We raised
the heat to the maximum in the center of the paella for 2 min, and then the fire was turned
off and left to rest for 5 min. During socarrat elaboration, different samples (1, 2, 3 and
4) were taken. White rice was made in the same way without the addition of any type of
ingredients. Three elaborations of each of the experiments were carried out.

2.2. Analysis
2.2.1. Humidity and Instrumental Color

The moisture content was obtained from 5 g of rice (WR and P) by drying in a force
convection oven (Memmert, S.L.) at 100 ◦C for 24 h until a constant weight was reached.
The color was measured according to the CIELab system using a Konica Minolta CM600
spectrophotometer. The parameters of brightness (L*), green to red (a*) and blue to yellow
(b*) were obtained.
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2.2.2. Acrylamide Quantification by HPLC-MS-QQQ

The determination of acrylamide (ng g−1) was carried out according to the methodol-
ogy described by Fernández et al. [17]. MassHunter software B.07.00 (Agilent, Santa Clara,
CA, USA) was used for data acquisition and management.

2.2.3. Sensory Analysis

Sensory analysis was accomplished by 9 tasters belonging to the Research Center of
Extremadura (CICYTEX) and the University of Extremadura (UEx), who were trained for
the descriptive analysis of products derived from rice. The evaluations were performed
in a tasting room with standardized booths for the sensory analysis of food. Different
tasting sessions were organized between groups of 3 tasters who evaluated the olfactory
profile of the samples. White rice and paella rice were prepared in the kitchen of the
tasting room, and at different moments of processing (WR1 to WR4 for the white rice,
and P1 to P4 for the paella rice) attributes such as wet cereal, shellfish, roasted and burnt
were evaluated using a non-structural scale of 10 cm (0: not detected to 10: maximum
intensity). Medians of the values obtained in the sensory evaluation for each attribute with
an acceptable coefficient of variation (CV) < 20% were obtained. To comply with the Ethics
Committee when conducting research with human beings, the tasters were informed of the
trial through a structured document and consented to participating by signing.

2.2.4. Volatile Organic Compound Analysis

These compounds were determined by the methods described by Sánchez et al. [13]
and López-López et al. [18]. First, 10 g of the sample was homogenized, of which approxi-
mately 2 g was used in a glass vial of 15 mL with 7.0 mL of 30% (w/v) NaCl. The extraction
was carried out with the help of a StableFlex fiber (PDMS/DVB) with a size of 65 µm
(Supelco), and the extraction was carried out at 40 ◦C for 30 min. Analyses were performed
on a triple-quadrupole gas chromatograph (Bruker Scion 456-GC, Markham, ON, Canada)
with a DB WAXETR capillary column (60 m × 0.25 mm; ID: 0.25 mm), and mass spectra
were used for identification with a NIST standard reference database.

2.2.5. E-Nose Analysis

Researchers from the School of Industrial Engineering at the University of Extremadura
were the designers of the handmade electronic device (E-nose) used in this experiment.
This device contains four electronic chips, in which there is a total of eleven signals from
metal oxide (MOX) sensors. These belong to the latest generation of digital gas sensors.
One or more gas sensors, other sensors (temperature, humidity and atmospheric pressure)
alongside the signal processor, the controller of the whole system and the I2C communi-
cation module can be found in the same housing. Each of them emits a different signal
regarding the aroma of the sample headspace, and thus a different fingerprint signal is ob-
tained for different samples. The composition of the array of the sensors was optimized by
performing previous measurements for typical compounds of food aromas. The designed
E-nose also incorporates temperature and humidity sensors for ambient temperature and
humidity monitoring and correction with compensation algorithms.

