Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (171)

Search Parameters:
Keywords = vineyards water management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 342 KiB  
Review
Grassy and Herbaceous Interrow Cover Crops in European Vineyards: A Review of Their Short-Term Effects on Water Management and Regulating Ecosystem Services
by Mihály Zalai, Olimpia Bujtás, Miklós Sárospataki and Zita Dorner
Land 2025, 14(8), 1526; https://doi.org/10.3390/land14081526 - 24 Jul 2025
Viewed by 269
Abstract
Interrow management in vineyards significantly contributes to sustainable viticulture, particularly in water-scarce European regions. Grassy and herbaceous cover crops have been proven to enhance multiple regulating ecosystem services, including soil conservation, carbon sequestration, and improved water infiltration. However, the potential for water competition [...] Read more.
Interrow management in vineyards significantly contributes to sustainable viticulture, particularly in water-scarce European regions. Grassy and herbaceous cover crops have been proven to enhance multiple regulating ecosystem services, including soil conservation, carbon sequestration, and improved water infiltration. However, the potential for water competition with vines necessitates region-specific approaches. This review aims to analyze the effects of different cover crop types and interrow tillage methods on water management and regulating ecosystem services, focusing on main European vineyard areas. The research involved a two-stage literature review by Google Scholar and Scopus, resulting in the identification of 67 relevant scientific publications, with 11 offering experimental data from European contexts. Selected studies were evaluated based on climate conditions, soil properties, slope characteristics, and interrow treatments. Findings highlight that the appropriate selection of cover crop species, sowing and mowing timing, and mulching practices can optimize vineyard resilience under climate stress. Practical recommendations are offered to help winegrowers adopt cost-effective and environmentally adaptive strategies, especially on sloped or shallow soils, where partial cover cropping is often the most beneficial for both yield and ecological balance. Cover crops and mulching reduce erosion, enhance vineyard soil moisture, relieve water stress consequences, and, as a result, these cover cropping techniques can improve yield and nutritional values of grapes (e.g., Brix, pH, K concentration), but effects vary; careful, site-specific, long-term management is essential for best results. Full article
33 pages, 392 KiB  
Review
Sustainable Foliar Applications to Improve Grapevine Responses to Drought, High Temperatures, and Salinity: Impacts on Physiology, Yields, and Berry Quality
by Despoina G. Petoumenou and Vasiliki Liava
Plants 2025, 14(14), 2157; https://doi.org/10.3390/plants14142157 - 13 Jul 2025
Cited by 1 | Viewed by 585
Abstract
Environmental challenges such as drought, high temperatures, and salinity compromise grapevine physiology, reduce productivity, and negatively affect grape and wine quality. In recent years, foliar applications of biostimulants, antitranspirants, and phytohormones have emerged as promising strategies to enhance stress tolerance in grapevines. This [...] Read more.
Environmental challenges such as drought, high temperatures, and salinity compromise grapevine physiology, reduce productivity, and negatively affect grape and wine quality. In recent years, foliar applications of biostimulants, antitranspirants, and phytohormones have emerged as promising strategies to enhance stress tolerance in grapevines. This review focuses on the main effects of salinity, drought, and high temperatures and the combined impact of drought and high temperatures on grapevines and examines how foliar applications influence grapevine responses under these specific stress conditions. Synthesizing the recent findings from the last ten years (160 articles), it provides direct insights into the potential of these compounds to alleviate each type of stress, highlighting their effects on grapevine physiology, yield components, and secondary metabolites in berries. While their mechanism of action is not entirely clear and their efficacy can vary depending on the type of compound used and the grapevine variety, most studies report a beneficial effect or no effect on grapevines under abiotic stresses (either single or combined). Future research is necessary to optimize the concentrations of these compounds and determine the appropriate number and timing of applications, particularly under open-field experiments. Additionally, studies should assess the effect of foliar applications under multiple abiotic stress conditions. In conclusion, integrating foliar applications into vineyard management represents a sustainable technique to mitigate abiotic stresses associated with climate change, such as salinity, water deficit, and heat stress, while preserving or enhancing the quality of grapes and wines. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
23 pages, 1989 KiB  
Article
Environmental Footprints of Red Wine Production in Piedmont, Italy
by Ilaria Orlandella, Matteo Cicolin, Marta Tuninetti and Silvia Fiore
Sustainability 2025, 17(13), 5760; https://doi.org/10.3390/su17135760 - 23 Jun 2025
Viewed by 427
Abstract
Italy is a global top wine producer, with emphasis on high-quality wines. This study investigates the Carbon Footprint (CF), Water Footprint (WF), and Ecological Footprint (EF) of twelve red wine producers in Piedmont, Northern Italy. The analysis was based on a 0.75 L [...] Read more.
Italy is a global top wine producer, with emphasis on high-quality wines. This study investigates the Carbon Footprint (CF), Water Footprint (WF), and Ecological Footprint (EF) of twelve red wine producers in Piedmont, Northern Italy. The analysis was based on a 0.75 L wine bottle as functional unit (FU). Twelve producers were interviewed and given questionnaires, which made it possible to gather primary data for the environmental evaluation that described vineyard and agricultural operations and wine production. The average CF was 0.88 ± 0.3 kg CO2eq, with 44% of CF associated with the glass bottle, 20% to the diesel fuel fed to the agricultural machines, 32% to electricity consumption, and 4% to other contributions. The average WF was 881 ± 252.4 L, with 98% Green WF due to evapotranspiration, and 2% Blue and Grey WF. The average EF was 81.3 ± 57.2 global ha, 73% ascribed to the vineyard area and 27% to CO2 assimilation. The obtained CF and WF values align with existing literature, while no comparison is possible for the EF data, which are previously unknown. To reduce the environmental impacts of wine production, actions like using recycled glass bottles, electric agricultural machines and renewable energy can help. However, high-quality wine production in Piedmont is deeply rooted in tradition and mostly managed by small producers. Further research should investigate the social acceptance of such actions, and policies supporting economic incentives could be key enablers. Full article
(This article belongs to the Special Issue Climate Change and Sustainable Agricultural System)
Show Figures

