Grapevine Root Distribution and Density in Deep Soil Layers Under Different Soil Management Practices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials, Experimental Conditions, and Experimental Design
2.2. Soil Excavations and Data Acquisition
- large (Ø > 2 mm);
- medium (1 mm < Ø ≤ 2 mm);
- thin (Ø ≤ 1 mm).
- large roots (Ø > 2 mm);
- medium roots (1 mm < Ø ≤ 2 mm);
- thin roots (0.5 mm < Ø ≤ 1 mm);
- ultra-thin roots (Ø ≤ 0.5 mm).
2.3. Statistical Analysis
3. Results
3.1. Vine Root Distribution
3.2. Vine Root Density, Length, and Weight
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GM | Commercial grass mixture |
MT | Minimum tillage |
NC | Natural covering |
SE | Standard error of the mean. |
References
- Guerra, B.; Steenwerth, K. Influence of Floor Management Technique on Grapevine Growth, Disease Pressure, and Juice and Wine Composition: A Review. Am. J. Enol. Vitic. 2012, 63, 149–164. [Google Scholar] [CrossRef]
- Battista, F.; Gaiotti, F.; Bragato, G.; Tomasi, D. Root System Distribution and Density of ‘Pinot Gris’: Effect on Yield and Grape Quality. Acta Hortic. 2016, 1136, 109–114. [Google Scholar] [CrossRef]
- Silvestroni, O.; Dottori, E.; Pallotti, L.; Lattanzi, T.; Santilocchi, R.; Lanari, V. Using Legume-Enriched Cover Crops to Improve Grape Yield and Quality in Hillside Vineyards. Agronomy 2024, 14, 2528. [Google Scholar] [CrossRef]
- Abad, J.; Hermoso De Mendoza, I.; Marín, D.; Orcaray, L.; Santesteban, L.G. Cover Crops in Viticulture. A Systematic Review (1): Implications on Soil Characteristics and Biodiversity in Vineyard. OENO One 2021, 55, 295–312. [Google Scholar] [CrossRef]
- Abad, J.; Hermoso De Mendoza, I.; Marín, D.; Orcaray, L.; Santesteban, L.G. Cover Crops in Viticulture. A Systematic Review (2): Implications on Vineyard Agronomic Performance. OENO One 2021, 55, 1–27. [Google Scholar] [CrossRef]
- Tezza, L.; Vendrame, N.; Pitacco, A. Disentangling the Carbon Budget of a Vineyard: The Role of Soil Management. Agric. Ecosyst. Environ. 2019, 272, 52–62. [Google Scholar] [CrossRef]
- De Herralde, F.; Savé, R.; Aranda, X.; Biel, C. Grapevine Roots and Soil Environment: Growth, Distribution and Function. In Methodologies and Results in Grapevine Research; Delrot, S., Medrano, H., Or, E., Bavaresco, L., Grando, S., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 1–20. ISBN 978-90-481-9282-3. [Google Scholar]
- Palliotti, A.; Panara, F.; Famiani, F.; Sabbatini, P.; Howell, G.S.; Silvestroni, O.; Poni, S. Postveraison Application of Antitranspirant Di-1-p-Menthene to Control Sugar Accumulation in Sangiovese Grapevines. Am. J. Enol. Vitic. 2013, 64, 378–385. [Google Scholar] [CrossRef]
- Silvestroni, O.; Lanari, V.; Lattanzi, T.; Dottori, E.; Palliotti, A. Effects of Anti-transpirant Di-1-p-menthene, Sprayed Post-veraison, on Berry Ripening of Sangiovese Grapevines with Different Crop Loads. Aust. J. Grape Wine Res. 2020, 26, 363–371. [Google Scholar] [CrossRef]