Samples (~3 g) were placed in the tasting glasses in the same way as the tasting panel
and the E-nose was put on the upper part of the cup. The standard glasses with the samples
were put on a heating block at 25 ◦C. Each cycle of acquisition of the data of the sample
consisted of two different parts after an initial period of sensor stabilization. In a first phase,
known as the adsorption phase, the E-nose was left to adsorb the headspace of the sample
for 60 s. Once this time elapsed, the electronic device was moved to another empty cup to
carry out the desorption phase for 30 s to obtain the baseline. A relative resistance method
was used for sensor calibration with respect to the baseline and for the feature extraction.
Eight measurements (repetitions) were made for each rice sample. The analytical data were
transferred from an electronic nose to an intelligent device (smartphone) via Bluetooth, and
the multivariate analysis was completed [19].
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2.3. Chemometric Analysis

MATLAB software and PLS_Toolbox were used for chemometric analysis. Principal
component analysis (PCA) and partial least squares (PLS) were the methods used to reduce
the dimensionality of the E-nose sensor data.

2.4. Statistical Analysis

For the statistical analyses, SPSS version 18.0 (SPSS Inc., Chicago, IL, USA) was used
to apply the one-way ANOVA with Tukey’s method (p < 0.05).

3. Results and Discussion
3.1. Evaluation of the Physicochemical Properties

The results obtained for moisture and color of the different samples of rice subjected
to thermal treatment are shown in Table 1. In both rice samples, we observed a decrease
in moisture content as the thermal treatment time increased (48.8–28.5 for white rice, and
55.7–38.8 for paella rice). Paella rice samples showed a higher moisture content, which may
be due to the other added ingredients. Other researchers have determined the moisture
distribution in rice grains during thermal treatment and obtained similar results where the
moisture decreased with treatment time [20].

Table 1. Moisture and CIELab color of white rice and elaborated paella. Results are expressed as
mean ± standard deviation (SD) of three replicates. Different lowercase letters mean statistically
significant differences between samples (p < 0.05). WR: white rice; P: paella.

Treatments
White Rice

Humidity (%) L* a* b*

WR1 48.8 ± 2.3 a 73.4 ± 3.0 a −1.3 ± 0.2 8.6 ± 0.9 d
WR2 44.7 ± 1.2 b 67.4 ± 3.2 b −1.0 ± 0.4 10.2 ± 2.0 c
WR3 37.7 ± 1.2 c 60.9 ± 5.0 c −0.4 ± 0.5 14.4 ± 2.7 b
WR4 28.5 ± 2.5 d 45.3 ± 6.9 d 2.5 ± 1.3 21.1 ± 3.6 a

Treatments
Paella

Humidity (%) L* a* b*

P1 57.7 ± 1.2 a 55.1 ± 3.8 a 10.9 ± 1.3 a 54.2 ± 4.0 a
P2 51.1 ± 1.1 b 57.3 ± 6.2 a 11.8 ± 1.4 a 56.7 ± 6.3 a
P3 47.8 ± 1.1 c 47.4 ± 3.5 b 11.8 ± 0.6 a 48.9 ± 3.2 b
P4 38.8 ± 2.2 d 18.7 ± 2.9 c 4.1 ± 2.2 b 11.4 ± 6.1 c

Color is one of the most important sensory attributes for consumers. In this study,
the color parameters (according to the CIELab color space) of the WR and P subjected to
thermal treatment at different times were analyzed. Regarding the brightness parameter
(L*), we observed higher values in WR compared to P (Table 1). This is in agreement
with the CIELab space, in which more positive values of L* are associated with the color
white. In both samples, L* decreases with increasing thermal treatment time. On the other
hand, the a* parameter (green (−) to red (+)), showed values close to 0 for white rice,
suggesting grayish-white tones. However, in paella rice, the a* parameter showed higher
positive values for treatments P1 to P3 (10.9–11.8), but decreased in P4 (4.1). These values
justify the change in color of paella rice from yellow-orange for the first sampling times,
to toasted-burnt on the last sampling time. Regarding the parameter b* (from blue (−)
to yellow (+)), higher values were obtained in paella rice due to the coloring added in its
preparation. However, this color decreases with cooking time, appearing darker (brown),
which coincides with a decrease in the values of the b* parameter. In white rice the b*
parameter increases with the heat treatment, going from white to yellow tones. Other
researchers have determined the color and other parameters to observe the temperature
effect on the kinetics of the drying of cooked rice and its quality after rehydration [21],
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and they have also determined the color in samples of olives subjected to heat treatments,
observing their evolution towards a brownish shade.

