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Abstract: Cardiotonic steroids (CTS) were first documented by ancient Egyptians more than
3000 years ago. Cardiotonic steroids are a group of steroid hormones that circulate in the blood of
amphibians and toads and can also be extracted from natural products such as plants, herbs, and
marines. It is well known that cardiotonic steroids reveal effects against congestive heart failure and
atrial fibrillation; therefore, the term "cardiotonic" has been coined. Cardiotonic steroids are divided
into two distinct groups: cardenolides (plant-derived) and bufadienolides (mainly of animal origin).
Cardenolides have an unsaturated five-membered lactone ring attached to the steroid nucleus at
position 17; bufadienolides have a doubly unsaturated six-membered lactone ring. Cancer is a leading
cause of mortality in humans all over the world. In 2040, the global cancer load is expected to be
28.4 million cases, which would be a 47% increase from 2020. Moreover, viruses and inflammations
also have a very nebative impact on human health and lead to mortality. In the current review, we
focus on the chemistry, antiviral and anti-cancer activities of cardiotonic steroids from the naturally
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derived (toads) venom to combat these chronic devastating health problems. The databases of differ-
ent research engines (Google Scholar, PubMed, Science Direct, and Sci-Finder) were screened using
different combinations of the following terms: “cardiotonic steroids”, “anti-inflammatory”, “antivi-
ral”, “anticancer”, “toad venom”, “bufadienolides”, and “poison chemical composition”. Various
cardiotonic steroids were isolated from diverse toad species and exhibited superior anti-inflammatory,
anticancer, and antiviral activities in in vivo and in vitro models such as marinobufagenin, gammabu-
fotalin, resibufogenin, and bufalin. These steroids are especially difficult to identify. However, several
compounds and their bioactivities were identified by using different molecular and biotechnological
techniques. Biotechnology is a new tool to fully or partially generate upscaled quantities of natural
products, which are otherwise only available at trace amounts in organisms.

Keywords: anticancer; antiviral; anti-inflammatory; cardiotonic steroids; bufadienolides; bufo-
talin; bufalin

1. Introduction

Cardiotonic steroids (CTS) were documented by ancient Egyptians more than
3000 years ago [1]. It is well known that cardiotonic steroids show therapeutic activ-
ity against congestive heart failure; therefore, the term "cardiotonic" has been coined.
Cardenolides can also be used to treat atrial fibrillation by increasing intracellular Na+ and
controlling the contraction of cardiac fibers [2]. The sodium pump is composed of two
subunits in equimolar ratios: (i) the α-catalytic subunit which is a multipass transmembrane
protein containing the binding sites for Na+, K+, ATP, and CTS, and (ii) the β regulatory sub-
unit, a transmembrane protein with several glycosylation sites [3]. The positive inotropic
activity of cardiotonic steroids that mediate clinically useful physiological effects in patients
has been attributed largely to high-affinity inhibitory interaction with the extracellular
surface of the membrane-bound sodium pump (Na+/K+-ATPase) [4]. However, CTS were
first reported to be vital in the regulation of renal sodium transport and arterial pressure.
Recent epidemiological evaluations have implicated that these types of steroids have an
intrinsic role in the regulation of cell growth, differentiation, apoptosis, and fibrosis, the
modulation of immunity, and the control of various central nervous functions and even
behavior [5]. According to Dvela et al., compounds that are derivatives from CTS have
been used for centuries to treat cardiac failure and arrhythmias in Western and Eastern
medicine [6]. CTS also contribute to pro-hypertrophic and pro-fibrotic cell signaling [7].
CTS are divided into two distinct groups, i.e., cardenolides, such as ouabain and digoxin,
and bufadienolides, such as marinobufagenin, telocinobufagin, and bufalin [8], as shown
in Figure 1. In general, herbs and animal preparations containing CTS have been used for
centuries as emetics, diuretics, and arrow poisons [9].