Figure 1

21 pages, 14936 KiB  
Article
Grapevine Root Distribution and Density in Deep Soil Layers Under Different Soil Management Practices
by Vania Lanari, Luca Pallotti, Tania Lattanzi and Oriana Silvestroni
Plants 2025, 14(12), 1823; https://doi.org/10.3390/plants14121823 - 13 Jun 2025
Viewed by 558
Abstract
Grapevine root distribution and density influence mineral and water absorption and are affected by soil management and the use of cover crops. This study, conducted in a ten-year-old commercial Mediterranean vineyard with desiccant-managed inter-rows, compares the effects of three different soil management practices—minimum [...] Read more.
Grapevine root distribution and density influence mineral and water absorption and are affected by soil management and the use of cover crops. This study, conducted in a ten-year-old commercial Mediterranean vineyard with desiccant-managed inter-rows, compares the effects of three different soil management practices—minimum tillage (MT), spontaneous natural covering (NC), and a commercial grass mixture (GM)—on root development in Montepulciano vines grafted onto Kober 5BB rootstocks. Root length, diameter, and weight across different soil layers were analyzed by digging trenches. The results show that thin roots, primarily responsible for water and nutrient absorption, ensure greater soil volume exploration, while medium-to-large roots contribute mainly to root biomass. The presence of cover crops reduces root development in the upper soil layers due to competition with herbaceous species; however, this promotes deeper root exploration and increases the total root length per plant. In the deeper soil layers, root growth is limited by higher soil compaction. Tillage enhances the development of medium-to-large roots and increases the total root biomass per plant. In conclusion, soil management influences vine root development, and competition from cover crops stimulates the growth of absorbing roots in deeper soil layers. Full article
(This article belongs to the Collection Feature Papers in Plant‒Soil Interactions)
Show Figures

