Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = venom chemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3962 KiB  
Article
TriplEP-CPP: Algorithm for Predicting the Properties of Peptide Sequences
by Maria Serebrennikova, Ekaterina Grafskaia, Dmitriy Maltsev, Kseniya Ivanova, Pavel Bashkirov, Fedor Kornilov, Pavel Volynsky, Roman Efremov, Eduard Bocharov and Vassili Lazarev
Int. J. Mol. Sci. 2024, 25(13), 6869; https://doi.org/10.3390/ijms25136869 - 22 Jun 2024
Cited by 4 | Viewed by 2164
Abstract
Advancements in medicine and pharmacology have led to the development of systems that deliver biologically active molecules inside cells, increasing drug concentrations at target sites. This improves effectiveness and duration of action and reduces side effects on healthy tissues. Cell-penetrating peptides (CPPs) show [...] Read more.
Advancements in medicine and pharmacology have led to the development of systems that deliver biologically active molecules inside cells, increasing drug concentrations at target sites. This improves effectiveness and duration of action and reduces side effects on healthy tissues. Cell-penetrating peptides (CPPs) show promise in this area. While traditional medicinal chemistry methods have been used to develop CPPs, machine learning techniques can speed up and reduce costs in the search for new peptides. A predictive algorithm based on machine learning models was created to identify novel CPP sequences using molecular descriptors using a combination of algorithms like k-nearest neighbors, gradient boosting, and random forest. Some potential CPPs were found and tested for cytotoxicity and penetrating ability. A new low-toxicity CPP was discovered from the Rhopilema esculentum venom proteome through this study. Full article
Show Figures

Graphical abstract

16 pages, 990 KiB  
Review
Chemistry and Functions of Imported Fire Ant Venom
by Jian Chen
Toxins 2023, 15(8), 489; https://doi.org/10.3390/toxins15080489 - 3 Aug 2023
Cited by 4 | Viewed by 3906
Abstract
In the United States, imported fire ants are often referred to as red imported fire ants, Solenopsis invicta Buren, black imported fire ants, S. richteri Forel, and their hybrid (S. invicta × S. richteri). Due to their aggressive stings and toxic [...] Read more.
In the United States, imported fire ants are often referred to as red imported fire ants, Solenopsis invicta Buren, black imported fire ants, S. richteri Forel, and their hybrid (S. invicta × S. richteri). Due to their aggressive stings and toxic venom, imported fire ants pose a significant threat to public health, agriculture, and ecosystem health. However, venom plays a vital role in the survival of fire ants by serving various crucial functions in defense, foraging, and colony health maintenance. Numerous reviews and book chapters have been published on fire ant venom. Due to its medical importance and the expanding global distribution of these ants, fire ant venom research remains an active and highly productive area, leading to the discovery of new components and functions. This review summarizes the recent advances in our understanding of fire ant venom chemistry and its functions within fire ant colonies. Full article
(This article belongs to the Special Issue Ant Venom)
Show Figures

Figure 1

15 pages, 2823 KiB  
Review
Bibliometric Review of the Literature on Cone Snail Peptide Toxins from 2000 to 2022
by Linh T. T. Nguyen, David J. Craik and Quentin Kaas
Mar. Drugs 2023, 21(3), 154; https://doi.org/10.3390/md21030154 - 25 Feb 2023
Cited by 13 | Viewed by 4176
Abstract
The venom of marine cone snails is mainly composed of peptide toxins called conopeptides, among which conotoxins represent those that are disulfide-rich. Publications on conopeptides frequently state that conopeptides attract considerable interest for their potent and selective activity, but there has been no [...] Read more.
The venom of marine cone snails is mainly composed of peptide toxins called conopeptides, among which conotoxins represent those that are disulfide-rich. Publications on conopeptides frequently state that conopeptides attract considerable interest for their potent and selective activity, but there has been no analysis yet that formally quantifies the popularity of the field. We fill this gap here by providing a bibliometric analysis of the literature on cone snail toxins from 2000 to 2022. Our analysis of 3028 research articles and 393 reviews revealed that research in the conopeptide field is indeed prolific, with an average of 130 research articles per year. The data show that the research is typically carried out collaboratively and worldwide, and that discoveries are truly a community-based effort. An analysis of the keywords provided with each article revealed research trends, their evolution over the studied period, and important milestones. The most employed keywords are related to pharmacology and medicinal chemistry. In 2004, the trend in keywords changed, with the pivotal event of that year being the approval by the FDA of the first peptide toxin drug, ziconotide, a conopeptide, for the treatment of intractable pain. The corresponding research article is among the top ten most cited articles in the conopeptide literature. From the time of that article, medicinal chemistry aiming at engineering conopeptides to treat neuropathic pain ramped up, as seen by an increased focus on topological modifications (e.g., cyclization), electrophysiology, and structural biology. Full article
(This article belongs to the Special Issue Conotoxins II)
Show Figures