3.2. Sensory Analysis

A descriptive sensory analysis to evaluate attributes such as wet cereal, shellfish,
roasted and burnt during the cooking process was carried out to verify the discrimination
of the aromatic sensory characteristics of WR vs. P (Table 2). The attributes are related to
the grain and cooking process (wet cereal), added ingredients (shellfish), and cooking time
(roasted and burnt). These last attributes are associated with the formation of browning
products, which is mainly due to the Maillard reaction (MR) [22]. They are often amenable
for developments in the palatability of foods [23] through the development of desirable
sensory attributes such as colors, aromas and flavors [24]. However, this processing at high
temperatures gives rise to the production of unwanted compounds such as acrylamide [10]
and 5-hydroxymethylfurfural that are undesirable food contaminants [25].

Table 2. Descriptive sensory olfactory evaluation of white rice and paella aroma evaluated by the
tasting panel. Results are expressed as mean ± standard deviation (SD) of three replicates. Different
lowercase letters mean statistically significant differences between samples (p < 0.05). WR: white rice;
P: paella; n.d.: not detected.

Treatments
White Rice

Wet Cereal Shellfish Roasted Burnt

WR1 4.2 ± 0.6 b n.d. n.d. n.d.
WR2 5.1 ± 0.2 a n.d. n.d. n.d.
WR3 2.5 ± 0.5 c n.d. 3.0 ± 0.5 a 2.3 ± 0.5 b
WR4 n.d. n.d. n.d. 4.8 ± 0.6 a

Treatments
Paella

Wet Cereal Shellfish Roasted Burnt

P1 n.d. 4.8 ± 0.5 a n.d. n.d.
P2 n.d. 4.6 ± 0.6 a n.d. n.d.
P3 n.d. 2.9 ± 0.3 b 2.5 ± 0.3 b 0.6 ± 0.1 b
P4 n.d. 2.1 ± 0.3 c 4.5 ± 0.6 a 2.2 ± 0.3 a

The wet cereal aroma was only detected in WR, being more intense in the second
sampling time (WR2), which is probably due to a longer cooking process time that favors
the formation of the aroma. From the third sampling time (WR3), its perception begins to
decrease due to the presence of other roasted and burnt aromas. For the last sampling time
(WR4), the wet cereal aroma was not detected and only a burnt aroma appeared. In paella
rice, the wet cereal aroma was not detected at any sampling time due to the presence of
other aromas related to the added ingredients such as shellfish. This aroma in paella rice
was detected with greater intensity in the first sampling times (P1 and P2), but decreased
significantly from the third time (P3) (p < 0.05), at which time the roasted and burnt aromas
began to appear. We can highlight the difference in roasted and burnt aromas observed
in the last sampling times (WR4 and P4). Thus, in WR the tasters only perceived a burnt
aroma, and a roasted aroma was not detected at the last sampling time (WR4). However, in
P, the roasted aroma was perceived with greater intensity compared to the burnt aroma.
This suggests the formation of the socarrat forming a crust in the pan that prevents the rice
from burning.

3.3. Evolution of Acrylamide

The acrylamide content of the elaborated WR and P is shown in Figure 1. It should
be noted that in all phases of rice cooking, the formation of acrylamide is shown. The
acrylamide content increased significantly with the increase in the heat treatment time
(p < 0.05), being higher in the last sampling for WR and P. In addition, P had a higher
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acrylamide content compared to WR for all sampling times (p < 0.05). The addition of
ingredients in P could favor the Maillard reaction, increasing the acrylamide content in P.
Furthermore, in the last step of socarrat formation, the amount of this toxic substance is
significantly higher. These results are similar to those obtained by other researchers who
found a higher acrylamide content when the rice was accompanied by other ingredients
(risotto rice) [26]. It is interesting to determine the acrylamide content since the synthesis of
this compound is related to processing at high temperatures [27].
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Figure 1. Acrylamide content (expressed in ng g−1) of white rice (WR) and paella (P) submitted
to different thermal treatments (1–4) during the cooking process. Results are expressed as mean ±
SD of five sample replicates. Different lowercase letters mean a significant difference between each
elaboration process (WR and P) submitted to different thermal treatments. Different uppercase letters
mean a significant difference between white rice and paella in each thermal treatment.