Bufadienolides are one type of CTS comprising two substances, bufalin (BF) and
marinobufagenin. They were first primarily isolated from the skin of Bufo toads (formerly
Bufo marinus, now Rhinella marina L.) and were used to treat heart diseases in traditional
Chinese medicine [1]. The use of digitalis, ouabain, and strophanthin glycosides to slow the
rate and strengthen the contractility of the heart is one of the most important strategies to
combat cardiac failure. Among these agents, digitalis glycosides are the most widely used
compounds. Their positive inotropic and negative chronotropic effects on cardiomyocytes
are related to the coupling between Na+/K+ ATPase and Na+/Ca2+ exchanger through
their intracellular concentration.
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Figure 1. (A) The basic steroid aglycone unit of cardiotonic steroids and their types, cardenolides 
and bufadienolides; (B) numbered chemical structure of the bufadienolide aglycone or steroidal nu-
cleus, i.e., the main type of cardiotonic steroids (n denotes the number of the sugar monomer in the 
cardiac glycoside structures (n = 1–3)). 

Figure 1. (A) The basic steroid aglycone unit of cardiotonic steroids and their types, cardenolides and
bufadienolides; (B) numbered chemical structure of the bufadienolide aglycone or steroidal nucleus,
i.e., the main type of cardiotonic steroids (n denotes the number of the sugar monomer in the cardiac
glycoside structures (n = 1–3)).

There are extraordinary arsenals of chemicals in the animal kingdom that are critical
for their survival, defending against predators and hunting [10,11]. The mucous glands are
a significant source of bioactive compounds due to their evolutionary adaptations [12,13].
The skin of toads is distinguished by serous and mucous glands which release a variety of
chemicals that aid in the defense against poisoning predators [13,14]. Mucous glands are
many and slightly smaller. They are crucial for maintaining the skin’s pH, moisturizing it,
and secreting a cocktail of bioactive compounds [15]. In addition, cardiotonic steroids have
a wide spectrum of pharmacological activities, among them cardiotonic, anti-arrhythmic,
antidiabetic, immunomodulatory, antibacterial, antifungal, antiprotozoal, antiviral, anti-
neoplastic, sleep inducing, analgesic, contraceptive, endocrine activity, behavioral changes,
and wound healing [16]. Clinically, CTS have demonstrated potent inhibition of cardiac
Na+ and K+-ATPase (NKA), the integral membrane protein that maintains ionic gradients
in cells, and therefore, they have potential activity in heart failure treatment [17]. This
interaction inhibits the enzyme, stops the transport of sodium to the outside of the cell
and potassium to the inside of the cell, and activates the calcium pump, which increases
cardiac contraction [18]. The serous granular glands are intimately associated with the
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defense mechanisms against predators. These glands are scattered across the skin’s surface
or clustered next to each other, similar to parotoid glands. Although the genus Bufo has
parotoid glands mostly on the head, neck, or shoulder [19], the parotoid glands are more
often seen as paired protuberances in the postorbital place in the Anura [15,20]. Targeting
the Na+/K+ ATPase pump has been a focus of numerous research groups to reveal the
pharmacological impacts of CTS, including cardiotonic, anticancer, anti-inflammatory, and
antiviral activities [21–24].

1.1. Synthesis and Factors Affecting Poison Composition

Toads employ a complex series of protective processes, beginning with expanding
the lung, elevating the body, and spraying the venom. External pressure is likely the
most critical factor in the release of parotoid venom. Venom jets are not released from
the parotoids until adequate mechanical pressure is applied. Additionally, lung inflation
contributes to the expansion of lung pressure, which may be moved over to the parotoid
floor and passed to the bottle-shaped parotoid glands. Consequently, the secretion is forced
out via the duct slit, enabling venom jets to spray out [20].

While food has a role in the formulation of toad poison, bufadienolides can be pro-
duced through the metabolism of bacteria that colonize the parotoid glands. Bufadienolides
can undergo various structural transformations, resulting in a high degree of structural
diversity in this family of metabolites [25]. Early in larval development, bufadienolides
are produced [26]. Toads of common occurrence Bufo bufo L. produce toxic or unappeal-
ing bufadienolides for various predators [27]. Bufadienolides have been reported to be
more diverse and abundant in toad larvae in natural populations with a higher competitor
density [28] and correspondingly increased when tadpoles have been subjected to food
limitations in the laboratory [26].

If threatened, Rhinella jimi Stevaux typically shows a stereotyped defensive behavior,
which includes inflating the lungs and generating a stiffened and voluminous posture,
usually accompanied by a head-butting pattern, wherein the animal tilts its body in the
direction of the dangerous and potentially agent, exposing one of the parotoids [13]. Head-
butting appears to be a major component of a toad’s defense strategy, since exposing the
parotoid improves the likelihood of the animal’s venom being triggered and delivered
before the predator can bite it.