Figure 1

22 pages, 4116 KiB  
Article
A Conjugate between Lqh-8/6, a Natural Peptide Analogue of Chlorotoxin, and Doxorubicin Efficiently Induces Glioma Cell Death
by Lucie Dardevet, Feten Najlaoui, Sonia Aroui, Mayeul Collot, Céline Tisseyre, Michael W. Pennington, Jean-Maurice Mallet and Michel De Waard
Biomedicines 2022, 10(10), 2605; https://doi.org/10.3390/biomedicines10102605 - 17 Oct 2022
Cited by 8 | Viewed by 2636
Abstract
Natural peptides isolated from animal venoms generally target cell surface receptors with high affinity and selectivity. On many occasions, some of these receptors are over-expressed in cancer cells. Herein, we identified Lqh-8/6 as a natural peptide analog of chlorotoxin, a proven and useful [...] Read more.
Natural peptides isolated from animal venoms generally target cell surface receptors with high affinity and selectivity. On many occasions, some of these receptors are over-expressed in cancer cells. Herein, we identified Lqh-8/6 as a natural peptide analog of chlorotoxin, a proven and useful compound for the diagnosis and treatment of glioma. Lqh-8/6 and two other natural analogues were chemically synthesized for the first time and evaluated for their ability to label, detect and prevent glioma growth in vitro. We demonstrate that a biotinylated version of Lqh-8/6 allows both the labeling of glioma cell lines and the detection of glioma in brain sections of glioma allograft Fisher rats. Lqh-8/6 has intrinsic anti-invasive properties but is non-toxic to glioma cells. To confer anti-tumor properties to Lqh-8/6, we chemically coupled doxorubicin to the glioma-targeting peptide using click chemistry. To this end, we successfully chemically synthesized Lqh-8/6-azide and doxorubicin-alkyne without impairing the toxic nature of doxorubicin. The toxin-drug conjugate efficiently promotes the apoptosis of glioma cells in vitro. This example contributes to the concept that animal venom peptides constitute exquisite warheads for delivering toxic chemical conjugates, a parallel to the popular concept of antibody-drug conjugates for the treatment of cancer. Full article
Show Figures