3.4. Evaluation of Volatile Organic Compounds

The volatile profiles of the WR and P samples grouped into compound families
are shown in Table 3. In both processed rice samples, the largest group was aldehyde
compounds. This group decreased with cooking time (from 72.6 to 36.9% for WR, and from
36.4 to 13.8% for P), which can be related to a decrease in the wet cereal aroma of cooked
rice, since most aldehydes are associated with positive aromas. Buttery et al. [28] indicated
that octanal and nonanal aldehydes, among others, were the principal volatile compounds
that give cooked rice its aroma. Furthermore, Hu et al. [29] showed that aldehydes such as
hexanal, octanal, nonanal, etc., probably contribute the most to the overall flavor because
of the low odor threshold. Hydrocarbon compounds, which were the second largest group,
are also related to positive aromas [30], and their content decreased with treatment time
(from 22.4 to 2.9% for WR and from 5.4 to 0.5% for P). In both cases of aldehyde and
hydrocarbon compounds, higher contents were obtained for WR compared to P. This is
due to the influence of other aromas from the ingredients added in P, such as vegetables,
garlic and shellfish related to sulfurous compounds [31], which were not found in WR.
These sulfurous compounds appear in greater proportion in P1 (52.5%), and decrease
with the processing time up to P4 (15.8%). They decrease due to the appearance of other
aromas related to socarrat formation. Furan compounds, related to negative aromas such
as roasted and woody [31], appear with greater intensity in the last sampling times for
WR and P. Similarly, pyrazine compounds are related to roasted aromas [32], and high-
fired aromas [33] and their contents increase with processing time. Regarding the alcohol
group, it can be related to different aromas such as toasted [34], shellfish [35] and floral
sweets [36]. In general, the content of alcohol compounds increases with processing time,
which is mainly due to the appearance of toasted aromas. In paella rice this increase is
more significant (from 4.5 to 23.3% for P1 to P4) than white rice (from 5.0 to 12.3 for WR1 to
WR4), which is possibly due to the socarrat formation that is associated with the formation
these aromas. Finally, ketone and furanone compounds appear in appreciable amounts for
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the last processing time. This is in accordance with the roasted and pungent aromas [37]
provided by ketones, as well as bitter-caramel aromas [38].

Table 3. Relative contents of volatile compounds (mean % (n = 3)) obtained from white rice (WR) and
paella (P) during the elaboration process. n.d.: not detected.

Volatile Organic Compounds WR1 WR2 WR3 WR4 P1 P2 P3 P4

Hydrocarbons
Heptane 10.9 12.6 6.0 0.4 n.d. n.d. n.d. n.d.
D-limonene 3.3 3.0 3.2 n.d. 4.2 4.8 2.9 n.d.
p-Xylene n.d. n.d. n.d. n.d. n.d. 1.9 1.8 0.5
o-Xylene 6.9 8.7 6.4 2.5 n.d. n.d. n.d. n.d.
Styrene 1.4 1.9 10.5 0.0 1.2 1.4 0.8 n.d.

TOTAL 22.4 26.2 26.2 2.9 5.4 8.0 5.5 0.5
Ketones
2-Propanone, 1-hydroxy- n.d. n.d. n.d. 3.9 n.d. n.d. n.d. 3.1
2-Heptanone n.d. n.d. n.d. 0.5 0.7 1.3 0.7 n.d.
2-cyclopentene-1-one,2-hydroxy-3-methyl n.d. n.d. n.d. 2.8 n.d. n.d. n.d. n.d.
Ethanone, 1-(2-furanyl)- n.d. n.d. n.d. 5.7 n.d. n.d. n.d. 2.9

TOTAL 0.0 0.0 0.0 12.9 0.7 1.3 0.7 6.1
Alcohols
3-Cyclohexen-1-ol n.d. n.d. n.d. n.d. 4.5 6.7 9.5 10.3
2-Furanmethanol n.d. n.d. n.d. 12.3 n.d. n.d. n.d. 13.1
1-Octen-3-ol 0.7 0.5 n.d. n.d. n.d. n.d. n.d. n.d.
1-Hexanol, 2-ethyl- 4.3 3.4 n.d. n.d. n.d. n.d. n.d. n.d.

