Detection of Aroma Profile in Spanish Rice Paella during Socarrat Formation by Electronic Nose and Sensory Panel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Elaboration of Paella
2.2. Analysis
2.2.1. Humidity and Instrumental Color
2.2.2. Acrylamide Quantification by HPLC-MS-QQQ
2.2.3. Sensory Analysis
2.2.4. Volatile Organic Compound Analysis
2.2.5. E-Nose Analysis
2.3. Chemometric Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Evaluation of the Physicochemical Properties
3.2. Sensory Analysis
3.3. Evolution of Acrylamide
3.4. Evaluation of Volatile Organic Compounds
3.5. Discrimination of Samples by Using the E-Nose
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Navarro, G.; Medina, F.X. Stamps, tourism and gastronomy: The role of gastronomy in promoting tourism in Spain through the postage stamp. Medina 2018, FX, 15–29. [Google Scholar]
- Saba-Mayoral, A.; Bassie, L.; Christou, P.; Capell, T. Development of a facile genetic transformation system for the Spanish elite rice paella genotype Bomba. Transgenic Res. 2022, 31, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Andrade, C.; Seiquer, I.; Haro, A.; Castellano, R.; Navarro, M.P. Development of the Maillard reaction in foods cooked by different techniques. Intake of Maillard-derived compounds. Food Chem. 2010, 122, 145–153. [Google Scholar] [CrossRef]
- Barrera, A.P.F.; de la Rosa, P.C. Paella. Boletín Científico de las Cienc. Económico Adm. del ICEA 2017, 6. [Google Scholar] [CrossRef]
- Richardson, P. Late Dinner: Discovering the Food of Spain; Simon and Schuster: New York, NY, USA, 2007. [Google Scholar]
- Paesani, C.; Gómez, M. Effects of the pre-frying process on the cooking quality of rice. LWT Food Sci. Technol. 2021, 140, 11074. [Google Scholar] [CrossRef]
- Li, C.; Li, C.; Yu, H.; Cheng, Y.; Xie, Y.; Yao, W.; Qian, H. Chemical food contaminants during food processing: Sources and control. Crit. Rev. Food Sci. Nutr. 2021, 61, 1545–1555. [Google Scholar] [CrossRef]
- Lachenmeier, D.; Schwarz, S.; Teipel, J.; Hegmanns, M.; Kuballa, T.; Walch, S.; Breitling-Utzmann, C. Potential Antagonistic Effects of Acrylamide Mitigation during Coffee Roasting on Furfuryl Alcohol, Furan and 5-Hydroxymethylfurfural. Toxics 2019, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Guízar, S.; González-Alatorre, G.; Pérez-Pérez, M.C.I.; Piñeiro-García, A.; Lona-Ramírez, F.J. Identification and quantification of volatile toxic compounds in tequila. J. Food Meas. Charact. 2020, 14, 2059–2066. [Google Scholar] [CrossRef]
- Castle, L.; Eriksson, S. Analytical methods used to measure acrylamide concentrations in foods. J. AOAC Int. 2005, 88, 274–284. [Google Scholar] [CrossRef]
- Martín-Tornero, E.; Barea-Ramos, J.D.; Lozano, J.; Durán-Merás, I.; Martín-Vertedor, D. E-Nose Quality Evaluation of Extra Virgin Olive Oil Stored in Different Containers. Chemosensors 2023, 11, 85. [Google Scholar] [CrossRef]