1.2. Biosynthesis of CTS of Toad Origin (Bufadienolides)

Despite substantial progress in the structure elucidation and mechanisms of the action
of CTS (bufadienolides), the biosynthesis of these endogenous CTS is still poorly under-
stood. Since the enzymes responsible for the synthesis of specific bufadienolides have not
yet been identified, the ability to develop knockout and/or overexpression models is also
limited so far. Chiadao and Osuch (1969) evaluated bufadienolide biosynthesis via injection
of some precursors labeled with 14C or tritium into toads (Bufo marinus), which included
Cholesterol-4-14C, pregnenolone-4-14C, methyl 3β-formoxy-5β-cholanate-24-14C, sodium
3β-hydroxy-5β-cholanate-24-14C, methyl 3β-acetoxy-5-cholenate-3H, methyl 3β-hydroxy-
5α-cholanate-3H, and methyl 3α-hydroxy-5β-cholanate-24-14C. It was found that both 5α
and 5β, 3β-hydroxycholanate derivates were more competent precursors for biosynthesis,
as shown in Figure 2 [29]. However, according to Siperstein et al., cholesterol is the precur-
sor responsible for the synthesis of marinobufagin by the B. marinus toad [30] (Figure 3).
Moreover, [2-14C] mevalonic acid, [20-14C] pregnenolone, and [20-14C] cholesterol were
evaluated as precursors for bufadienolides biosynthesis in Bufo pnracnemis toads by Proto
et al. It has also been reported that both pregnenolone and mevalonic acid were poor
precursors in winter (natural hibernation period), but mevalonic acid was involved in the
summer (active life of the toad), while cholesterol was potent in both seasons of the year.
The outcomes also indicated that the double unsaturated δ-lactone ring of the bufadieno-
lides was directly derived from the cholesterol side chain without the compound’s prior
conversion into pregnenolone [31].
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1.3. Structure and Morphology of Glands Secreting Venom in Toad

Poison glands have been generated in anuran amphibians by a singular multinucleated
cytoplasm mass that produced a secretory syncytium. Lumen did not exist, and a matrix of
syncytial cytoplasm surrounded the gland. After being generated in the syncytial periphery,
the granular secretions were maintained across the cytoplasm [32]. Individuals or clusters of
glands can be seen in certain parts of the body. They resemble warts, which are frequently
observed on the dorsal epidermis of toads (bufonids) if gathered [13]. If they occur in
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massive quantities, they can produce prominent protrusions called macro-glands [13,33],
amongst which even the parotoids are unquestionably the most prevalent. Due to the huge
size of the parotoid individual glands, these cutaneous systems can produce and store
considerable quantities of poison for chemical defense against predators [20,34]. Parotoids
in the Rhinella genus toads are histologically described as huge stockpiles of gigantic
poison glands implanted into the dermis and grouped side by side to form honeycomb-like
structures [35–37]. Salamanders [38], phyllomedusin-producing tree frogs [36], frogs [34],
and toads [20] all have parotoids. They have a duct that is surrounded by a layer of
myoepithelial cells. As compared with skin poison glands, the epithelial that coats the duct
internally is extremely dense, obstructing the ductal canal and occasionally leaving only a
tiny split in the middle [20,36,38,39]. Distinguishable mucous glands are also referred to
as accessory glands, because they encircle each other [20,36,39]. Two bufadienolides have
been isolated from the secretion of Rhinella jimi parotoid macro-glands, and both showed
action against Leishmania chagasi Nicolle [40–42].

2. Chemistry of Cardiotonic Steroids (CTS)

The chemistry of steroids has been investigated thoroughly, including steroid glyco-
sides isolated from toads, sponges, star fishes, fungi, and echinoderms [43–46]. However,
toads cardiotonic steroids are specifically difficult to identify, and therefore, are less ex-
plored as compared with their terrestrial analogues.

The term CTS is commonly use as a synonym for cardiac glycosides (CGs), owing to
their commonly glycosylated steroid nuclei and their potential biological activity. They
are a unique category of phytosteroids that can be classified into two types based on their
source and chemical feature: (1) cardenolides and (2) bufadienolides (Figure 1), isolated
from the skin and the parotoid gland of toads [47].