Figure 1

23 pages, 1240 KiB  
Review
Chemistry and the Potential Antiviral, Anticancer, and Anti-Inflammatory Activities of Cardiotonic Steroids Derived from Toads
by Hesham R. El-Seedi, Nermeen Yosri, Bishoy El-Aarag, Shaymaa H. Mahmoud, Ahmed Zayed, Ming Du, Aamer Saeed, Syed G. Musharraf, Islam M. El-Garawani, Mohamed R. Habib, Haroon Elrasheid Tahir, Momtaz M. Hegab, Xiaobo Zou, Zhiming Guo, Thomas Efferth and Shaden A. M. Khalifa
Molecules 2022, 27(19), 6586; https://doi.org/10.3390/molecules27196586 - 5 Oct 2022
Cited by 30 | Viewed by 4310
Abstract
Cardiotonic steroids (CTS) were first documented by ancient Egyptians more than 3000 years ago. Cardiotonic steroids are a group of steroid hormones that circulate in the blood of amphibians and toads and can also be extracted from natural products such as plants, herbs, [...] Read more.
Cardiotonic steroids (CTS) were first documented by ancient Egyptians more than 3000 years ago. Cardiotonic steroids are a group of steroid hormones that circulate in the blood of amphibians and toads and can also be extracted from natural products such as plants, herbs, and marines. It is well known that cardiotonic steroids reveal effects against congestive heart failure and atrial fibrillation; therefore, the term "cardiotonic" has been coined. Cardiotonic steroids are divided into two distinct groups: cardenolides (plant-derived) and bufadienolides (mainly of animal origin). Cardenolides have an unsaturated five-membered lactone ring attached to the steroid nucleus at position 17; bufadienolides have a doubly unsaturated six-membered lactone ring. Cancer is a leading cause of mortality in humans all over the world. In 2040, the global cancer load is expected to be 28.4 million cases, which would be a 47% increase from 2020. Moreover, viruses and inflammations also have a very nebative impact on human health and lead to mortality. In the current review, we focus on the chemistry, antiviral and anti-cancer activities of cardiotonic steroids from the naturally derived (toads) venom to combat these chronic devastating health problems. The databases of different research engines (Google Scholar, PubMed, Science Direct, and Sci-Finder) were screened using different combinations of the following terms: “cardiotonic steroids”, “anti-inflammatory”, “antiviral”, “anticancer”, “toad venom”, “bufadienolides”, and “poison chemical composition”. Various cardiotonic steroids were isolated from diverse toad species and exhibited superior anti-inflammatory, anticancer, and antiviral activities in in vivo and in vitro models such as marinobufagenin, gammabufotalin, resibufogenin, and bufalin. These steroids are especially difficult to identify. However, several compounds and their bioactivities were identified by using different molecular and biotechnological techniques. Biotechnology is a new tool to fully or partially generate upscaled quantities of natural products, which are otherwise only available at trace amounts in organisms. Full article
(This article belongs to the Special Issue New Anticancer Agents Based on Natural Products)
Show Figures

Figure 1

16 pages, 1847 KiB  
Article
Novel Natural Compounds and Their Anatomical Distribution in the Stinging Fireworm Hermodice carunculata (Annelida)
by Sara Righi, Luca Forti, Roberto Simonini, Valentina Ferrari, Daniela Prevedelli and Adele Mucci
Mar. Drugs 2022, 20(9), 585; https://doi.org/10.3390/md20090585 - 19 Sep 2022
Cited by 6 | Viewed by 2981
Abstract
Increasing evidence in the field of bioprospection fosters the necessity of studying poorly investigated poisonous marine invertebrates to expand knowledge on animal venom biology. Among marine annelids, amphinomid fireworms are notorious for their bearded trunk equipped with a powerful stinging capacity. Here, a [...] Read more.
Increasing evidence in the field of bioprospection fosters the necessity of studying poorly investigated poisonous marine invertebrates to expand knowledge on animal venom biology. Among marine annelids, amphinomid fireworms are notorious for their bearded trunk equipped with a powerful stinging capacity. Here, a methodological workflow based on analytical chemistry techniques (compound isolation followed by mass spectrometry and spectroscopy analyses) was applied to gain new insights, leading to the identification and structural elucidation of an array of natural products from Mediterranean specimens of Hermodice carunculata. Eight betaine-derived unprecedented compounds, named “carunculines”, were detected, bearing two terminal ammonium groups tri-and disubstituted at the Cα (A, B) and a series of different alkyl chains (I–VIII). The mixture of chemicals was found in all the body parts of H. carunculata, supporting a mechanism of action triggered by their vehiculation inside the dorsal chaetae, and subsequent injection when chaetae break off on contact. Preliminary investigations to understand adaptive features were also performed, showing a trend in carunculine abundance that fits into the evolutionary history of these worms. These findings shed light on the chemical ecology of amphinomids, giving reasons for the success of H. carunculata in benthic environments and providing promising novel metabolites for biotechnological implications. Full article
(This article belongs to the Section Structural Studies on Marine Natural Products)
Show Figures