Figure 1

19 pages, 1121 KiB  
Article
The Future of Vineyard Irrigation: AI-Driven Insights from IoT Data
by Simona Stojanova, Mojca Volk, Gregor Balkovec, Andrej Kos and Emilija Stojmenova Duh
Sensors 2025, 25(12), 3658; https://doi.org/10.3390/s25123658 - 11 Jun 2025
Viewed by 895
Abstract
Accurate irrigation volume prediction is crucial for sustainable agriculture. This study enhances precision irrigation by integrating diverse datasets, including historical irrigation records, soil moisture, and climatic factors, collected from a small-scale commercial estate vineyard in southwestern Idaho, the United States of America (USA), [...] Read more.
Accurate irrigation volume prediction is crucial for sustainable agriculture. This study enhances precision irrigation by integrating diverse datasets, including historical irrigation records, soil moisture, and climatic factors, collected from a small-scale commercial estate vineyard in southwestern Idaho, the United States of America (USA), over a period of three years (2017–2019). Focusing on long-term irrigation forecasting, addressing a critical gap in sustainable water management, we use machine learning (ML) methods to predict future irrigation needs, with improved accuracy. We designed, developed, and tested a Long Short-Term Memory (LSTM) model, which achieved a Mean Squared Error (MSE) of 0.37, and evaluated its performance against a simpler baseline linear regression (LinReg) model, which yielded a higher MSE of 1.29. We validate the results of the LSTM model using a cross-validation technique, wherein a mean MSE of 0.18 was achieved. The low value of the statistical analysis (p-value = 0.0009) of a paired t-test confirmed that the improvement is significant. This research shows the potential of Artificial Intelligence (AI) to optimize irrigation planning and advance sustainable precision agriculture (PA), by providing a practical tool for long-term forecasting and that supports data-driven decisions. Full article
(This article belongs to the Special Issue AI, IoT and Smart Sensors for Precision Agriculture: 2nd Edition)
Show Figures

Figure 1

27 pages, 7238 KiB  
Article
Estimating Grapevine Transpirational Losses Using Models Under Different Conditions of Soil Moisture
by Efthymios Kokkotos, Anastasios Zotos, Dimitrios E. Tsesmelis, Eleftherios A. Petrakis and Angelos Patakas
Horticulturae 2025, 11(6), 665; https://doi.org/10.3390/horticulturae11060665 - 11 Jun 2025
Viewed by 421
Abstract
Irrigation management in areas affected by climate change requires an accurate determination of transpiration losses in crops, such as grapevines. The existing literature has primarily focused on estimating transpiration losses based on two critical microclimate factors: vapor pressure deficit (VPD) and solar radiation [...] Read more.
Irrigation management in areas affected by climate change requires an accurate determination of transpiration losses in crops, such as grapevines. The existing literature has primarily focused on estimating transpiration losses based on two critical microclimate factors: vapor pressure deficit (VPD) and solar radiation intensity (Rs). However, most studies have been conducted under abundant soil water availability conditions, whereas research under limited water availability remains scarce. Thus, this study aims to develop models capable of accurately determining transpiration losses of grapevines under both full irrigation and limited soil water conditions. Sap flow sensors using the heat ratio method were employed to measure transpirational losses. These measurements were compared with the results from the models afterward. The results suggest that VPD was the dominant factor affecting canopy conductance, which decreased exponentially as VPD increased. Furthermore, a piecewise linear regression analysis revealed a threshold value for Rs during both study years. This finding suggests that Rs impacts transpiration losses in two distinct ways, highlighting the necessity to develop two separate models for determining transpiration losses each study year. The estimation capability of the models was verified using the k-fold cross-validation method, suggesting that reliable predictions can be made under both well-watered and rainfed conditions. Full article
(This article belongs to the Special Issue Irrigation and Water Management Strategies for Horticultural Systems)
Show Figures