Structure activity relationships (SAR) of CGs have been studied based on natural and
semisynthetic analogues, their abilities to bind with sodium pump receptors, i.e., Na+/K+

ATPase pump, and subsequent cardiotonic effects. The SARs were summarized by Melero
et al. and Gopalakrishnakone et al. [21,48]. The understanding of SAR has helped the
synthesis of semisynthetic cardenolides with more potency than the native molecules [49].

Cardenolides (C23) and bufadienolides (C24) both bear common structural features
such as the cis-fused C/D rings with a hydroxy group positioned at 14β. The major differ-
ence between them involves the lactone ring at the 17β position. Hence, the basic sterane
(cyclopentanoperhydrophenanthrene) structure in this unique cis-trans-cis-configuration
makes the CTS distinct from other steroidal compounds such as bile acids, sterol, or steroid
hormones [50].

Cardenolides possess an unsaturated lactone ring substituent, i.e., α, β-unsaturated
five-membered butyrolactone ring (but-2-en-4-olide ring), while bufadienolides have a six-
membered unsaturated α-pyrone ring (penta-2,4-dien-5-olide ring) [47,51], since saturation
of the lactone ring attenuates the CT bioactivity [50]. In addition, some CTS are usually
found as sugars, where the aglycone part (cardiotonic steroid) is linked at the 3β-OH
group to mono- or oligosaccharide sugar chains (maybe one, two, three, or four sugars)
named glycone or sugar moiety. The sugars are thought to be D-glucose, L-rhamnose,
L-arabinose, and D-xylose (Figure 1) [52,53]. In general, there are homo-oligomer and
hetero-oligomer CTS. For example, scillaren A is a hetero-oligomer bufadienolide, which
is glycone-structured rhamnose/glucose, while digoxin is a homo-oligomers, which is
glycone composed of three units of digitoxose [51]. The most common glycosidic bonds
connecting saccharide units are O-glycosidic bonds in which the oxygen from a hydroxyl
group becomes linked to the carbon atom [54]. This glycone moiety enhances the water
solubility of the glycoside and its ability to bind to its molecular target, i.e., Na+/K+-
ATPase or the sodium pump in the heart muscle [50,55]. Hence, there are many sites for
interaction via hydrophobic binding by steroidal nucleus and sugar moiety, in addition to
the electrostatic and hydrogen bonding by the lactone ring [48,56].
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Nevertheless, terrestrial plants and animal CTS are still underestimated and, conse-
quently, less medicinally explored. The well-known CGs include those isolated from frog
venoms. These compounds are mainly bufadienolides.

Toads’ (34 genera and 410 species [57]) CTS are of the bufadienolide type and occur
either as free genins (bufagins) or glycosides bound to suberylarginine (bufotoxins) [48].

These toxins are found in the skin of parotoid glands and, consequently, can be ex-
tracted from dried secretion of the auricular and skin glands of toads. With the aid of
metabolomics, specifically with metabolite profiling with ultra-high-performance liquid
chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) of
toad secretions, 31 bufadienolide metabolites have been identified [58]. Some examples
of the CTS are shown in Figure 4. The major differences among these compounds are
the hydroxylation at 11α either alone as in gamabufagin isolated from Bufo japonicus Tem-
minck & Schlegel and 11α-hydroxytelocinobufagin in Rhinella marina L. or at 19β, as in 11α,
19-dihydroxy-telocinobufagin in R. marina. Other structural modifications may also in-
volve 14β, 15β-epoxy ring formations as in marinobufagenin and resibufogenin found in
Bufo rubescens (now Rhinella rubescens Lutz) and Bufo gargarizans Cantor, respectively [58].