Graphical abstract

18 pages, 2185 KiB  
Article
Chemical Synthesis of a Functional Fluorescent-Tagged α-Bungarotoxin
by Oliver Brun, Claude Zoukimian, Barbara Oliveira-Mendes, Jérôme Montnach, Benjamin Lauzier, Michel Ronjat, Rémy Béroud, Frédéric Lesage, Didier Boturyn and Michel De Waard
Toxins 2022, 14(2), 79; https://doi.org/10.3390/toxins14020079 - 21 Jan 2022
Cited by 8 | Viewed by 4864
Abstract
α-bungarotoxin is a large, 74 amino acid toxin containing five disulphide bridges, initially identified in the venom of Bungarus multicinctus snake. Like most large toxins, chemical synthesis of α-bungarotoxin is challenging, explaining why all previous reports use purified or recombinant α-bungarotoxin. However, only [...] Read more.
α-bungarotoxin is a large, 74 amino acid toxin containing five disulphide bridges, initially identified in the venom of Bungarus multicinctus snake. Like most large toxins, chemical synthesis of α-bungarotoxin is challenging, explaining why all previous reports use purified or recombinant α-bungarotoxin. However, only chemical synthesis allows easy insertion of non-natural amino acids or new chemical functionalities. Herein, we describe a procedure for the chemical synthesis of a fluorescent-tagged α-bungarotoxin. The full-length peptide was designed to include an alkyne function at the amino-terminus through the addition of a pentynoic acid linker. Chemical synthesis of α-bungarotoxin requires hydrazide-based coupling of three peptide fragments in successive steps. After completion of the oxidative folding, an azide-modified Cy5 fluorophore was coupled by click chemistry onto the toxin. Next, we determined the efficacy of the fluorescent-tagged α-bungarotoxin to block acetylcholine (ACh)-mediated currents in response to muscle nicotinic receptor activation in TE671 cells. Using automated patch-clamp recordings, we demonstrate that fluorescent synthetic α-bungarotoxin has the expected nanomolar affinity for the nicotinic receptor. The blocking effect of fluorescent α-bungarotoxin could be displaced by incubation with a 20-mer peptide mimicking the α-bungarotoxin binding site. In addition, TE671 cells could be labelled with fluorescent toxin, as witnessed by confocal microscopy, and this labelling was partially displaced by the 20-mer competitive peptide. We thus demonstrate that synthetic fluorescent-tagged α-bungarotoxin preserves excellent properties for binding onto muscle nicotinic receptors. Full article
(This article belongs to the Special Issue Toxins: Mr Hyde or Dr Jekyll?)
Show Figures

Figure 1

47 pages, 9432 KiB  
Review
Review of Venoms of Non-Polydnavirus Carrying Ichneumonoid Wasps
by Donald L. J. Quicke and Buntika A. Butcher
Biology 2021, 10(1), 50; https://doi.org/10.3390/biology10010050 - 12 Jan 2021
Cited by 23 | Viewed by 5068
Abstract
Parasitoids are predominantly insects that develop as larvae on or inside their host, also usually another insect, ultimately killing it after various periods of parasitism when both parasitoid larva and host are alive. The very large wasp superfamily Ichneumonoidea is composed of parasitoids [...] Read more.
Parasitoids are predominantly insects that develop as larvae on or inside their host, also usually another insect, ultimately killing it after various periods of parasitism when both parasitoid larva and host are alive. The very large wasp superfamily Ichneumonoidea is composed of parasitoids of other insects and comprises a minimum of 100,000 species. The superfamily is dominated by two similarly sized families, Braconidae and Ichneumonidae, which are collectively divided into approximately 80 subfamilies. Of these, six have been shown to release DNA-containing virus-like particles, encoded within the wasp genome, classified in the virus family Polydnaviridae. Polydnaviruses infect and have profound effects on host physiology in conjunction with various venom and ovarial secretions, and have attracted an immense amount of research interest. Physiological interactions between the remaining ichneumonoids and their hosts result from adult venom gland secretions and in some cases, ovarian or larval secretions. Here we review the literature on the relatively few studies on the effects and chemistry of these ichneumonoid venoms and make suggestions for interesting future research areas. In particular, we highlight relatively or potentially easily culturable systems with features largely lacking in currently studied systems and whose study may lead to new insights into the roles of venom chemistry in host-parasitoid relationships as well as their evolution. Full article
(This article belongs to the Special Issue Host-Parasite Interactions: Trends in Molecular Ecology)
Show Figures

