Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,713)

Search Parameters:
Keywords = video quality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1010 KiB  
Article
Online Video Streaming from the Perspective of Transaction Cost Economics
by Amit Malhan, Pankaj Chaudhary and Robert Pavur
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 199; https://doi.org/10.3390/jtaer20030199 - 4 Aug 2025
Viewed by 132
Abstract
In recent years, online streaming has encountered the challenge of retaining its user base. This study considers the role of transaction cost economics theory in consumer choices to continue subscribing. Participants respond to their top three streaming services, resulting in 797 responses, accounting [...] Read more.
In recent years, online streaming has encountered the challenge of retaining its user base. This study considers the role of transaction cost economics theory in consumer choices to continue subscribing. Participants respond to their top three streaming services, resulting in 797 responses, accounting for multiple selections by each respondent. Respondents could choose their top three services from a list of Netflix, Disney, Hulu, Amazon Prime Video, HBO Max, and Apple TV+. The study’s conclusions highlight the impact of uncertainty, a negative measure of streaming quality, on online subscription-based video streaming. Additionally, asset specificity, reflecting uniqueness and exclusive content, is found to be positively related to continuing a subscription. This research distinguishes itself by examining individuals who are already subscribers to provide insights and guidance through the lens of Transaction Cost Economics, to help marketing professionals seeking a deeper understanding of consumer behavior in the online streaming landscape. Full article
Show Figures

Figure 1

19 pages, 1109 KiB  
Article
User Preference-Based Dynamic Optimization of Quality of Experience for Adaptive Video Streaming
by Zixuan Feng, Yazhi Liu and Hao Zhang
Electronics 2025, 14(15), 3103; https://doi.org/10.3390/electronics14153103 - 4 Aug 2025
Viewed by 133
Abstract
With the rapid development of video streaming services, adaptive bitrate (ABR) algorithms have become a core technology for ensuring optimal viewing experiences. Traditional ABR strategies, predominantly rule-based or reinforcement learning-driven, typically employ uniform quality assessment metrics that overlook users’ subjective preference differences regarding [...] Read more.
With the rapid development of video streaming services, adaptive bitrate (ABR) algorithms have become a core technology for ensuring optimal viewing experiences. Traditional ABR strategies, predominantly rule-based or reinforcement learning-driven, typically employ uniform quality assessment metrics that overlook users’ subjective preference differences regarding factors such as video quality and stalling. To address this limitation, this paper proposes an adaptive video bitrate selection system that integrates preference modeling with reinforcement learning. By incorporating a preference learning module, the system models and scores user viewing trajectories, using these scores to replace conventional rewards and guide the training of the Proximal Policy Optimization (PPO) algorithm, thereby achieving policy optimization that better aligns with users’ perceived experiences. Simulation results on DASH network bandwidth traces demonstrate that the proposed optimization method improves overall Quality of Experience (QoE) by over 9% compared to other mainstream algorithms. Full article
Show Figures