- El-Mesery, H.S.; Mao, H.; Abomohra, A.E.F. Applications of non-destructive technologies for agricultural and food products quality inspection. Sensors 2019, 19, 846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, R.; Martín-Tornero, E.; Lozano, J.; Boselli, E.; Arroyo, P.; Meléndez, F.; Martín-Vertedor, D. E-Nose discrimination of abnormal fermentations in Spanish-Style Green Olives. Molecules 2021, 26, 5353. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, R.; Martín-Tornero, E.; Lozano, J.; Fernández, A.; Arroyo, P.; Meléndez, F.; Martín-Vertedor, D. Elec-tronic nose application for the discrimination of sterilization treatments applied to Californian-style black olive varieties. J. Sci. Food Agric. 2022, 102, 2232–2241. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak, T.; Wojnowski, W.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Electronic noses in classification and quality control of edible oils: A review. Food Chem. 2018, 246, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Barea-Ramos, J.D.; Cascos, G.; Mesías, M.; Lozano, J.; Martín-Vertedor, D. Evaluation of the Olfactory Quality of Roasted Coffee Beans Using a Digital Nose. Sensors 2022, 22, 8654. [Google Scholar] [CrossRef]
- Fernández, A.; Talaverano, M.I.; Pérez-Nevado, F.; Boselli, E.; Cordeiro, A.M.; Martillanes, S.; Martín-Vertedor, D. Evaluation of phenolics and acrylamide and their bioavailability in high hydrostatic pressure treated and fried table olives. J. Food Process. Preserv. 2020, 44, e14384. [Google Scholar] [CrossRef]
- López-López, A.; Cortés-Delgado, A.; de Castro, A.; Sánchez, A.H.; Montaño, A. Changes in volatile composition during the processing and storage of black ripe olives. Food Res. Int. 2019, 125, 108568. [Google Scholar] [CrossRef]
- Sánchez, R.; Boselli, E.; Fernández, A.; Arroyo, P.; Lozano, J.; Martín-Vertedor, D. Determination of the Masking Effect of the ‘Zapateria’ Defect in Flavoured Stuffed Olives Using E-Nose. Molecules 2022, 27, 4300. [Google Scholar] [CrossRef]
- Arns, B.; Bartz, J.; Radunz, M.; do Evangelho, J.A.; Pinto, V.Z.; da Rosa Zavareze, E.; Dias, A.R.G. Impact of heat-moisture treatment on rice starch, applied directly in grain paddy rice or in isolated starch. LWT-Food Sci. Technol. 2015, 60, 708–713. [Google Scholar] [CrossRef] [Green Version]
- Luangmalawat, P.; Prachayawarakorn, S.; Nathakaranakule, A.; Soponronnarit, S. Effect of temperature on drying characteristics and quality of cooked rice. LWT-Food Sci. Technol. 2008, 41, 716–723. [Google Scholar] [CrossRef]
- Hardy, J.; Parmentier, M.; Fanni, J. Functionality of nutrients and thermal treatments of food. Proc. Nutr. Soc. 1999, 58, 579–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ames, J.M. Applications of the Maillard reaction in the food industry. Food Chem. 1998, 62, 431–439. [Google Scholar] [CrossRef]
- Nooshkam, M.; Varidi, M.; Bashash, M. The Maillard reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food Chem. 2019, 275, 644–660. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Mai, T.V.T.; Huynh, L.K. Detailed kinetic mechanism for CH3OO + NO reaction—An ab initio study. Comput. Theor. Chem. 2017, 1113, 14–23. [Google Scholar] [CrossRef]
- Tateo, F.; Bononi, M.; Andreoli, G. Acrylamide levels in cooked rice, tomato sauces and some fast food on the Italian market. J. Food Compos. Anal. 2007, 20, 232–235. [Google Scholar] [CrossRef]
- Pérez-Nevado, F.; Cabrera-Bañegil, M.; Repilado, E.; Martillanes, S.; Martín-Vertedor, D. Effect of different baking treatments on the acrylamide formation and phenolic compounds in Californian-style black olives. Food Control 2018, 94, 22–29. [Google Scholar] [CrossRef]