Figure 1

15 pages, 1526 KiB  
Article
Small Molecules in the Venom of the Scorpion Hormurus waigiensis
by Edward R. J. Evans, Lachlan McIntyre, Tobin D. Northfield, Norelle L. Daly and David T. Wilson
Biomedicines 2020, 8(8), 259; https://doi.org/10.3390/biomedicines8080259 - 31 Jul 2020
Cited by 18 | Viewed by 5102
Abstract
Despite scorpion stings posing a significant public health issue in particular regions of the world, certain aspects of scorpion venom chemistry remain poorly described. Although there has been extensive research into the identity and activity of scorpion venom peptides, non-peptide small molecules present [...] Read more.
Despite scorpion stings posing a significant public health issue in particular regions of the world, certain aspects of scorpion venom chemistry remain poorly described. Although there has been extensive research into the identity and activity of scorpion venom peptides, non-peptide small molecules present in the venom have received comparatively little attention. Small molecules can have important functions within venoms; for example, in some spider species the main toxic components of the venom are acylpolyamines. Other molecules can have auxiliary effects that facilitate envenomation, such as purines with hypotensive properties utilised by snakes. In this study, we investigated some non-peptide small molecule constituents of Hormurus waigiensis venom using LC/MS, reversed-phase HPLC, and NMR spectroscopy. We identified adenosine, adenosine monophosphate (AMP), and citric acid within the venom, with low quantities of the amino acids glutamic acid and aspartic acid also being present. Purine nucleosides such as adenosine play important auxiliary functions in snake venoms when injected alongside other venom toxins, and they may have a similar role within H. waigiensis venom. Further research on these and other small molecules in scorpion venoms may elucidate their roles in prey capture and predator defence, and gaining a greater understanding of how scorpion venom components act in combination could allow for the development of improved first aid. Full article
(This article belongs to the Special Issue Animal Venoms–Curse or Cure?)
Show Figures

Figure 1

19 pages, 2140 KiB  
Article
Bioactive Compounds Isolated from Marine Bacterium Vibrio neocaledonicus and Their Enzyme Inhibitory Activities
by Isabel Gómez-Betancur, Jianping Zhao, Lin Tan, Chang Chen, Ge Yu, Paola Rey-Suárez and Lina Preciado
Mar. Drugs 2019, 17(7), 401; https://doi.org/10.3390/md17070401 - 8 Jul 2019
Cited by 15 | Viewed by 4792
Abstract
Marine organisms are recognized as a source of compounds with interesting biological activities. Vibrio neocaledonicus has been reported on for its high effectiveness against corrosion in metals but it has been little studied for its chemical and biological activities. In this study, four [...] Read more.
Marine organisms are recognized as a source of compounds with interesting biological activities. Vibrio neocaledonicus has been reported on for its high effectiveness against corrosion in metals but it has been little studied for its chemical and biological activities. In this study, four compounds were isolated from V. neocaledonicus: indole (1); 1H-indole-3-carboxaldehyde (2); 4-hydroxybenzaldehyde (3) and Cyclo (-Pro-Tyr) (4); using a bioassay-guided method, since in a previous study it was found that the ethyl acetate extract was active on the enzymes acetylcholinesterase (AChE), alpha-glucosidase (AG) and xanthine oxidase (XO). The inhibitory activities of the three compounds against AChE, AG and XO was also evaluated. In addition, the enzymatic inhibitory activity of indole to the toxins from the venom of Bothrops asper was tested. Results showed that indole exhibited strong inhibitory activity to AG (IC50 = 18.65 ± 1.1 μM), to AChE, and XO (51.3% and 44.3% at 50 μg/mL, respectively). 1H-indole-3-carboxaldehyde displayed strong activity to XO (IC50 = 13.36 ± 0.39 μM). 4-hydroxybenzaldehyde showed moderate activity to XO (50.75% at 50 μg/mL) and weak activity to AChE (25.7% at 50 μg/mL). Furthermore, indole showed a significant in vitro inhibition to the coagulant effect induced by 1.0 μg of venom. The findings were supported by molecular docking. This is the first comprehensive report on the chemistry of V. neocaledonicus and the bioactivity of its metabolites. Full article
(This article belongs to the Special Issue Bioactive Compounds from Coral Reef Organisms)
Show Figures