Figure 1

21 pages, 3755 KiB  
Article
Thermal and Expansion Analysis of the Lebanese Flatbread Baking Process Using a High-Temperature Tunnel Oven
by Yves Mansour, Pierre Rahmé, Nemr El Hajj and Olivier Rouaud
Appl. Sci. 2025, 15(15), 8611; https://doi.org/10.3390/app15158611 (registering DOI) - 4 Aug 2025
Viewed by 173
Abstract
This study investigates the thermal dynamics and material behavior involved in the baking process for Lebanese flatbread, focusing on the heat transfer mechanisms, water loss, and dough expansion under high-temperature conditions. Despite previous studies on flatbread baking using impingement or conventional ovens, this [...] Read more.
This study investigates the thermal dynamics and material behavior involved in the baking process for Lebanese flatbread, focusing on the heat transfer mechanisms, water loss, and dough expansion under high-temperature conditions. Despite previous studies on flatbread baking using impingement or conventional ovens, this work presents the first experimental investigation of the traditional Lebanese flatbread baking process under realistic industrial conditions, specifically using a high-temperature tunnel oven with direct flame heating, extremely short baking times (~10–12 s), and peak temperatures reaching ~650 °C, which are essential to achieving the characteristic pocket formation and texture of Lebanese bread. This experimental study characterizes the baking kinetics of traditional Lebanese flatbread, recording mass loss pre- and post-baking, thermal profiles, and dough expansion through real-time temperature measurements and video recordings, providing insights into the dough’s thermal response and expansion behavior under high-temperature conditions. A custom-designed instrumented oven with a steel conveyor and a direct flame burner was employed. The dough, prepared following a traditional recipe, was analyzed during the baking process using K-type thermocouples and visual monitoring. Results revealed that Lebanese bread undergoes significant water loss due to high baking temperatures (~650 °C), leading to rapid crust formation and pocket development. Empirical equations modeling the relationship between baking time, temperature, and expansion were developed with high predictive accuracy. Additionally, an energy analysis revealed that the total energy required to bake Lebanese bread is approximately 667 kJ/kg, with an overall thermal efficiency of only 21%, dropping to 16% when preheating is included. According to previous CFD (Computational Fluid Dynamics) simulations, most heat loss in similar tunnel ovens occurs via the chimney (50%) and oven walls (29%). These findings contribute to understanding the broader thermophysical principles that can be applied to the development of more efficient baking processes for various types of bread. The empirical models developed in this study can be applied to automating and refining the industrial production of Lebanese flatbread, ensuring consistent product quality across different baking environments. Future studies will extend this work to alternative oven designs and dough formulations. Full article
(This article belongs to the Special Issue Chemical and Physical Properties in Food Processing: Second Edition)
Show Figures

Figure 1

24 pages, 1751 KiB  
Article
Robust JND-Guided Video Watermarking via Adaptive Block Selection and Temporal Redundancy
by Antonio Cedillo-Hernandez, Lydia Velazquez-Garcia, Manuel Cedillo-Hernandez, Ismael Dominguez-Jimenez and David Conchouso-Gonzalez
Mathematics 2025, 13(15), 2493; https://doi.org/10.3390/math13152493 - 3 Aug 2025
Viewed by 225
Abstract
This paper introduces a robust and imperceptible video watermarking framework designed for blind extraction in dynamic video environments. The proposed method operates in the spatial domain and combines multiscale perceptual analysis, adaptive Just Noticeable Difference (JND)-based quantization, and temporal redundancy via multiframe embedding. [...] Read more.
This paper introduces a robust and imperceptible video watermarking framework designed for blind extraction in dynamic video environments. The proposed method operates in the spatial domain and combines multiscale perceptual analysis, adaptive Just Noticeable Difference (JND)-based quantization, and temporal redundancy via multiframe embedding. Watermark bits are embedded selectively in blocks with high perceptual masking using a QIM strategy, and the corresponding DCT coefficients are estimated directly from the spatial domain to reduce complexity. To enhance resilience, each bit is redundantly inserted across multiple keyframes selected based on scene transitions. Extensive simulations over 21 benchmark videos (CIF, 4CIF, HD) validate that the method achieves superior performance in robustness and perceptual quality, with an average Bit Error Rate (BER) of 1.03%, PSNR of 50.1 dB, SSIM of 0.996, and VMAF of 97.3 under compression, noise, cropping, and temporal desynchronization. The system outperforms several recent state-of-the-art techniques in both quality and speed, requiring no access to the original video during extraction. These results confirm the method’s viability for practical applications such as copyright protection and secure video streaming. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

24 pages, 23817 KiB  
Article
Dual-Path Adversarial Denoising Network Based on UNet
by Jinchi Yu, Yu Zhou, Mingchen Sun and Dadong Wang
Sensors 2025, 25(15), 4751; https://doi.org/10.3390/s25154751 - 1 Aug 2025
Viewed by 234
Abstract
Digital image quality is crucial for reliable analysis in applications such as medical imaging, satellite remote sensing, and video surveillance. However, traditional denoising methods struggle to balance noise removal with detail preservation and lack adaptability to various types of noise. We propose a [...] Read more.
Digital image quality is crucial for reliable analysis in applications such as medical imaging, satellite remote sensing, and video surveillance. However, traditional denoising methods struggle to balance noise removal with detail preservation and lack adaptability to various types of noise. We propose a novel three-module architecture for image denoising, comprising a generator, a dual-path-UNet-based denoiser, and a discriminator. The generator creates synthetic noise patterns to augment training data, while the dual-path-UNet denoiser uses multiple receptive field modules to preserve fine details and dense feature fusion to maintain global structural integrity. The discriminator provides adversarial feedback to enhance denoising performance. This dual-path adversarial training mechanism addresses the limitations of traditional methods by simultaneously capturing both local details and global structures. Experiments on the SIDD, DND, and PolyU datasets demonstrate superior performance. We compare our architecture with the latest state-of-the-art GAN variants through comprehensive qualitative and quantitative evaluations. These results confirm the effectiveness of noise removal with minimal loss of critical image details. The proposed architecture enhances image denoising capabilities in complex noise scenarios, providing a robust solution for applications that require high image fidelity. By enhancing adaptability to various types of noise while maintaining structural integrity, this method provides a versatile tool for image processing tasks that require preserving detail. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