- Buttery, R.G.; Ling, L.C.; Mon, T.R. Quantitative analysis of 2-acetyl-1pyrroline in rice. J. Agric. Food Chem. 1986, 34, 112–114. [Google Scholar] [CrossRef]
- Hu, X.; Lu, L.; Guo, Z.; Zhu, Z. Volatile compounds, affecting factors and evaluation methods for rice aroma: A review. Trends Food Sci. Technol. 2020, 97, 136–146. [Google Scholar] [CrossRef]
- Cascos, G.; Barea-Ramos, J.D.; Montero-Fernández, I.; Ruiz-Canales, A.; Lozano, J.; Martín-Vertedor, D. Burn Defect and Phenol Prediction for Flavoured Californian-Style Black Olives Using Digital Sensors. Foods 2023, 12, 1377. [Google Scholar] [CrossRef]
- Sukchum, N.; Surasereewong, S.; Chaethong, K. Volatile compounds and physicochemical characteristics of Thai roasted chilli seasoning. Food Res. 2022, 6, 309–318. [Google Scholar] [CrossRef]
- Lee, J.; Cho, J.J.; Hong, S.J.; Kim, D.S.; Boo, C.G.; Shin, E.C. Platycodon grandiflorum roots: A comprehensive study on odor/aroma and chemical properties during roasting. J. Food Biochem. 2020, 44, e13344. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhang, Y.; Qu, F.; Wang, P.; Gao, J.; Zhang, X.; Hu, J. Characterization of the Key Aroma Compounds of Shandong Matcha Using HS-SPME-GC/MS and SAFE-GC/MS. Foods 2022, 11, 2964. [Google Scholar] [CrossRef] [PubMed]
- Qian, M.; Reineccius, G. Identification of aroma compounds in Parmigiano-Reggiano cheese by gas chromatography/olfactometry. J. Dairy Sci. 2002, 85, 1362–1369. [Google Scholar] [CrossRef] [PubMed]
- Fratini, G.; Lois, S.; Pazos, M.; Parisi, G.; Medina, I. Volatile profile of Atlantic shellfish species by HS-SPME GC/MS. Food Res. Int. 2012, 48, 856–865. [Google Scholar] [CrossRef]
- McGinty, D.; Scognamiglio, J.; Letizia, C.S.; Api, A.M. Fragrance material review on 2-ethyl-1-hexanol. Food Chem. Toxicol. 2010, 48, S115–S129. [Google Scholar] [CrossRef]
- Cardinal, M.; Chaussy, M.; Donnay-Moreno, C.; Cornet, J.; Rannou, C.; Fillonneau, C.; Courcoux, P. Use of random forest methodology to link aroma profiles to volatile compounds: Application to enzymatic hydrolysis of Atlantic salmon (Salmo salar) by-products combined with Maillard reactions. Food Res. Int. 2020, 134, 109254. [Google Scholar] [CrossRef] [PubMed]
- Masuda, A.; Mori, K.; Oda, Y.; Miyazawa, M. Volatile Oil Compounds from Corms and Flowers of Crocus vernus L. Hill and Corms of C. sativus L. Libyan Agric. Res. Cent. J. Int. 2010, 1, 244–249. [Google Scholar]
- Kandyala, R.; Raghavendra, S.P.C.; Rajasekharan, S.T. Xylene: An overview of its health hazards and preventive measures. J. Oral. Maxillofac. Pathol. 2010, 14, 1. [Google Scholar] [CrossRef] [Green Version]
- Palmquist, E.; Claeson, A.S. Odor perception and symptoms during acrolein exposure in individuals with and without building-related symptoms. Sci. Rep. 2022, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Peris, J.E.; Redondo, A.M.; Shimada, T.; Costell, E.; Carbonell, I.; Peña, L. Impact of D-limonene synthase up-or down-regulation on sweet orange fruit and juice odor perception. Food Chem. 2017, 217, 139–150. [Google Scholar] [CrossRef]