Graphical abstract

37 pages, 14820 KiB  
Article
Enter the Dragon: The Dynamic and Multifunctional Evolution of Anguimorpha Lizard Venoms
by Ivan Koludarov, Timothy NW Jackson, Bianca op den Brouw, James Dobson, Daniel Dashevsky, Kevin Arbuckle, Christofer J. Clemente, Edward J. Stockdale, Chip Cochran, Jordan Debono, Carson Stephens, Nadya Panagides, Bin Li, Mary-Louise Roy Manchadi, Aude Violette, Rudy Fourmy, Iwan Hendrikx, Amanda Nouwens, Judith Clements, Paolo Martelli, Hang Fai Kwok and Bryan G. Fryadd Show full author list remove Hide full author list
Toxins 2017, 9(8), 242; https://doi.org/10.3390/toxins9080242 - 6 Aug 2017
Cited by 40 | Viewed by 33453
Abstract
While snake venoms have been the subject of intense study, comparatively little work has been done on lizard venoms. In this study, we have examined the structural and functional diversification of anguimorph lizard venoms and associated toxins, and related these results to dentition [...] Read more.
While snake venoms have been the subject of intense study, comparatively little work has been done on lizard venoms. In this study, we have examined the structural and functional diversification of anguimorph lizard venoms and associated toxins, and related these results to dentition and predatory ecology. Venom composition was shown to be highly variable across the 20 species of Heloderma, Lanthanotus, and Varanus included in our study. While kallikrein enzymes were ubiquitous, they were also a particularly multifunctional toxin type, with differential activities on enzyme substrates and also ability to degrade alpha or beta chains of fibrinogen that reflects structural variability. Examination of other toxin types also revealed similar variability in their presence and activity levels. The high level of venom chemistry variation in varanid lizards compared to that of helodermatid lizards suggests that venom may be subject to different selection pressures in these two families. These results not only contribute to our understanding of venom evolution but also reveal anguimorph lizard venoms to be rich sources of novel bioactive molecules with potential as drug design and development lead compounds. Full article
(This article belongs to the Collection Evolution of Venom Systems)
Show Figures