11 pages, 441 KiB  
Article
Medical Education: Are Reels a Good Deal in Video-Based Learning?
by Daniel Humberto Pozza, Fani Lourença Neto, José Tiago Costa-Pereira and Isaura Tavares
Educ. Sci. 2025, 15(8), 981; https://doi.org/10.3390/educsci15080981 (registering DOI) - 31 Jul 2025
Viewed by 257
Abstract
Based on our question, “Are reels/short-videos the real deal in video-based learning?” this study explores the effectiveness of short (around 2 min) video-based learning in engaging medical students from the second large medical Portuguese school. With the increasing integration of digital tools in [...] Read more.
Based on our question, “Are reels/short-videos the real deal in video-based learning?” this study explores the effectiveness of short (around 2 min) video-based learning in engaging medical students from the second large medical Portuguese school. With the increasing integration of digital tools in education, video content has emerged as a dynamic method to enhance learning experiences. This cross-sectional survey was conducted by using anonymous self-administered questionnaires, prepared with reference to previous studies, and distributed to 264 informed students who voluntarily agreed to participate. This sample represented 75.5% of the students attending the classes. The questionnaires included topics related to the 65 short videos about practical classes, as well as the students’ learning preferences. The collected data were analyzed using descriptive and comparative statistics. The students considered that the content and format of the videos were adequate (99.6% and 100%, respectively). Specifically, the videos helped the students to better understand the practical classes, consolidate and retain the practical content, and simplify the study for the exams. Additionally, the videos were praised for their high-quality audiovisual content, being innovative, complete, concise, short and/or adequate, or better than other formats such as printed information. The combination of written and audiovisual support materials for teaching and studying is important and has been shown to improve students’ performance. This pedagogical methodology is well-suited for the current generation of students, aiding not only in study and exam preparation but also in remote learning. Full article
(This article belongs to the Special Issue Higher Education Development and Technological Innovation)
Show Figures