Graphical abstract

17 pages, 1213 KiB  
Article
Characterization of Physiological Factors and Performance of Ungrafted GRN Rootstocks Under Moderate Water-Stress Conditions
by Jose R. Munoz, Jocelyn Alvarez Arredondo, Maria Alvarez Arredondo, Ava Brackenbury, John Howell, Jennifer Wootten, Myles Adams and Jean Catherine Dodson Peterson
Horticulturae 2025, 11(6), 663; https://doi.org/10.3390/horticulturae11060663 - 11 Jun 2025
Viewed by 349
Abstract
The commercial production of grapevines (Vitis vinifera L.) relies heavily on rootstocks that are hybrids of non-vinifera parentage. The relatively newly released GRN rootstocks (GRN-1, GRN-2, GRN-3, GRN-4, and GRN-5) were bred from especially under-studied genetic backgrounds. This study aimed to [...] Read more.
The commercial production of grapevines (Vitis vinifera L.) relies heavily on rootstocks that are hybrids of non-vinifera parentage. The relatively newly released GRN rootstocks (GRN-1, GRN-2, GRN-3, GRN-4, and GRN-5) were bred from especially under-studied genetic backgrounds. This study aimed to evaluate ungrafted GRN-series grape rootstocks under moderate water-stress conditions and to characterize and compare their physiological performances. Each of the GRN rootstocks had specific physiological characteristics that would make them suitable for a wide range of growing conditions and vineyard management goals. GRN-1 had growth habits which were more vigorous and the highest carbohydrate storage levels, while GRN-2 had the highest level of nitrogen and the largest leaf area, but the lowest levels of carbohydrate storage. GRN-3 was less tolerant to high-salinity soils, and had the longest internodes, while GRN-4 had high boron levels, which supports flowering and fruit set, and short internodes. GRN-5 was consistently moderate across all measured areas, except internode thickness, for which it was the highest. These findings show the variations in physiological growth habits among the ungrafted GRN-series rootstocks and suggest that growth habits, carbohydrate storage, leaf canopy, fruit production, and nutrition vary based on rootstock parentage. Further investigation is needed to determine whether these characteristics persist when grafted onto Vitis vinifera L. scions. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

20 pages, 1962 KiB  
Article
Forecasting Vineyard Water Needs in Southern Poland Under Climate Change Scenarios
by Stanisław Rolbiecki, Barbara Jagosz, Wiesława Kasperska-Wołowicz, Roman Rolbiecki and Tymoteusz Bolewski
Sustainability 2025, 17(11), 4766; https://doi.org/10.3390/su17114766 - 22 May 2025
Viewed by 590
Abstract
Climate change requires efficient water resource management, especially in regions where viticulture is developing. This study evaluates the water requirements, precipitation deficits, and irrigation needs of vineyards in two locations in southern Poland. The analysis covers both a reference period (1931–2020) and a [...] Read more.
Climate change requires efficient water resource management, especially in regions where viticulture is developing. This study evaluates the water requirements, precipitation deficits, and irrigation needs of vineyards in two locations in southern Poland. The analysis covers both a reference period (1931–2020) and a forecast period (2030–2100), based on two climate change scenarios: RCP 4.5 and RCP 8.5. Grapevine water requirements were estimated using a crop coefficient tailored to Poland’s agroclimatic conditions, combined with meteorological data on air temperature and precipitation. Monthly crop coefficient values were calculated as the ratio of grapevine potential evapotranspiration, estimated using the Penman–Monteith method, to reference evapotranspiration, calculated using the Treder approach for the period 1981–2010. Precipitation deficits were assessed for normal, medium dry, and very dry years using the Ostromęcki method. Irrigation water demand was estimated for light, medium, and heavy soils using the Pittenger method. The results indicate a significant increase in both water demand and precipitation deficits in the forecast period, regardless of the scenario. In very dry years, irrigation will be necessary for all soil types. In medium dry years, water deficits will primarily affect vineyards on light soils. These findings underscore the urgent need for improvements in irrigation planning, especially in areas with low soil water. They offer practical insights for estimating future water storage needs and implementing precision irrigation adapted to changing climate conditions. Adopting such adaptive strategies is essential for sustaining vineyard productivity and improving water use efficiency. This study also supports the integration of climate projections into regional planning and calls for investment in innovative, water-saving technologies to strengthen the long-term resilience of Poland’s wine industry. Full article
Show Figures

Figure 1

14 pages, 1284 KiB  
Article
Relationships Between Midday Stem Water Potential and Soil Water Content in Grapevines and Peach and Pear Trees
by José Manuel Mirás-Avalos and Emily Silva Araujo
Agronomy 2025, 15(5), 1257; https://doi.org/10.3390/agronomy15051257 - 21 May 2025
Viewed by 509
Abstract
Monitoring the water status of fruit orchards is required to optimize crop water management and determine irrigation scheduling. For this purpose, capacitance probes are commonly used to measure soil water content (θs). However, when these probes are not calibrated, the estimates [...] Read more.
Monitoring the water status of fruit orchards is required to optimize crop water management and determine irrigation scheduling. For this purpose, capacitance probes are commonly used to measure soil water content (θs). However, when these probes are not calibrated, the estimates of θs are, therefore, unreliable. Our objective was to relate the measurements of capacitance probes, without a site-specific calibration, with a reliable indicator of the water status (stem water potential at solar noon (Ψstem)) of rain-fed grapevines grown under contrasting soil management strategies (tillage and spontaneous vegetation) and of irrigated peach and pear trees. During the 2023 growing season, θs was monitored in a peach and a pear orchard and in a vineyard in northeast Spain using capacitance sensors at three depths: 0.15, 0.30, and 0.45 m. Correlation coefficients ranged from 0.75 to 0.87 in peach trees, from 0.53 to 0.56 in pear trees, and from 0.56 to 0.90 in grapevines, depending on soil depth. These relationships were significant for both peach trees and grapevines but not for pear trees. Under the conditions of this study, uncalibrated capacitance measurements of θs could be useful to assess grapevine and peach tree water status in real time but were limited for pear trees. Full article
Show Figures