Figure 1

64 pages, 19648 KiB  
Article
Coralsnake Venomics: Analyses of Venom Gland Transcriptomes and Proteomes of Six Brazilian Taxa
by Steven D. Aird, Nelson Jorge Da Silva, Lijun Qiu, Alejandro Villar-Briones, Vera Aparecida Saddi, Mariana Pires de Campos Telles, Miguel L. Grau and Alexander S. Mikheyev
Toxins 2017, 9(6), 187; https://doi.org/10.3390/toxins9060187 - 8 Jun 2017
Cited by 71 | Viewed by 10687
Abstract
Venom gland transcriptomes and proteomes of six Micrurus taxa (M. corallinus, M. lemniscatus carvalhoi, M. lemniscatus lemniscatus, M. paraensis, M. spixii spixii, and M. surinamensis) were investigated, providing the most comprehensive, quantitative data on Micrurus venom [...] Read more.
Venom gland transcriptomes and proteomes of six Micrurus taxa (M. corallinus, M. lemniscatus carvalhoi, M. lemniscatus lemniscatus, M. paraensis, M. spixii spixii, and M. surinamensis) were investigated, providing the most comprehensive, quantitative data on Micrurus venom composition to date, and more than tripling the number of Micrurus venom protein sequences previously available. The six venomes differ dramatically. All are dominated by 2–6 toxin classes that account for 91–99% of the toxin transcripts. The M. s. spixii venome is compositionally the simplest. In it, three-finger toxins (3FTxs) and phospholipases A2 (PLA2s) comprise >99% of the toxin transcripts, which include only four additional toxin families at levels ≥0.1%. Micrurus l. lemniscatus venom is the most complex, with at least 17 toxin families. However, in each venome, multiple structural subclasses of 3FTXs and PLA2s are present. These almost certainly differ in pharmacology as well. All venoms also contain phospholipase B and vascular endothelial growth factors. Minor components (0.1–2.0%) are found in all venoms except that of M. s. spixii. Other toxin families are present in all six venoms at trace levels (<0.005%). Minor and trace venom components differ in each venom. Numerous novel toxin chemistries include 3FTxs with previously unknown 8- and 10-cysteine arrangements, resulting in new 3D structures and target specificities. 9-cysteine toxins raise the possibility of covalent, homodimeric 3FTxs or heterodimeric toxins with unknown pharmacologies. Probable muscarinic sequences may be reptile-specific homologs that promote hypotension via vascular mAChRs. The first complete sequences are presented for 3FTxs putatively responsible for liberating glutamate from rat brain synaptosomes. Micrurus C-type lectin-like proteins may have 6–9 cysteine residues and may be monomers, or homo- or heterodimers of unknown pharmacology. Novel KSPIs, 3× longer than any seen previously, appear to have arisen in three species by gene duplication and fusion. Four species have transcripts homologous to the nociceptive toxin, (MitTx) α-subunit, but all six species had homologs to the β-subunit. The first non-neurotoxic, non-catalytic elapid phospholipase A2s are reported. All are probably myonecrotic. Phylogenetic analysis indicates that the six taxa diverged 15–35 million years ago and that they split from their last common ancestor with Old World elapines nearly 55 million years ago. Given their early diversification, many cryptic micrurine taxa are anticipated. Full article
(This article belongs to the Collection Evolution of Venom Systems)
Show Figures

Graphical abstract

17 pages, 1410 KiB  
Article
A Severe Accident Caused by an Ocellate River Stingray (Potamotrygon motoro) in Central Brazil: How Well Do We Really Understand Stingray Venom Chemistry, Envenomation, and Therapeutics?
by Nelson Jorge Da Silva, Kalley Ricardo Clementino Ferreira, Raimundo Nonato Leite Pinto and Steven Douglas Aird
Toxins 2015, 7(6), 2272-2288; https://doi.org/10.3390/toxins7062272 - 18 Jun 2015
Cited by 23 | Viewed by 13081
Abstract
Freshwater stingrays cause many serious human injuries, but identification of the offending species is uncommon. The present case involved a large freshwater stingray, Potamotrygon motoro (Chondrichthyes: Potamotrygonidae), in the Araguaia River in Tocantins, Brazil. Appropriate first aid was administered within ~15 min, except [...] Read more.
Freshwater stingrays cause many serious human injuries, but identification of the offending species is uncommon. The present case involved a large freshwater stingray, Potamotrygon motoro (Chondrichthyes: Potamotrygonidae), in the Araguaia River in Tocantins, Brazil. Appropriate first aid was administered within ~15 min, except that an ice pack was applied. Analgesics provided no pain relief, although hot compresses did. Ciprofloxacin therapy commenced after ~18 h and continued seven days. Then antibiotic was suspended; however, after two more days and additional tests, cephalosporin therapy was initiated, and proved successful. Pain worsened despite increasingly powerful analgesics, until debridement of the wound was performed after one month. The wound finally closed ~70 days after the accident, but the patient continued to have problems wearing shoes even eight months later. Chemistry and pharmacology of Potamotrygon venom and mucus, and clinical management of freshwater stingray envenomations are reviewed in light of the present case. Bacterial infections of stingray puncture wounds may account for more long-term morbidity than stingray venom. Simultaneous prophylactic use of multiple antibiotics is recommended for all but the most superficial stingray wounds. Distinguishing relative contributions of venom, mucus, and bacteria will require careful genomic and transcriptomic investigations of stingray tissues and contaminating bacteria. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

Back to TopTop