Figure 1

14 pages, 243 KiB  
Article
Building Safe Emergency Medical Teams with Emergency Crisis Resource Management (E-CRM): An Interprofessional Simulation-Based Study
by Juan Manuel Cánovas-Pallarés, Giulio Fenzi, Pablo Fernández-Molina, Lucía López-Ferrándiz, Salvador Espinosa-Ramírez and Vanessa Arizo-Luque
Healthcare 2025, 13(15), 1858; https://doi.org/10.3390/healthcare13151858 - 30 Jul 2025
Viewed by 301
Abstract
Background/Objectives: Effective teamwork is crucial for minimizing human error in healthcare settings. Medical teams, typically composed of physicians and nurses, supported by auxiliary professionals, achieve better outcomes when they possess strong collaborative competencies. High-quality teamwork is associated with fewer adverse events and [...] Read more.
Background/Objectives: Effective teamwork is crucial for minimizing human error in healthcare settings. Medical teams, typically composed of physicians and nurses, supported by auxiliary professionals, achieve better outcomes when they possess strong collaborative competencies. High-quality teamwork is associated with fewer adverse events and complications and lower mortality rates. Based on this background, the objective of this study is to analyze the perception of non-technical skills and immediate learning outcomes in interprofessional simulation settings based on E-CRM items. Methods: A cross-sectional observational study was conducted involving participants from the official postgraduate Medicine and Nursing programs at the Catholic University of Murcia (UCAM) during the 2024–2025 academic year. Four interprofessional E-CRM simulation sessions were planned, involving randomly assigned groups with proportional representation of medical and nursing students. Teams worked consistently throughout the training and participated in clinical scenarios observed via video transmission by their peers. Post-scenario debriefings followed INACSL guidelines and employed the PEARLS method. Results: Findings indicate that 48.3% of participants had no difficulty identifying the team leader, while 51.7% reported minor difficulty. Role assignment posed moderate-to-high difficulty for 24.1% of respondents. Communication, situation awareness, and early help-seeking were generally managed with ease, though mobilizing resources remained a challenge for 27.5% of participants. Conclusions: This study supports the value of interprofessional education in developing essential competencies for handling urgent, emergency, and high-complexity clinical situations. Strengthening interdisciplinary collaboration contributes to safer, more effective patient care. Full article
22 pages, 554 KiB  
Systematic Review
Smart Homes: A Meta-Study on Sense of Security and Home Automation
by Carlos M. Torres-Hernandez, Mariano Garduño-Aparicio and Juvenal Rodriguez-Resendiz
Technologies 2025, 13(8), 320; https://doi.org/10.3390/technologies13080320 - 30 Jul 2025
Viewed by 466
Abstract
This review examines advancements in smart home security through the integration of home automation technologies. Various security systems, including surveillance cameras, smart locks, and motion sensors, are analyzed, highlighting their effectiveness in enhancing home security. These systems enable users to monitor and control [...] Read more.
This review examines advancements in smart home security through the integration of home automation technologies. Various security systems, including surveillance cameras, smart locks, and motion sensors, are analyzed, highlighting their effectiveness in enhancing home security. These systems enable users to monitor and control their homes in real-time, providing an additional layer of security. The document also examines how these security systems can enhance the quality of life for users by providing greater convenience and control over their domestic environment. The ability to receive instant alerts and access video recordings from anywhere allows users to respond quickly to unexpected situations, thereby increasing their sense of security and well-being. Additionally, the challenges and future trends in this field are addressed, emphasizing the importance of designing solutions that are intuitive and easy to use. As technology continues to evolve, it is crucial for developers and manufacturers to focus on creating products that seamlessly integrate into users’ daily lives, facilitating their adoption and use. This comprehensive state-of-the-art review, based on the Scopus database, provides a detailed overview of the current status and future potential of smart home security systems. It highlights how ongoing innovation in this field can lead to the development of more advanced and efficient solutions that not only protect homes but also enhance the overall user experience. Full article
(This article belongs to the Special Issue Smart Systems (SmaSys2024))
Show Figures

Figure 1

15 pages, 435 KiB  
Systematic Review
A Systematic Review of Tuberculosis Stigma Reduction Interventions
by Nadira Aitambayeva, Altyn Aringazina, Laila Nazarova, Kamila Faizullina, Magripa Bapayeva, Nazerke Narymbayeva and Shnara Svetlanova
Healthcare 2025, 13(15), 1846; https://doi.org/10.3390/healthcare13151846 - 29 Jul 2025
Viewed by 224
Abstract
Background: Stigma associated with tuberculosis (TB) continues to undermine patient well-being, treatment adherence, and public health goals and objectives. This study aims to systematically review the literature to identify and synthesize TB stigma reduction interventions published between 2015 and 2025. Methods: Following the [...] Read more.
Background: Stigma associated with tuberculosis (TB) continues to undermine patient well-being, treatment adherence, and public health goals and objectives. This study aims to systematically review the literature to identify and synthesize TB stigma reduction interventions published between 2015 and 2025. Methods: Following the PRISMA guidelines, we conducted a comprehensive literature search across PubMed, Scopus, Science Direct, ProQuest, and Google Scholar. Eligible studies included those with qualitative, quantitative, and mixed-methods designs that focused on interventions related to TB-related stigma. We categorized the studies into three groups: (1) intervention development studies, (2) TB treatment programs with stigma reduction outcomes, (3) stigma-specific interventions. Data extraction and quality appraisal were conducted independently by two reviewers using the Mixed Methods Appraisal Tool (MMAT). Results: A total of 15 studies met the inclusion criteria. Five studies focused on co-developing stigma interventions, which incorporated multi-level and multicomponent strategies targeting internalized, enacted, anticipated, and intersectional stigma. Two studies assessed TB treatment-related interventions (e.g., home-based care, digital adherence tools) with incidental stigma reduction effects. The remaining seven studies implemented stigma-targeted interventions, including educational programs, video-based therapy, peer-led support, and anti-self-stigma toolkits. Interventions addressed stigma across individual, interpersonal, institutional, community, and policy levels. Conclusions: This review highlights the evolution and diversification of TB stigma interventions over the past decade. While earlier interventions emphasized education and support, recent strategies increasingly integrate peer leadership, digital platforms, and socio-ecological frameworks. The findings underscore the need for comprehensive, contextually grounded interventions that reflect the lived experiences of people affected by TB. Full article
(This article belongs to the Section Community Care)
Show Figures