- Kulkarni, P.; Stolberg, T.; Sullivanjr, J.M.; Ferris, C.F. Imaging evolutionarily conserved neural networks: Preferential activation of the olfactory system by food-related odor. Behav. Brain Res. 2012, 230, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.S.; Lee, K.S.; Jeong, O.Y.; Kim, K.J.; Kays, S.J. Characterization of volatile aroma compounds in cooked black rice. J. Agric. Food Chem. 2008, 56, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Motooka, R.; Usami, A.; Nakahashi, H.; Koutari, S.; Nakaya, S.; Shimizu, R.; Miyazawa, M. Characteristic odor components of essential oils from Eurya japonica. J. Oleo Sci. 2015, 64, 577–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Chen, F.; Wang, L.; Niu, Y.; Yu, D.; Shu, C.; Chen, H.; Wang, H.; Xiago, Z. Comparison of aroma-active volatiles in oolong tea infusions using GC-olfactometry, GC-FPD, and GC-MS. J. Agric. Food Chem. 2015, 63, 7499–7510. [Google Scholar] [CrossRef]
Treatments | White Rice | |||
Humidity (%) | L* | a* | b* | |
WR1 | 48.8 ± 2.3 a | 73.4 ± 3.0 a | −1.3 ± 0.2 | 8.6 ± 0.9 d |
WR2 | 44.7 ± 1.2 b | 67.4 ± 3.2 b | −1.0 ± 0.4 | 10.2 ± 2.0 c |
WR3 | 37.7 ± 1.2 c | 60.9 ± 5.0 c | −0.4 ± 0.5 | 14.4 ± 2.7 b |
WR4 | 28.5 ± 2.5 d | 45.3 ± 6.9 d | 2.5 ± 1.3 | 21.1 ± 3.6 a |
Treatments | Paella | |||
Humidity (%) | L* | a* | b* | |
P1 | 57.7 ± 1.2 a | 55.1 ± 3.8 a | 10.9 ± 1.3 a | 54.2 ± 4.0 a |
P2 | 51.1 ± 1.1 b | 57.3 ± 6.2 a | 11.8 ± 1.4 a | 56.7 ± 6.3 a |
P3 | 47.8 ± 1.1 c | 47.4 ± 3.5 b | 11.8 ± 0.6 a | 48.9 ± 3.2 b |
P4 | 38.8 ± 2.2 d | 18.7 ± 2.9 c | 4.1 ± 2.2 b | 11.4 ± 6.1 c |
Treatments | White Rice | |||
Wet Cereal | Shellfish | Roasted | Burnt | |
WR1 | 4.2 ± 0.6 b | n.d. | n.d. | n.d. |
WR2 | 5.1 ± 0.2 a | n.d. | n.d. | n.d. |
WR3 | 2.5 ± 0.5 c | n.d. | 3.0 ± 0.5 a | 2.3 ± 0.5 b |
WR4 | n.d. | n.d. | n.d. | 4.8 ± 0.6 a |
Treatments | Paella | |||
Wet Cereal | Shellfish | Roasted | Burnt | |
P1 | n.d. | 4.8 ± 0.5 a | n.d. | n.d. |
P2 | n.d. | 4.6 ± 0.6 a | n.d. | n.d. |
P3 | n.d. | 2.9 ± 0.3 b | 2.5 ± 0.3 b | 0.6 ± 0.1 b |
P4 | n.d. | 2.1 ± 0.3 c | 4.5 ± 0.6 a | 2.2 ± 0.3 a |
Volatile Organic Compounds | WR1 | WR2 | WR3 | WR4 | P1 | P2 | P3 | P4 |
---|---|---|---|---|---|---|---|---|
Hydrocarbons | ||||||||
Heptane | 10.9 | 12.6 | 6.0 | 0.4 | n.d. | n.d. | n.d. | n.d. |
D-limonene | 3.3 | 3.0 | 3.2 | n.d. | 4.2 | 4.8 | 2.9 | n.d. |
p-Xylene | n.d. | n.d. | n.d. | n.d. | n.d. | 1.9 | 1.8 | 0.5 |
o-Xylene | 6.9 | 8.7 | 6.4 | 2.5 | n.d. | n.d. | n.d. | n.d. |
Styrene | 1.4 | 1.9 | 10.5 | 0.0 | 1.2 | 1.4 | 0.8 | n.d. |
TOTAL | 22.4 | 26.2 | 26.2 | 2.9 | 5.4 | 8.0 | 5.5 | 0.5 |
Ketones | ||||||||
2-Propanone, 1-hydroxy- | n.d. | n.d. | n.d. | 3.9 | n.d. | n.d. | n.d. | 3.1 |
2-Heptanone | n.d. | n.d. | n.d. | 0.5 | 0.7 | 1.3 | 0.7 | n.d. |
2-cyclopentene-1-one,2-hydroxy-3-methyl | n.d. | n.d. | n.d. | 2.8 | n.d. | n.d. | n.d. | n.d. |
Ethanone, 1-(2-furanyl)- | n.d. | n.d. | n.d. | 5.7 | n.d. | n.d. | n.d. | 2.9 |
TOTAL | 0.0 | 0.0 | 0.0 | 12.9 | 0.7 | 1.3 | 0.7 | 6.1 |
Alcohols | ||||||||
3-Cyclohexen-1-ol | n.d. | n.d. | n.d. | n.d. | 4.5 | 6.7 | 9.5 | 10.3 |
2-Furanmethanol | n.d. | n.d. | n.d. | 12.3 | n.d. | n.d. | n.d. | 13.1 |
1-Octen-3-ol | 0.7 | 0.5 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
1-Hexanol, 2-ethyl- | 4.3 | 3.4 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