Figure 1

29 pages, 2311 KiB  
Review
Research and Innovations in Latin American Vitiviniculture: A Review
by Gastón Gutiérrez-Gamboa and Mercedes Fourment
Horticulturae 2025, 11(5), 506; https://doi.org/10.3390/horticulturae11050506 - 8 May 2025
Cited by 1 | Viewed by 1383
Abstract
Latin America offers a unique point of view into the adaptation of viticulture to climate change through its rich diversity of climates, traditional knowledge, and scientific innovation. This review synthesizes the current research and technological developments across major wine-producing countries including Argentina, Brazil, [...] Read more.
Latin America offers a unique point of view into the adaptation of viticulture to climate change through its rich diversity of climates, traditional knowledge, and scientific innovation. This review synthesizes the current research and technological developments across major wine-producing countries including Argentina, Brazil, Chile, Uruguay, the Dominican Republic, and Haiti. Argentina shows key adaptation strategies, including high-altitude vineyard relocation, clonal and rootstock selection, canopy and water management, and the conservation of Criolla and other autochthonous grapevine varieties. In Brazil, tropical viticulture and breeding programs led by Embrapa exemplify advancements in disease-resistant and climate-resilient cultivars. Chile’s heroic and southern viticulture highlights the importance of old vines, microclimatic heterogeneity, and territorial identity. Uruguay stands out for its terroir-based research and producer-led adaptation strategies. This review also addresses systemic challenges in scientific publishing, particularly the underrepresentation of Latin American researchers in global vitivinicultural discourse. These disparities underscore the need for inclusive science that values local knowledge and promotes equity in research funding and dissemination. Overall, Latin America stands out not only as a region highly vulnerable to climate change, but as an emerging model of adaptation and innovation, demonstrating how resilient, sustainable, and culturally rooted wine production can thrive under shifting environmental conditions. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