TOTAL 5.0 3.9 0.0 12.3 4.5 6.7 9.5 23.3
Aldehydes
Hexanal 3.9 3.4 3.4 1.4 5.0 6.9 6.1 1.0
Heptanal 1.2 1.2 5.8 0.8 2.0 2.7 1.7 n.d.
Benzaldehyde 1.4 1.5 1.4 0.2 7.5 5.9 6.0 1.6
2-Furancarboxaldehyde, 5-methyl- n.d. n.d. 0.6 26.6 n.d. n.d. 3.4 11.2
Octanal 6.5 7.0 8.4 0.0 4.2 5.0 4.2 n.d.
Nonanal 18.1 17.0 21.2 8.0 17.7 14.8 9.4 n.d.
Benzaldehyde, 2,5-bis[(trimethylsilyl)oxy- 41.5 39.7 18.6 n.d. n.d. n.d. n.d. n.d.

TOTAL 72.6 69.9 59.5 36.9 36.4 35.2 30.7 13.8
Pyrazines
Pyrazine, methyl- n.d. n.d. n.d. 5.1 n.d. n.d. n.d. 3.9
Pyrazine, 2,6-dimethyl- n.d. n.d. n.d. 2.9 n.d. n.d. 3.7 11.4
Pyrazine, 2-ethyl-6-methyl- n.d. n.d. 6.2 2.9 n.d. n.d. n.d. 2.6
Pyrazine, trimethyl- n.d. n.d. n.d. n.d. n.d. n.d. 3.8 5.0
Pyrazine, 2-ethyl-3-methyl- n.d. n.d. n.d. n.d. n.d. n.d. n.d. 2.8

TOTAL n.d. n.d. 6.2 10.9 n.d. n.d. 7.5 25.7
Furans
Furfural n.d. n.d. 8.1 17.9 0.5 0.9 2.2 3.9
Furan, 2-pentyl- n.d. n.d. n.d. 0.8 n.d. n.d. 1.1 1.2
Furan, 2-(2-furanylmethyl)-5-methyl- n.d. n.d. n.d. 0.3 n.d. n.d. n.d. 4.9

TOTAL n.d. n.d. 8.1 18.9 0.5 0.9 3.3 10.1
Sulfur compounds
Diallyl sulfide n.d. n.d. n.d. n.d. 1.9 1.7 1.6 3.1
Diallyl disulfide n.d. n.d. n.d. n.d. 5.0 10.9 13.0 11.5
Trisulfide, di-2-propenyl n.d. n.d. n.d. n.d. 45.6 35.3 28.3 1.1

TOTAL n.d. n.d. n.d. n.d. 52.5 47.9 42.9 15.8
Furanones
2(5H)-Furanone n.d. n.d. n.d. 4.3 n.d. n.d. n.d. 4.4
2(5H)-Furanone, 5-methyl- n.d. n.d. n.d. 0.9 n.d. n.d. n.d. 0.4