TOTAL | 5.0 | 3.9 | 0.0 | 12.3 | 4.5 | 6.7 | 9.5 | 23.3 |
Aldehydes | ||||||||
Hexanal | 3.9 | 3.4 | 3.4 | 1.4 | 5.0 | 6.9 | 6.1 | 1.0 |
Heptanal | 1.2 | 1.2 | 5.8 | 0.8 | 2.0 | 2.7 | 1.7 | n.d. |
Benzaldehyde | 1.4 | 1.5 | 1.4 | 0.2 | 7.5 | 5.9 | 6.0 | 1.6 |
2-Furancarboxaldehyde, 5-methyl- | n.d. | n.d. | 0.6 | 26.6 | n.d. | n.d. | 3.4 | 11.2 |
Octanal | 6.5 | 7.0 | 8.4 | 0.0 | 4.2 | 5.0 | 4.2 | n.d. |
Nonanal | 18.1 | 17.0 | 21.2 | 8.0 | 17.7 | 14.8 | 9.4 | n.d. |
Benzaldehyde, 2,5-bis[(trimethylsilyl)oxy- | 41.5 | 39.7 | 18.6 | n.d. | n.d. | n.d. | n.d. | n.d. |
TOTAL | 72.6 | 69.9 | 59.5 | 36.9 | 36.4 | 35.2 | 30.7 | 13.8 |
Pyrazines | ||||||||
Pyrazine, methyl- | n.d. | n.d. | n.d. | 5.1 | n.d. | n.d. | n.d. | 3.9 |
Pyrazine, 2,6-dimethyl- | n.d. | n.d. | n.d. | 2.9 | n.d. | n.d. | 3.7 | 11.4 |
Pyrazine, 2-ethyl-6-methyl- | n.d. | n.d. | 6.2 | 2.9 | n.d. | n.d. | n.d. | 2.6 |
Pyrazine, trimethyl- | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 3.8 | 5.0 |
Pyrazine, 2-ethyl-3-methyl- | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 2.8 |
TOTAL | n.d. | n.d. | 6.2 | 10.9 | n.d. | n.d. | 7.5 | 25.7 |
Furans | ||||||||
Furfural | n.d. | n.d. | 8.1 | 17.9 | 0.5 | 0.9 | 2.2 | 3.9 |
Furan, 2-pentyl- | n.d. | n.d. | n.d. | 0.8 | n.d. | n.d. | 1.1 | 1.2 |
Furan, 2-(2-furanylmethyl)-5-methyl- | n.d. | n.d. | n.d. | 0.3 | n.d. | n.d. | n.d. | 4.9 |
TOTAL | n.d. | n.d. | 8.1 | 18.9 | 0.5 | 0.9 | 3.3 | 10.1 |
Sulfur compounds | ||||||||
Diallyl sulfide | n.d. | n.d. | n.d. | n.d. | 1.9 | 1.7 | 1.6 | 3.1 |
Diallyl disulfide | n.d. | n.d. | n.d. | n.d. | 5.0 | 10.9 | 13.0 | 11.5 |
Trisulfide, di-2-propenyl | n.d. | n.d. | n.d. | n.d. | 45.6 | 35.3 | 28.3 | 1.1 |
TOTAL | n.d. | n.d. | n.d. | n.d. | 52.5 | 47.9 | 42.9 | 15.8 |
Furanones | ||||||||
2(5H)-Furanone | n.d. | n.d. | n.d. | 4.3 | n.d. | n.d. | n.d. | 4.4 |
2(5H)-Furanone, 5-methyl- | n.d. | n.d. | n.d. | 0.9 | n.d. | n.d. | n.d. | 0.4 |
TOTAL | n.d. | n.d. | n.d. | 5.2 | n.d. | n.d. | n.d. | 4.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barea-Ramos, J.D.; Santos, J.P.; Lozano, J.; Rodríguez, M.J.; Montero-Fernández, I.; Martín-Vertedor, D. Detection of Aroma Profile in Spanish Rice Paella during Socarrat Formation by Electronic Nose and Sensory Panel. Chemosensors 2023, 11, 342. https://doi.org/10.3390/chemosensors11060342
Barea-Ramos JD, Santos JP, Lozano J, Rodríguez MJ, Montero-Fernández I, Martín-Vertedor D. Detection of Aroma Profile in Spanish Rice Paella during Socarrat Formation by Electronic Nose and Sensory Panel. Chemosensors. 2023; 11(6):342. https://doi.org/10.3390/chemosensors11060342
Chicago/Turabian StyleBarea-Ramos, Juan Diego, José Pedro Santos, Jesús Lozano, María José Rodríguez, Ismael Montero-Fernández, and Daniel Martín-Vertedor. 2023. "Detection of Aroma Profile in Spanish Rice Paella during Socarrat Formation by Electronic Nose and Sensory Panel" Chemosensors 11, no. 6: 342. https://doi.org/10.3390/chemosensors11060342
APA StyleBarea-Ramos, J. D., Santos, J. P., Lozano, J., Rodríguez, M. J., Montero-Fernández, I., & Martín-Vertedor, D. (2023). Detection of Aroma Profile in Spanish Rice Paella during Socarrat Formation by Electronic Nose and Sensory Panel. Chemosensors, 11(6), 342. https://doi.org/10.3390/chemosensors11060342