19 pages, 350 KiB  
Review
Reuse of Treated Wastewater to Address Water Scarcity in Viticulture: A Comprehensive Review
by Cátia Sofia Costa, Cristina Carlos, Ana Alexandra Oliveira and Ana Novo Barros
Agronomy 2025, 15(4), 941; https://doi.org/10.3390/agronomy15040941 - 12 Apr 2025
Viewed by 1129
Abstract
Water scarcity has become an increasingly critical global issue, affecting various sectors, including industrial, domestic, and particularly agriculture. Agriculture, as the largest consumer of water due to its substantial water requirements for food production, faces significant challenges, which are expected to intensify with [...] Read more.
Water scarcity has become an increasingly critical global issue, affecting various sectors, including industrial, domestic, and particularly agriculture. Agriculture, as the largest consumer of water due to its substantial water requirements for food production, faces significant challenges, which are expected to intensify with the growth of the global population. As a result, many countries have begun to explore innovative solutions to address this pressing problem, one of which is the reuse of wastewater for irrigation purposes. This approach has gained particular attention in viticulture, where water consumption is high, and the need for sustainable practices is paramount. This paper delves into the issue of water scarcity, focusing specifically on the winemaking sector. It reviews several studies investigating the potential of wastewater reuse for irrigating vineyards, highlighting both the promising benefits and the challenges associated with this practice. The findings suggest that using treated wastewater for irrigation in viticulture offers a viable solution to mitigate water shortages, particularly in regions facing severe droughts or limited freshwater resources. However, the successful implementation of this approach requires careful monitoring and management of several factors, including soil quality, plant health, fruit development, and the final wine product. Ensuring the safety and quality of the wine, as well as safeguarding consumer health, necessitates rigorous oversight to prevent any negative impacts from the use of reclaimed water. Full article
(This article belongs to the Special Issue New Insights in Crop Management to Respond to Climate Change)
18 pages, 3001 KiB  
Review
Adaptive Viticulture Strategies to Enhance Resilience and Grape Quality in Cold Climate Regions in Response to Climate Warming
by Gastón Gutiérrez-Gamboa and Ana Mucalo
Horticulturae 2025, 11(4), 394; https://doi.org/10.3390/horticulturae11040394 - 8 Apr 2025
Viewed by 1441
Abstract
Cold climate viticulture is challenged by climatic variability, including increased frost risk, shorter growing seasons, and unpredictable weather events that impact vine productivity and grape quality. Global warming is altering traditional viticulture zones, prompting the exploration of new regions for grape cultivation, the [...] Read more.
Cold climate viticulture is challenged by climatic variability, including increased frost risk, shorter growing seasons, and unpredictable weather events that impact vine productivity and grape quality. Global warming is altering traditional viticulture zones, prompting the exploration of new regions for grape cultivation, the selection of climate-resilient cultivars, and the implementation of adaptive practices. This review synthesizes recent advances in adaptive viticulture practices and plant growth regulator applications, highlighting novel molecular and physiological insights on cold stress resilience and berry quality. Key strategies include delayed winter pruning to mitigate frost damage, osmoprotectant application to improve freeze tolerance, and canopy management techniques (cluster thinning and defoliation) to enhance berry ripening and wine composition. Their effectiveness depends on vineyard microclimate, soil properties and variety-specific physiological response. Cover cropping is examined for its role in vine vigor regulation, improving soil microbial diversity, and water retention, though its effectiveness depends on soil type, participation patterns, and vineyard management practices. Recent transcriptomic and metabolomic studies have provided new regulatory mechanisms in cold stress adaptation, highlighting the regulatory roles of abscisic acid, brassinosteroids, ethylene, and salicylic acid in dormancy induction, oxidative stress response, and osmotic regulation. Reflective mulch technologies are currently examined for their ability to enhance light interception, modulating secondary metabolite accumulation, improving technological maturity (soluble solids, pH, and titratable acidity) and enhancing phenolic compounds content. The effectiveness of these strategies remains highly site-specific, influenced by variety selection and pruning methods particularly due to their differences on sugar accumulation and berry weight. Future research should prioritize long-term vineyard trials to refine these adaptive strategies, integrate genetic and transcriptomic insights into breeding programs to improve cold hardiness, and develop precision viticulture tools tailored to cold climate vineyard management. Full article
(This article belongs to the Section Viticulture)
Show Figures

Graphical abstract

36 pages, 3556 KiB  
Review
Remote Sensing Using Unmanned Aerial Vehicles for Water Stress Detection: A Review Focusing on Specialty Crops
by Harmandeep Sharma, Harjot Sidhu and Arnab Bhowmik
Drones 2025, 9(4), 241; https://doi.org/10.3390/drones9040241 - 25 Mar 2025
Cited by 2 | Viewed by 3661
Abstract
This review evaluates the use of unmanned aerial vehicles (UAVs) in detecting and managing water stress in specialty crops through thermal, multispectral, and hyperspectral imaging. Based on 104 scholarly articles from 2012 to 2024, the review highlights the advantages, limitations, and evolution of [...] Read more.
This review evaluates the use of unmanned aerial vehicles (UAVs) in detecting and managing water stress in specialty crops through thermal, multispectral, and hyperspectral imaging. Based on 104 scholarly articles from 2012 to 2024, the review highlights the advantages, limitations, and evolution of these imaging systems. Vineyards are the most studied crops for precision irrigation compared to other crops. The paper traces the shift from standalone imaging to multi-sensor fusion approaches, integrating vegetation indices and machine learning models for improved accuracy, resolution, and real-time stress assessment. It also addresses knowledge gaps such as scalability, payload constraints, and computational demands. Issues like flight altitude, sensor angle, and lighting conditions can lead to data inconsistencies, affecting water stress detection and decision-making. Emerging technologies like LiDAR, AI, and machine learning are proposed to enhance UAV data processing and stress detection. Future research should focus on developing automated data correction, multi-sensor fusion, and AI-driven real-time analysis to address sensor calibration and environmental factors. The review also advocates for integrating UAV data with satellite and ground sensors into smart irrigation systems to create a multi-scale monitoring framework, thereby advancing precision agriculture and water resource management. Full article
Show Figures