Based on Kamano et al. and Gopalakrishnakone et al., structural modifications in the
BF molecule can increase or decrease the cytotoxic activity against primary liver carcinoma
cells PLC/PRF/5. For example, the acetylation of the 3β-hydroxyl group, 11α-hydroxyl
substituent, and aldehyde group at 19 have been shown to increase the antitumor effect,
while 5β-hydroxyl, 16β-acetoxy, and 19-CH2-OH substituents decreased the activity [21,59].
In addition, microbial biotransformation of cinobufagin has been reported by the filamentous
fungus Alternaria alternata (Fr.) Keissl. (Fr.), explained by the production of 12β-hydroxyl and
3-oxo-12α-hydroxyl derivatives. The products exhibited decreased but still significant in vitro
cytotoxic activities [60].
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3. Antiviral Activity

In particular, the antiviral effects have recently attracted interest as compared with
the well-documented antitumor activity [61–64]. Inhibition of the transmembrane Na+/K+

ATPase protein affects cell host intracellular signaling processes and viral life at different levels,
resulting in inhibition of the viral genome expression, replication, protein translation, release,
and entry. Nevertheless, these activities have been thoroughly investigated for CTS [65–68].

The CTS with antiviral activity are reported in Table 1. BF is active against coronaviruses,
i.e., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respira-
tory syndrome coronavirus (MERS-CoV) via inhibition of Src signaling mediated by ATP1A1
and virus entry into the host cells [66,69]. In a comparative study among CTS, bufalin, cinob-
ufagin, and telocinobufagin had high anti-MERS-CoV activity, and bufalin had the most potent
anti-SARS-CoV and SARS-CoV-2 activity [70]. The most potent anti-coronaviral compounds
were, cinobufagin, telocinobufagin, followed by bufalin. They acted by downregulating the
cell death-related genes as well as the immune- and inflammatory-related genes to balance
the levels of C/D-class small nucleolar RNAs (SNORDs) and H/ACA small nucleolar RNAs
(SNORAs). Additionally, the toxicities of bufalin, cinobufagin, telocinobufagin, bufotalin, and
cinobufotalin were tested in vivo by Jin et al., 2021, suggesting that bufalin had the highest
anti-coronaviral activity as well as the strongest toxicity. Thus, cinobufagin and telocinob-
ufagin were selected for their high anti-coronavirus activity and low toxicity [70]. Moreover,
cinobufacini (BF and cinobufagin) has been reported to inhibit mRNA expression of the
hepatitis B virus (HBV) [71]. BF (15 nM) also has a higher potency than ouabain and digoxin
as an anti-HSV to reduce viral yield by 90% [68]. Cinobufagin and resibufogenin showed 50%
inhibitory concentrations (IC50) against enterovirus 71 (EV71) infection in vitro at 10.9 ± 2.4
and 218 ± 31 nM, respectively. EV71 is a pathogen affecting hand, foot, and mouth disease
(HFMD) that induces CNS inflammation and life-threatening systemic complications, i.e., car-
diorespiratory failure. Viral protein synthesis are likely to be targeted by both compounds [72].
BF and cinobufagin also inhibit HIV-1 with an IC90 at 15 and 40 nM, respectively [73].

Table 1. Antiviral activities of cardiotonic steroids (CTS) from different toad species.

Toad Species CTS Target Ref.

Bufo gargarizans Cantor Bufalin Anti-hepatitis B above 10-2 µM
Anti-HIV, IC50 = 5 nm
Anti-MERS-CoV in vero cells
(IC50 = 0.018 µM)
after 24 h
Anti-MERS-CoV
Calu-3 human lung cells (IC50 = 0.544 µM)
(in vitro)

[70,71,73]

Bufo gargarizans Cinobufagin Anti-hepatitis B above 10-1 µM
Anti- enterovirus 71 (EV-71)
IC50 = 10.94 nmol/L
Anti-HIV, IC50 = 24 nm
Anti-MERS-CoV in vero cells
IC50 = 0.017 µM
after 24 h
Anti-MERS-CoV
Calu-3 human lung cells
IC50 = 0.616 µM
(in vitro)

[70–73]
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Table 1. Cont.

Toad Species CTS Target Ref.

Bufo gargarizans Resibufogenin Anti-enterovirus 71 (EV71)
IC50 = 218 nmol/L
Anti-MERS-CoV in vero cells
(IC50 = 1.612 µM)
after 24 h
Anti-MERS-CoV
Calu-3 human lung cells
IC50 = 15.970 µM
(in vitro)

[70,72]

Bufo gargarizans Telocinobufagin Anti-MERS-CoV in vero cells
IC50 = 0.027 µM
after 24 h
Anti-MERS-CoV
Calu-3 human lung cells
IC50 = 0.465 µM
(in vitro)

[70]