TOTAL n.d. n.d. n.d. 5.2 n.d. n.d. n.d. 4.8

A total of 33 volatile compounds were analyzed (Table 3). In the alcohol group, heptane
and o-xylene, which are related to sweet [39] and petroleum-like [40] aromas, appeared
in WR but decreased with the heat treatment time. However, they did not appear in P,
probably due to other ingredients that mask these aromas. D-limonene, which is related to
a sweet orange aroma [41], appeared in both rice samples. Regarding the ketone group, 1-
hydroxy-2-propanone, and 1-(2-furanyl)-ethanone, which are related to negative attributes
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such as roasted [37] and spicy [31], respectively, appeared only at the last sampling time
(WR4 and P4). In the alcohol group, 3-cyclohexen-1-ol was found only in paella rice,
increasing with processing time because it is related to the shellfish aroma [35]. On the
contrary, 2-ethyl-1-hexanol, which is related to sweet and slightly floral-pink aromas [36],
appeared only in white rice (WR1 and WR2). 2-Furanmethanol, which is associated with
roasted aromas [34], was found at the last sampling time for both rice samples. Regarding
the aldehyde group, benzaldehyde compounds were the main aldehydes found in white
rice, and their quantity decreased with the processing time. These compounds are related
to almond aromas [42]. Hexanal, octanal and nonanal, which are related to positive aromas
such as fruity [31], citrus [43] and sweet [44] odors, were present in both rice samples, but
decreased at the end of the processing time. 5-Methyl-2-furancarboxaldehyde, which is
associated with smoky aromas, was found at a high intensity at the end of the thermal
treatment, being higher for white rice. This result can be related to the sensory analysis
(Table 2), where the burnt aroma was higher in white rice compared to paella rice (for the
last sampling time), which was probably due to the formation of the socarrat that delays
or prevents rice burning. In the pyrazine group, it is worth highlighting methyl-pyrazine,
2,6-dimethyl-pyrazine and trimethyl-pyrazine, which appeared during thermal treatment
and which are associated with varnish and roasted aromas [45]. Sulfur compounds were
only found in paella rice due to the added ingredients and their transformation during
processing. 2-propenyl trisulfide has been found in garlic, onion and green aromas [31],
and also decreased significantly with the processing time. Diallyl disulfide and diallyl
sulfide, which are associated with spicy and green aromas [31], respectively, increased
slightly with thermal treatment, probably due to the cooking of the ingredients. Furan and
furanone compounds, which are related to roasted, bitter and caramel aromas [30–32,38],
were found at the end of the processing time in WR and P. Furfural was the one that was
found with the highest intensity in WR, which coincides with the previous analysis of
5-methyl-2-furancarboxaldehyde and the sensory analysis results that found a greater burnt
aroma at the end of the processing time in WR compared to P. In general, these furans and
furanone compounds can be formed by the Maillard reaction by heating carbohydrates [29].

3.5. Discrimination of Samples by Using the E-Nose

Electronic nose data for each type of treatment for WR and P were processed indi-
vidually using the principal component analysis (PCA) (Figure 2). The PCA results for
WR explained 85.7% of the total variance of the data, of which more than 55% of the total
variance of the data was explained by the principal component PC1. For the P treatment,
91.6% of the total variance was explained, which was somewhat higher than for the WR
treatment, of which more than 80% of the data variance was mainly represented with
the main component PC1. In the WR treatments, a strong grouping between WR1 and
WR2 is observed for PC2, but it is very different from WR3 and WR4. In WR3 a negative
correlation with the second principal component is observed. These differences are related
to the composition of volatile compounds, since as the temperature applied to each of
the treatments increased, the difference between the concentration of volatile compounds
became greater. These results are supported by the tasting panel of the sensory analysis,
where the treatments WR3 and WR4 present a higher score for burnt odor and WR1 and
WR2 present a higher score for wet cereal.

For the four paella treatments, the groupings between differentiated treatments can
also clearly be observed, where P1 and P2 present negative values in PC1 and P3 and P4
present positive ones in PC1. These results are supported by those obtained by the tasting
panel for P. Therefore, the electronic equipment was able to discriminate the samples treated
at different cooking intensities for the two different types of processing. This is because the
sensors of the electronic equipment were able to react to the aroma emitted by the volatile
compounds in the samples.
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4. Conclusions

During the cooking process, paella suffers a loss of moisture and acquires a characteris-
tic color; thus, the more intense the heat treatment, the darker the color will be. This causes
the sensory characteristics of this product to evolve until it acquires a more burnt smell
when the cooking becomes more intense. In fact, the synthesis of toxic substances, such
as acrylamide, increases more when the thermal intensity is higher. The profile of volatile
organic compounds also changes, showing a decrease in those that contribute positive
aromas and an increase in others that contribute toasted aromas. Finally, it was found that
the electronic device can discriminate these aromas of both preparations since the sensors
are sensitive to changes in the aromatic profile of the samples.
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