- Pallotti, L.; Silvestroni, O.; Dottori, E.; Lattanzi, T.; Lanari, V. Effects of Shading Nets as a Form of Adaptation to Climate Change on Grapes Production: A Review. OENO One 2023, 57, 467–476. [Google Scholar] [CrossRef]
- Palliotti, A.; Frioni, T.; Tombesi, S.; Sabbatini, P.; Cruz-Castillo, J.G.; Lanari, V.; Silvestroni, O.; Gatti, M.; Poni, S. Double-Pruning Grapevines as a Management Tool to Delay Berry Ripening and Control Yield. Am. J. Enol. Vitic. 2017, 68, 412–421. [Google Scholar] [CrossRef]
- Silvestroni, O.; Lanari, V.; Lattanzi, T.; Palliotti, A. Delaying Winter Pruning, after Pre-Pruning, Alters Budburst, Leaf Area, Photosynthesis, Yield and Berry Composition in Sangiovese (Vitis vinifera L.): Grapevine Responses to Late Pruning. Aust. J. Grape Wine Res. 2018, 24, 478–486. [Google Scholar] [CrossRef]
- Pallotti, L.; Dottori, E.; Lattanzi, T.; Lanari, V.; Brillante, L.; Silvestroni, O. Anti-Hail Shading Net and Kaolin Application: Protecting Grape Production to Ensure Grape Quality in Mediterranean Vineyards. Horticulturae 2025, 11, 110. [Google Scholar] [CrossRef]
- Gambetta, G.A.; Fei, J.; Rost, T.L.; Knipfer, T.; Matthews, M.A.; Shackel, K.A.; Walker, M.A.; McElrone, A.J. Water Uptake along the Length of Grapevine Fine Roots: Developmental Anatomy, Tissue-Specific Aquaporin Expression, and Pathways of Water Transport. Plant Physiol. 2013, 163, 1254–1265. [Google Scholar] [CrossRef] [PubMed]
- Mapfumo, E.; Aspinall, D.; Hancock, T.W. Growth and Development of Roots of Grapevine (Vitis vinifera L.) in Relation to Water Uptake from Soil. Ann. Bot. 1994, 74, 75–85. [Google Scholar] [CrossRef]
- Meggio, F.; Prinsi, B.; Negri, A.S.; Simone Di Lorenzo, G.; Lucchini, G.; Pitacco, A.; Failla, O.; Scienza, A.; Cocucci, M.; Espen, L. Biochemical and Physiological Responses of Two Grapevine Rootstock Genotypes to Drought and Salt Treatments: Response of Two Genotypes to Drought and Salinity. Aust. J. Grape Wine Res. 2014, 20, 310–323. [Google Scholar] [CrossRef]
- Cislaghi, A.; Bordoni, M.; Meisina, C.; Bischetti, G.B. Soil Reinforcement Provided by the Root System of Grapevines: Quantification and Spatial Variability. Ecol. Eng. 2017, 109, 169–185. [Google Scholar] [CrossRef]
- Bordoni, M.; Meisina, C.; Vercesi, A.; Bischetti, G.B.; Chiaradia, E.A.; Vergani, C.; Chersich, S.; Valentino, R.; Bittelli, M.; Comolli, R.; et al. Quantifying the Contribution of Grapevine Roots to Soil Mechanical Reinforcement in an Area Susceptible to Shallow Landslides. Soil Tillage Res. 2016, 163, 195–206. [Google Scholar] [CrossRef]
- Loescher, W.H.; McCamant, T.; Keller, J.D. Carbohydrate Reserves, Translocation, and Storage in Woody Plant Roots. HortScience 1990, 25, 274–281. [Google Scholar] [CrossRef]
- Zapata, C.; Deléens, E.; Chaillou, S.; Magné, C. Partitioning and Mobilization of Starch and N Reserves in Grapevine (Vitis vinifera L.). J. Plant Physiol. 2004, 161, 1031–1040. [Google Scholar] [CrossRef]