Bufo gargarizans Cantor Bufotalin Anti-MERS-CoV in vero cells
IC50 = 0.063 µM
Anti-MERS-CoV
Calu-3 human lung cells
IC50 = 1.630 µM
(in vitro)

[70]

Bufo gargarizans Cantor Cinobufotalin Anti-MERS-CoV in vero cells
IC50 = 0.23 µM
after 24 h
Anti-MERS-CoV
Calu-3 human lung cells
IC50 = 3.958 µM
(in vitro)

[70]

4. Anticancer Activity

The anticancer activities of cardiotonic steroids (CTS) from different toad species are
shown in Table 2. Cardiotonic steroids or cardiotonic glycosides are characterized by their
abundance in nature, diversity of structure, potential for chemical modification, and wide use
in heart failure management. CTS act by binding to the extracellular surface of
Na+/K+-ATPase. The altered expression of the sodium pump subunits in different can-
cers strongly suggests that targeting Na+/K+-ATPase represents a novel means to fight the
growing number of cancers [74]. Cardiotonic action occurs via inhibition of Na/K-ATPase,
mediating cardiac muscle contraction [75]. Inhibition of Na/K-ATPase increases the influx of
Na+ followed by a decrease of K+ efflux in heart cells. Increases in Ca2+ ions raise the cardiac
contractile force, since more Ca2+ is available for the involved proteins. CGs trigger the accu-
mulation of intracellular Ca2+ levels leading to an increase in muscle tone and the circulating
blood volume per minute, leading to the control of heart rate and stroke volume [76]. Numer-
ous studies have evaluated changes in the transmembrane transport of cations during the
course of malignant cell transformation, due to an increase in Na+/K+-ATPase activity [77–80].
There is evidence that these kinetic changes in Na+/K+-ATPase activity are already present at
very early stages of tumorigenesis, even before the morphological alteration and the abnormal
appearance of tumors [81,82]. CTS stimulate protein tyrosine phosphorylation and a number
of growth-related pathways in a cell- and tissue type-dependent manner [83–88]. CTS exhibit
in vitro cytotoxic and cytostatic effects against various human cancer cell lines, which is
attributable to their ability to induce cell-type-specific cell death modalities [89]. Additionally,
selected CGs have entered phase I and II of clinical trials for the treatment of solid tumors
with satisfactory safety and efficacy [90,91].



Molecules 2022, 27, 6586 11 of 23

The antiproliferative activity of CGs on different types of cancer cell lines, including
those of breast cancer, prostate cancer, pancreatic cancer, leukemia, neuroblastoma, and
melanoma, have been previously described [86,92]. The predominant theory for the mode
of action of CGs in tumor cells focuses on their binding to the α-subunit of Na/K-ATPase,
leading to changes in pumping activity, which increases the intracellular Na+ levels and
depletes the K+ levels. Consequently, the intracytoplasmic Ca2+ levels increase owing to
exacerbation of mitochondrial Na+/Ca2+ exchange. Other theories have suggested that
CGs may interact with the plasma membrane via the steroid nucleus, causing a change in
membrane fluidity and indirectly affecting the function of several membrane proteins and
receptors [93,94]. The sodium pump is composed of multifunctional groups of α and β

subunits. The α-1 subunit of the sodium pump is overexpressed in some types of cancer,
including non-small cell lung cancer (NSCLC), renal carcinoma, glioma, and melanoma,
whereas the alfa-3 subunit is overexpressed in colon carcinoma [93,95,96]. In addition,
in mice, α-2, α-3, and α-4 isoforms are naturally susceptible to CGs. In rodents, the α-1
isoform is resistant to the binding of ouabain and, in humans, the α -1 isoform is sensitive
to CGs and may, therefore, play a key role in the signal transduction pathways [97].

CGs can induce several signal transduction pathways such as inhibition of DNA
topoisomerase II [98]; inhibition of the nuclear factor-κ light-chain-enhancer of activated B
cell (NF-κB)-mediated pathways; changes in cell cycle, specifically blocking S and G2/M
phases; inhibition of interleukin (IL)-8 production [99]; and modulation of the myeloid
cell leukemia-1 (Mcl-1) as an essential factor for cell death [5,100]. CGs and particularly
ouabain are involved in metastatic cascades by inhibiting the migration of H292 lung tumor
cells via the suppression of regulatory migration proteins, such as focal adhesion kinase
(FAK) and Akt [101]. Furthermore, digitoxin has been shown to inhibit angiogenesis in
human umbilical vein endothelial cells (HUVEC) and promoted FAK activation by several
pro-angiogenic stimuli [102]. Gamabufotalin has been shown to inhibit vascular endothelial
growth factor (VEGF)-triggered HUVEC proliferation, migration, and invasion in vitro by
suppressing the VEGF receptor-2 signaling pathway [103].