Figure 1

17 pages, 1603 KiB  
Perspective
A Perspective on Quality Evaluation for AI-Generated Videos
by Zhichao Zhang, Wei Sun and Guangtao Zhai
Sensors 2025, 25(15), 4668; https://doi.org/10.3390/s25154668 - 28 Jul 2025
Viewed by 343
Abstract
Recent breakthroughs in AI-generated content (AIGC) have transformed video creation, empowering systems to translate text, images, or audio into visually compelling stories. Yet reliable evaluation of these machine-crafted videos remains elusive because quality is governed not only by spatial fidelity within individual frames [...] Read more.
Recent breakthroughs in AI-generated content (AIGC) have transformed video creation, empowering systems to translate text, images, or audio into visually compelling stories. Yet reliable evaluation of these machine-crafted videos remains elusive because quality is governed not only by spatial fidelity within individual frames but also by temporal coherence across frames and precise semantic alignment with the intended message. The foundational role of sensor technologies is critical, as they determine the physical plausibility of AIGC outputs. In this perspective, we argue that multimodal large language models (MLLMs) are poised to become the cornerstone of next-generation video quality assessment (VQA). By jointly encoding cues from multiple modalities such as vision, language, sound, and even depth, the MLLM can leverage its powerful language understanding capabilities to assess the quality of scene composition, motion dynamics, and narrative consistency, overcoming the fragmentation of hand-engineered metrics and the poor generalization ability of CNN-based methods. Furthermore, we provide a comprehensive analysis of current methodologies for assessing AIGC video quality, including the evolution of generation models, dataset design, quality dimensions, and evaluation frameworks. We argue that advances in sensor fusion enable MLLMs to combine low-level physical constraints with high-level semantic interpretations, further enhancing the accuracy of visual quality assessment. Full article
(This article belongs to the Special Issue Perspectives in Intelligent Sensors and Sensing Systems)
Show Figures

Figure 1

20 pages, 2776 KiB  
Article
Automatic 3D Reconstruction: Mesh Extraction Based on Gaussian Splatting from Romanesque–Mudéjar Churches
by Nelson Montas-Laracuente, Emilio Delgado Martos, Carlos Pesqueira-Calvo, Giovanni Intra Sidola, Ana Maitín, Alberto Nogales and Álvaro José García-Tejedor
Appl. Sci. 2025, 15(15), 8379; https://doi.org/10.3390/app15158379 - 28 Jul 2025
Viewed by 266
Abstract
This research introduces an automated 3D virtual reconstruction system tailored for architectural heritage (AH) applications, contributing to the ongoing paradigm shift from traditional CAD-based workflows to artificial intelligence-driven methodologies. It reviews recent advancements in machine learning and deep learning—particularly neural radiance fields (NeRFs) [...] Read more.
This research introduces an automated 3D virtual reconstruction system tailored for architectural heritage (AH) applications, contributing to the ongoing paradigm shift from traditional CAD-based workflows to artificial intelligence-driven methodologies. It reviews recent advancements in machine learning and deep learning—particularly neural radiance fields (NeRFs) and its successor, Gaussian splatting (GS)—as state-of-the-art techniques in the domain. The study advocates for replacing point cloud data in heritage building information modeling workflows with image-based inputs, proposing a novel “photo-to-BIM” pipeline. A proof-of-concept system is presented, capable of processing photographs or video footage of ancient ruins—specifically, Romanesque–Mudéjar churches—to automatically generate 3D mesh reconstructions. The system’s performance is assessed using both objective metrics and subjective evaluations of mesh quality. The results confirm the feasibility and promise of image-based reconstruction as a viable alternative to conventional methods. The study successfully developed a system for automated 3D mesh reconstruction of AH from images. It applied GS and Mip-splatting for NeRFs, proving superior in noise reduction for subsequent mesh extraction via surface-aligned Gaussian splatting for efficient 3D mesh reconstruction. This photo-to-mesh pipeline signifies a viable step towards HBIM. Full article
Show Figures