- Holzapfel, B.P.; Smith, J.P.; Field, S.K.; Hardie, W.J. Dynamics of Carbohydrate Reserves in Cultivated Grapevines. In Horticultural Reviews; Janick, J., Ed.; Wiley: Hoboken, NJ, USA, 2010; Volume 37, pp. 143–211. ISBN 978-0-470-53716-9. [Google Scholar]
- Tomasi, D.; Gaiotti, F.; Petoumenou, D.; Lovat, L.; Belfiore, N.; Boscaro, D.; Mian, G. Winter Pruning: Effect on Root Density, Root Distribution and Root/Canopy Ratio in Vitis vinifera Cv. Pinot Gris. Agronomy 2020, 10, 1509. [Google Scholar] [CrossRef]
- Gatti, M.; Pirez, F.J.; Chiari, G.; Tombesi, S.; Palliotti, A.; Merli, M.C.; Poni, S. Phenology, Canopy Aging and Seasonal Carbon Balance as Related to Delayed Winter Pruning of Vitis vinifera L. Cv. Sangiovese Grapevines. Front. Plant Sci. 2016, 7, 659. [Google Scholar] [CrossRef]
- Frioni, T.; Tombesi, S.; Silvestroni, O.; Lanari, V.; Bellincontro, A.; Sabbatini, P.; Gatti, M.; Poni, S.; Palliotti, A. Postbudburst Spur Pruning Reduces Yield and Delays Fruit Sugar Accumulation in Sangiovese in Central Italy. Am. J. Enol. Vitic. 2016, 67, 419–425. [Google Scholar] [CrossRef]
- Lanari, V.; Palliotti, A.; Sabbatini, P.; Howell, G.S.; Silvestroni, O. Optimizing Deficit Irrigation Strategies to Manage Vine Performance and Fruit Composition of Field-Grown ‘Sangiovese’ (Vitis vinifera L.) Grapevines. Sci. Hortic. 2014, 179, 239–247. [Google Scholar] [CrossRef]
- Celette, F.; Findeling, A.; Gary, C. Competition for Nitrogen in an Unfertilized Intercropping System: The Case of an Association of Grapevine and Grass Cover in a Mediterranean Climate. Eur. J. Agron. 2009, 30, 41–51. [Google Scholar] [CrossRef]
- Klodd, A.E.; Eissenstat, D.M.; Wolf, T.K.; Centinari, M. Coping with Cover Crop Competition in Mature Grapevines. Plant Soil 2016, 400, 391–402. [Google Scholar] [CrossRef]
- Celette, F.; Wery, J.; Chantelot, E.; Celette, J.; Gary, C. Belowground Interactions in a Vine (Vitis vinifera L.)-Tall Fescue (Festuca Arundinacea Shreb.) Intercropping System: Water Relations and Growth. Plant Soil 2005, 276, 205–217. [Google Scholar] [CrossRef]
- Steenwerth, K.L.; Pierce, D.L.; Carlisle, E.A.; Spencer, R.G.M.; Smart, D.R. A Vineyard Agroecosystem: Disturbance and Precipitation Affect Soil Respiration under Mediterranean Conditions. Soil Sci. Soc. Am. J. 2010, 74, 231–239. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Jordán, A.; Tarolli, P.; Keesstra, S.; Novara, A.; Cerdà, A. The Immediate Effectiveness of Barley Straw Mulch in Reducing Soil Erodibility and Surface Runoff Generation in Mediterranean Vineyards. Sci. Total Environ. 2016, 547, 323–330. [Google Scholar] [CrossRef]
- Celette, F.; Gary, C. Dynamics of Water and Nitrogen Stress along the Grapevine Cycle as Affected by Cover Cropping. Eur. J. Agron. 2013, 45, 142–152. [Google Scholar] [CrossRef]