BF-induced apoptosis in human leukemia cells [104] is mediated by ERK-kinase cascade
which is excessively activated in order for BF-mediated apoptosis to occur [105–107]. Treat-
ment of human leukemia THP-1 cells with BF-induced inflammatory cytokine interleukin-1
beta (IL-1β) and tumor necrosis factor-α (TNF-α). After treating the cells with an inhibitor
of ERK, i.e., PD-98059, the cytokine production was attenuated, suggesting that the ERK
pathway was responsible for the inflammatory response induced by BF [105].

BF exerts an antitumor effect by inducing apoptosis and triggering autophagic cell
death in various human cancer cells. The anti-inflammatory activities of BF are also
important for its antitumor function [107]. BF has been shown to inhibit proliferation and
induced mitochondria-dependent apoptosis in U2OS and Saos-2 cells [108]. Furthermore, a
mechanistic investigation demonstrated that BF was able to significantly decrease Mcl-1
expression level and modestly decrease Bcl-XL expression level. The downregulation of
these anti-apoptotic proteins has been well correlated with deactivation of transcription
factor STAT3. BF and cinobufagin (1–10 µM) inhibited the proliferation and induced cell
apoptosis of androgen-dependent (LNCaP) and independent (DU145 and PC3) prostate
cancer cell lines [109]. Qi et al. [110] found that BF and cinobufagin induced apoptosis and
increased the proportion of apoptotic cells. This apoptotic induction was associated with
an increase in Fas, Bax, and Bid expression; a decrease in Bcl-2 expression; disruption of
the mitochondrial membrane potential; release of cytochrome c; activation of caspase-3,
-8, -9, and -10; and the cleavage of poly (ADP-ribose) polymerase (PARP), which indicated
that BF and cinobufagin induced apoptosis through both Fas and mitochondria-mediated
pathways [111]. BF also inhibited APL cell proliferation in a time- and dose-dependent
manner and induced NB4 cell apoptosis accompanied by downregulation of survivin and
activation of caspase-3. The MEK/ERK signaling pathway was negatively regulated in
BF-induced apoptosis in the NB4 human leukemia cell line. BF enhanced ATRA-induced
differentiation in NB4 cell line and primary culture in APL cells [112], and also induced
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MGc-803 cell death characterized by apoptotic phenotype DNA content changes and
chromosome DNA fragmentation. BF triggered cell cycle arrest in G1 phase, leading to
the induction of apoptosis of gastric cancer cells [113]. A distinct study has concluded
that BF-induced apoptosis by altering the expression of apoptosis-related genes c-Myc
and Bcl-2 [114], and the activation of mitogen-activated protein kinase (MAPK) may be
involved in BF-induced apoptosis in U93T cells [115]. Overexpression of Bcl-2 inhibited
BF-induced MAPK activation and the subsequent AP-I activation and cell apoptosis in
U937 cells [113].