Figure 1

22 pages, 3483 KiB  
Article
Interactions Between Leaf Area Dynamics and Vineyard Performance, Environment, and Viticultural Practices
by Yishai Netzer and Noa Ohana-Levi
Agriculture 2025, 15(6), 618; https://doi.org/10.3390/agriculture15060618 - 14 Mar 2025
Viewed by 1014
Abstract
The Leaf Area Index (LAI) is a key physiological metric in viticulture, associated with vine health, yield, and responsiveness to environmental and management factors. This study, conducted in a Mediterranean Sauvignon Blanc vineyard (2017–2023), examines how irrigation and environmental variables affect LAI across [...] Read more.
The Leaf Area Index (LAI) is a key physiological metric in viticulture, associated with vine health, yield, and responsiveness to environmental and management factors. This study, conducted in a Mediterranean Sauvignon Blanc vineyard (2017–2023), examines how irrigation and environmental variables affect LAI across phenological stages, and their impact on yield (clusters per vine, cluster weight, total yield) and pruning parameters (cane weight, pruning weight). Results show that irrigation is the primary driver of LAI, with increased water availability promoting leaf area expansion. Environmental factors, including temperature, vapor pressure deficits, and solar radiation, influence LAI dynamics, with chilling hours playing a crucial role post-veraison. Excessive LAI (>1.6–1.7) reduces yield due to competition between vegetative and reproductive sinks. Early-season LAI correlates more strongly with yield, while late-season LAI predicts pruning weight and cane growth. Machine learning models reveal that excessive pre-veraison LAI in one season reduces cluster numbers in the next. This study highlights LAI as a critical tool for vineyard management. While irrigation promotes vegetative growth, excessive LAI can hinder fruit set and yield, emphasizing the need for strategic irrigation timing, canopy management, and climate adaptation to sustain long-term vineyard productivity. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Graphical abstract

18 pages, 3058 KiB  
Article
Assessing the Environmental Sustainability of Organic Wine Grape Production with Qualified Designation of Origin in La Rioja, Spain
by Adrián Agraso-Otero, Javier J. Cancela, Mar Vilanova, Javier Ugarte Andreva, Ricardo Rebolledo-Leiva and Sara González-García
Agriculture 2025, 15(5), 536; https://doi.org/10.3390/agriculture15050536 - 28 Feb 2025
Cited by 4 | Viewed by 1388
Abstract
Vineyards are significant demanders of fertilisers, pesticides, soil tillage and water. This study assessed the environmental profile of an organic grape production system with La Rioja qualified designation of origin using a cradle-to-gate life cycle assessment (LCA). The ReCiPe method was applied to [...] Read more.
Vineyards are significant demanders of fertilisers, pesticides, soil tillage and water. This study assessed the environmental profile of an organic grape production system with La Rioja qualified designation of origin using a cradle-to-gate life cycle assessment (LCA). The ReCiPe method was applied to assess the environmental impacts, while the Available WAter REmaining method was used to estimate the water scarcity. Additionally, the biodiversity loss, a global issue exacerbated by agricultural practices, was evaluated along with an ecosystem service indicator, pollination, to provide a more comprehensive analysis. This study employed two functional units: one kilogram of grapes and one hectare of land. The results revealed that the environmental impacts on global warming were more than ten times lower than those reported in most studies reviewed in the literature, primarily due to the effects of direct land use changes associated with pruning waste management. The total emissions in this category were 99.51 kg CO2 eq per hectare or 15.31 g CO2 eq per kilogram of grapes. Agrochemical-related emissions were identified as the environmental hotspot. The water scarcity was estimated at 48.4 litres per kilogram of grapes, mainly attributed to agrochemical dispersion. The biodiversity loss was largely driven by land transformation, with plants being the most impacted taxon. However, a high abundance of pollinators was observed in spring, contributing to improved grape quality and natural pest control. These findings could help highlight the environmental benefits of organic viticulture and the good practices implemented in this pilot. Full article
Show Figures

Figure 1

Back to TopTop