- Araujo, F.; Williams, L.E.; Grimes, D.W.; Matthews, M.A. A Comparative Study of Young ‘Thompson Seedless’ Grapevines under Drip and Furrow Irrigation. I. Root and Soil Water Distributions. Sci. Hortic. 1995, 60, 235–249. [Google Scholar] [CrossRef]
- Van Huyssteen, L.; Weber, H.W. The Effect of Selected Minimum and Conventional Tillage Practices in Vineyard Cultivation on Vine Performance. S. Afr. J. Enol. Vitic. 2017, 1, 77–83. [Google Scholar] [CrossRef]
- Mahmud, K.P.; Field, S.K.; Rogiers, S.Y.; Nielsen, S.; Guisard, Y.; Holzapfel, B.P. Rootstocks Alter the Seasonal Dynamics and Vertical Distribution of New Root Growth of Vitis vinifera Cv. Shiraz Grapevines. Agronomy 2023, 13, 2355. [Google Scholar] [CrossRef]
- Rogiers, S.Y.; Smith, J.P.; Holzapfel, B.P.; Hardie, W.J. Soil Temperature Moderates Grapevine Carbohydrate Reserves after Bud Break and Conditions Fruit Set Responses to Photoassimilatory Stress. Funct. Plant Biol. 2011, 38, 899–909. [Google Scholar] [CrossRef] [PubMed]
- Clarke, S.J.; Lamont, K.J.; Pan, H.Y.; Barry, L.A.; Hall, A.; Rogiers, S.Y. Spring Root-Zone Temperature Regulates Root Growth, Nutrient Uptake and Shoot Growth Dynamics in Grapevines: Root-Zone Warming, Growth and N Partitioning. Aust. J. Grape Wine Res. 2015, 21, 479–489. [Google Scholar] [CrossRef]
- McMichael, B.L.; Burke, J.J. Soil Temperature and Root Growth. HortScience 1998, 33, 947–951. [Google Scholar] [CrossRef]
- Swanepoel, J.J.; Southey, J.M. The Influence of Rootstock on the Rooting Pattern of the Grapevine. S. Afr. J. Enol. Vitic. 2017, 10. [Google Scholar] [CrossRef]
- Smart, D.R.; Schwass, E.; Lakso, A.; Morano, L. Grapevine Rooting Patterns: A Comprehensive Analysis and a Review. Am. J. Enol. Vitic. 2006, 57, 89–104. [Google Scholar] [CrossRef]
- Tandonnet, J.-P.; Cookson, S.J.; Vivin, P.; Ollat, N. Scion Genotype Controls Biomass Allocation and Root Development in Grafted Grapevine: Scion/Rootstock Interactions in Grapevine. Aust. J. Grape Wine Res. 2009, 16, 290–300. [Google Scholar] [CrossRef]
- Archer, E.; Strauss, H.C. Effect of Plant Density on Root Distribution of Three-Year-Old Grafted 99 Richter Grapevines. S. Afr. J. Enol. Vitic. 1985, 6, 25–30. [Google Scholar] [CrossRef]
- Hunter, J.J. PLANT SPACING EFFECTS ON ROOT GROWTH AND DRY MATTER PARTITIONING OF VITIS vinifera L. CV. PINOT NOIR/99 RICHTER AND IMPLICATIONS FOR SOIL UTILISATION. Acta Hortic. 2000, 526, 63–74. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2022. [Google Scholar]
- Böhm, W. Methods of Studying Root Systems; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 1979; ISBN 978-0-387-09329-1. [Google Scholar]
- Flint, A.L.; Childs, S. Development and Calibration of an Irregular Hole Bulk Density Sampler. Soil Sci. Soc. Am. J. 1984, 48, 374–378. [Google Scholar] [CrossRef]
- Tomasi, D. Grape Quality Starts at the Roots. Acta Hortic. 2016, 1136, 1–10. [Google Scholar] [CrossRef]