Figure 1

20 pages, 642 KiB  
Article
Impact of Audio Delay and Quality in Network Music Performance
by Konstantinos Tsioutas, George Xylomenos and Ioannis Doumanis
Future Internet 2025, 17(8), 337; https://doi.org/10.3390/fi17080337 - 28 Jul 2025
Viewed by 209
Abstract
Network Music Performance (NMP) refers to network-based remote collaboration when applied to music performances, such as musical education, music production and live music concerts. In NMP, the most important parameter for the Quality of Experience (QoE) of the participants is low end-to-end audio [...] Read more.
Network Music Performance (NMP) refers to network-based remote collaboration when applied to music performances, such as musical education, music production and live music concerts. In NMP, the most important parameter for the Quality of Experience (QoE) of the participants is low end-to-end audio delay. Increasing delays prevent musicians’ synchronization and lead to a suboptimal musical experience. Visual contact between the participants is also crucial for their experience but highly demanding in terms of bandwidth. Since audio compression induces additional coding and decoding delays on the signal path, most NMP systems rely on audio quality reduction when bandwidth is limited to avoid violating the stringent delay limitations of NMP. To assess the delay and quality tolerance limits for NMP and see if they can be satisfied by emerging 5G networks, we asked eleven pairs of musicians to perform musical pieces of their choice in a carefully controlled laboratory environment, which allowed us to set different end-to-end delays or audio sampling rates. To assess the QoE of these NMP sessions, each musician responded to a set of questions after each performance. The analysis of the musicians’ responses revealed that actual musicians in delay-controlled NMP scenarios can synchronize at delays of up to 40 ms, compared to the 25–30 ms reported in rhythmic hand-clapping experiments. Our analysis also shows that audio quality can be considerably reduced by sub-sampling, so as to save bandwidth without significant QoE loss. Finally, we find that musicians rely more on audio and less on video to synchronize during an NMP session. These results indicate that NMP can become feasible in advanced 5G networks. Full article
Show Figures

Figure 1

18 pages, 4836 KiB  
Article
Deep Learning to Analyze Spatter and Melt Pool Behavior During Additive Manufacturing
by Deepak Gadde, Alaa Elwany and Yang Du
Metals 2025, 15(8), 840; https://doi.org/10.3390/met15080840 - 28 Jul 2025
Viewed by 459
Abstract
To capture the complex metallic spatter and melt pool behavior during the rapid interaction between the laser and metal material, high-speed cameras are applied to record the laser powder bed fusion process and generate a large volume of image data. In this study, [...] Read more.
To capture the complex metallic spatter and melt pool behavior during the rapid interaction between the laser and metal material, high-speed cameras are applied to record the laser powder bed fusion process and generate a large volume of image data. In this study, four deep learning algorithms are applied: YOLOv5, Fast R-CNN, RetinaNet, and EfficientDet. They are trained by the recorded videos to learn and extract information on spatter and melt pool behavior during the laser powder bed fusion process. The well-trained models achieved high accuracy and low loss, demonstrating strong capability in accurately detecting and tracking spatter and melt pool dynamics. A stability index is proposed and calculated based on the melt pool length change rate. Greater index value reflects a more stable melt pool. We found that more spatters were detected for the unstable melt pool, while fewer spatters were found for the stable melt pool. The spatter’s size can affect its initial ejection speed, and large spatters are ejected slowly while small spatters are ejected rapidly. In addition, more than 58% of detected spatters have their initial ejection angle in the range of 60–120°. These findings provide a better understanding of spatter and melt pool dynamics and behavior, uncover the influence of melt pool stability on spatter formation, and demonstrate the correlation between the spatter size and its initial ejection speed. This work will contribute to the extraction of important information from high-speed recorded videos for additive manufacturing to reduce waste, lower cost, enhance part quality, and increase process reliability. Full article
(This article belongs to the Special Issue Machine Learning in Metal Additive Manufacturing)
Show Figures