- Bordoni, M.; Vercesi, A.; Maerker, M.; Ganimede, C.; Reguzzi, M.C.; Capelli, E.; Wei, X.; Mazzoni, E.; Simoni, S.; Gagnarli, E.; et al. Effects of Vineyard Soil Management on the Characteristics of Soils and Roots in the Lower Oltrepò Apennines (Lombardy, Italy). Sci. Total Environ. 2019, 693, 133390. [Google Scholar] [CrossRef] [PubMed]
- Linares Torres, R.; De La Fuente Lloreda, M.; Junquera Gonzalez, P.; Lissarrague García-Gutierrez, J.R.; Baeza Trujillo, P. Effect of Soil Management Strategies on the Characteristics of the Grapevine Root System in Irrigated Vineyards under Semi-Arid Conditions: Effect of Soil Management on Grapevine Roots. Aust. J. Grape Wine Res. 2018, 24, 439–449. [Google Scholar] [CrossRef]
- Morlat, R.; Jacquet, A. Grapevine Root System and Soil Characteristics in a Vineyard Maintained Long-Term with or without Interrow Sward. Am. J. Enol. Vitic. 2003, 54, 1–7. [Google Scholar] [CrossRef]
- Araujo, F.; Williams, L.E.; Matthews, M.A. A Comparative Study of Young ‘Thompson Seedless’ Grapevines (Vitis vinifera L.) under Drip and Furrow Irrigation. II. Growth, Water Use Efficiency and Nitrogen Partitioning. Sci. Hortic. 1995, 60, 251–265. [Google Scholar] [CrossRef]
2000–2020 | 2021 | |
---|---|---|
Rain (mm/year) | 750 | 671 |
Summer a rain (mm) | 169 | 100 |
Average annual temperature (°C) | 13 | 14 |
Average summer temperature (°C) | 22 | 24 |
Amerine and Winkler index (GDD b) | 1800 | 2010 |
Depth | Apparent Density (g/cm3) | Organic Carbon (g/kg) | Available Phosphorus (mg/kg) | ||||||
---|---|---|---|---|---|---|---|---|---|
MT | NC | GM | MT | NC | GM | MT | NC | GM | |
0–20 cm | 1.48 | 1.56 | 1.56 | 10.47 | 14.71 | 14.62 | 2.74 | 2.52 | 1.81 |
20–40 cm | 1.57 | 1.51 | 1.58 | 7.48 | 7.74 | 7.72 | 0.20 | 0.78 | 0.35 |
40–60 cm | 1.58 | 1.60 | 1.63 | 7.02 | 5.25 | 5.63 | 0.23 | 0.45 | 0.31 |
60–80 cm | 1.63 | 1.60 | 1.64 | 5.64 | 6.12 | 6.57 | 0.29 | 0.49 | 0.36 |
80–100 cm | 1.59 | 1.57 | 1.60 | 2.52 | 4.49 | 3.53 | 0.15 | 0.15 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanari, V.; Pallotti, L.; Lattanzi, T.; Silvestroni, O. Grapevine Root Distribution and Density in Deep Soil Layers Under Different Soil Management Practices. Plants 2025, 14, 1823. https://doi.org/10.3390/plants14121823
Lanari V, Pallotti L, Lattanzi T, Silvestroni O. Grapevine Root Distribution and Density in Deep Soil Layers Under Different Soil Management Practices. Plants. 2025; 14(12):1823. https://doi.org/10.3390/plants14121823
Chicago/Turabian StyleLanari, Vania, Luca Pallotti, Tania Lattanzi, and Oriana Silvestroni. 2025. "Grapevine Root Distribution and Density in Deep Soil Layers Under Different Soil Management Practices" Plants 14, no. 12: 1823. https://doi.org/10.3390/plants14121823
APA StyleLanari, V., Pallotti, L., Lattanzi, T., & Silvestroni, O. (2025). Grapevine Root Distribution and Density in Deep Soil Layers Under Different Soil Management Practices. Plants, 14(12), 1823. https://doi.org/10.3390/plants14121823