Figure 1

21 pages, 1622 KiB  
Article
Enhancing Wearable Fall Detection System via Synthetic Data
by Minakshi Debnath, Sana Alamgeer, Md Shahriar Kabir and Anne H. Ngu
Sensors 2025, 25(15), 4639; https://doi.org/10.3390/s25154639 - 26 Jul 2025
Viewed by 377
Abstract
Deep learning models rely heavily on extensive training data, but obtaining sufficient real-world data remains a major challenge in clinical fields. To address this, we explore methods for generating realistic synthetic multivariate fall data to supplement limited real-world samples collected from three fall-related [...] Read more.
Deep learning models rely heavily on extensive training data, but obtaining sufficient real-world data remains a major challenge in clinical fields. To address this, we explore methods for generating realistic synthetic multivariate fall data to supplement limited real-world samples collected from three fall-related datasets: SmartFallMM, UniMib, and K-Fall. We apply three conventional time-series augmentation techniques, a Diffusion-based generative AI method, and a novel approach that extracts fall segments from public video footage of older adults. A key innovation of our work is the exploration of two distinct approaches: video-based pose estimation to extract fall segments from public footage, and Diffusion models to generate synthetic fall signals. Both methods independently enable the creation of highly realistic and diverse synthetic data tailored to specific sensor placements. To our knowledge, these approaches and especially their application in fall detection represent rarely explored directions in this research area. To assess the quality of the synthetic data, we use quantitative metrics, including the Fréchet Inception Distance (FID), Discriminative Score, Predictive Score, Jensen–Shannon Divergence (JSD), and Kolmogorov–Smirnov (KS) test, and visually inspect temporal patterns for structural realism. We observe that Diffusion-based synthesis produces the most realistic and distributionally aligned fall data. To further evaluate the impact of synthetic data, we train a long short-term memory (LSTM) model offline and test it in real time using the SmartFall App. Incorporating Diffusion-based synthetic data improves the offline F1-score by 7–10% and boosts real-time fall detection performance by 24%, confirming its value in enhancing model robustness and applicability in real-world settings. Full article
Show Figures

Figure 1

27 pages, 705 KiB  
Article
A Novel Wavelet Transform and Deep Learning-Based Algorithm for Low-Latency Internet Traffic Classification
by Ramazan Enisoglu and Veselin Rakocevic
Algorithms 2025, 18(8), 457; https://doi.org/10.3390/a18080457 - 23 Jul 2025
Viewed by 345
Abstract
Accurate and real-time classification of low-latency Internet traffic is critical for applications such as video conferencing, online gaming, financial trading, and autonomous systems, where millisecond-level delays can degrade user experience. Existing methods for low-latency traffic classification, reliant on raw temporal features or static [...] Read more.
Accurate and real-time classification of low-latency Internet traffic is critical for applications such as video conferencing, online gaming, financial trading, and autonomous systems, where millisecond-level delays can degrade user experience. Existing methods for low-latency traffic classification, reliant on raw temporal features or static statistical analyses, fail to capture dynamic frequency patterns inherent to real-time applications. These limitations hinder accurate resource allocation in heterogeneous networks. This paper proposes a novel framework integrating wavelet transform (WT) and artificial neural networks (ANNs) to address this gap. Unlike prior works, we systematically apply WT to commonly used temporal features—such as throughput, slope, ratio, and moving averages—transforming them into frequency-domain representations. This approach reveals hidden multi-scale patterns in low-latency traffic, akin to structured noise in signal processing, which traditional time-domain analyses often overlook. These wavelet-enhanced features train a multilayer perceptron (MLP) ANN, enabling dual-domain (time–frequency) analysis. We evaluate our approach on a dataset comprising FTP, video streaming, and low-latency traffic, including mixed scenarios with up to four concurrent traffic types. Experiments demonstrate 99.56% accuracy in distinguishing low-latency traffic (e.g., video conferencing) from FTP and streaming, outperforming k-NN, CNNs, and LSTMs. Notably, our method eliminates reliance on deep packet inspection (DPI), offering ISPs a privacy-preserving and scalable solution for prioritizing time-sensitive traffic. In mixed-traffic scenarios, the model achieves 74.2–92.8% accuracy, offering ISPs a scalable solution for prioritizing time-sensitive traffic without deep packet inspection. By bridging signal processing and deep learning, this work advances efficient bandwidth allocation and enables Internet Service Providers to prioritize time-sensitive flows without deep packet inspection, improving quality of service in heterogeneous network environments. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

Back to TopTop