BF was able to suppress the migration and invasion of prostate cancer cells through
HOTAIR, the sponge of miR-520b [115]. In addition, the same natural product inhibited
human breast cancer tumorigenesis by inducing cell death through the ROS-mediated
RIP1/RIP3/PARP-1 pathways [116]. BF also attenuated the proliferation of breast cancer
MCF-7 cells in vitro and in vivo, by inhibiting the PI3K/Akt pathway, and the proliferation
of breast cancer MCF-7 cells in vitro and in vivo by inhibiting the PI3K/Akt pathway [117].
The toad skin extract cinobufatini inhibited migration of human breast carcinoma MDA-
MB-231 cells in a model stromal tissue [118], while key members of bufadienolides, i.e.,
BF, bufotalin, and gamabufotalin, have significantly sensitized human breast cancer cells
with different status of ER-α to apoptosis induction of TRAIL, as evidenced by enhanced
Annexin V/FITC positive cells (apoptotic cells), cytoplasmic histone-associated DNA
fragments, membrane permeability transition (MPT), caspases activation, and PARP cleav-
age [119]. A BF derivative has exhibited stronger apoptosis-inducing effect than BF in
A549 lung cancer cells and lower acute toxicity in mice [120]. The original natural product
induced apoptosis of lung cancer cells via the regulation of the PI3K/Akt pathway. [121]
used the A549 human lung adenocarcinoma epithelial cell line as an experimental model to
evaluate the effects of BF in lung cancer chemotherapy. BF suppressed colorectal cancer cell
growth through promoting autophagy in vivo and in vitro [122]. In addition, it was able
to inhibit hTERT expression and colorectal cancer cell growth by targeting cpsf4 [123], to
reverse ABCB1-mediated drug resistance in colorectal cancer [124], and to regulate mTOR
and ERK signaling pathways in gastric cancer cells [125]. BF treatment could decrease miR-
298 expression. Previously, we have also shown that the deletion of miR-298 contributed to
BF-induced apoptosis in gastric cancer cells by targeting BAX, an apoptosis protein [126].
BF revealed anticancer effects on human hepatocellular carcinoma HepG2 cells [127].

The bufadienolides are a group of steroid compounds belonging to CGs, a class of
circulating substances [128–131]. Marinobufagenin (MBG), an endogenous mammalian
cardiotonic agent [132,133], is currently the most commonly used in drug research. MBG
has been implicated in various physiological conditions [134] and appeared to be associ-
ated with pathophysiological events in animals [135–137] and humans [138–140]. MBG
inhibits glioma growth in vivo and in vitro through the sodium pump α1 subunit and
ERK signaling-mediated mitochondrial apoptotic pathways, and activates ERK/NF-κB
signaling, activating the caspase signaling cascade through accelerating the release of
cytochrome C, inducing apoptosis. These data support the potential use of MBG as an
anticancer agent [141].

Resibufogenin (RB) is a commonly used natural medicinal compound extracted from
Asiatic toad Bufo gargarizans Cantor. This compound is known for its analgesic, anti-
inflammatory, anticancer, and anti-radiation properties, as well as its cardio protective and
anesthetic activities. RB effectively inhibits cell viability, and induces apoptosis, caspase-3,
and caspase-8 activities in MGC-803 cells by suppressing the PI3K/AKT/GSK3β signaling
pathway. Therefore, it may be considered as a possible treatment for gastric carcinoma [142].
RB suppresses ovarian cancer growth and glycolysis in vitro and in vivo. Moreover, the
downregulation of PIM1 by RB plays a key role in the anticancer activities of RB [143]. RB
suppresses colorectal cancer growth and metastasis, activating RIP3 and phosphorylating
MLKL, leading to necroptosis [144]. RB suppresses transforming growth factor-β-activated
kinase 1-mediated nuclear factor-κB activity through protein kinase C-dependent inhibition
of glycogen synthase kinase 3 [145].
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Table 2. Anticancer activities of cardiotonic steroids (CTS) from different toad species.

Toad Species Detected CTS Target Cell and Mechanism of Action Ref.

Bufo gargarizans Cantor/
Bufo melanostictus Suhneider
(Toad venom)

Arenobufagin HepG2 cells
(IC50 = 20.24 ± 3.84 nM)
HepG2/ADM cells
(IC50 = 7.46 ± 2.89 nM)
HL-60 cells
(IC50 = 27.70 ± 8.77 nM)
after 72 h
Induces apoptosis and autophagy, inhibition of the
PI3K/Akt/mTOR pathway
(in vitro, in vivo)

[146]

Bufo gargarizans Arenobufagin Non-small cell lung cancer cell (A549)
IC50 = 12.530 ng/mL
after 72 h
Induces apoptosis in A549 cells with the enhanced
expression of cleaved PARP (poly ADP-ribose polymerase
(in vitro)

[147]

Bufo melanostictus Schneider Arenobufagin Lung cancer (A549)
At (0.5, 1 and 2 nM) inhibited the mobility of A549 cells
(59.9%, 41.1%, and 24.7%, respectively)
At (0.5, 1, and 2 nM) inhibited the mobility of H1299 cells
(72.3%, 47.4%, and 22.4%, respectively)
after 48 h
Target IKKβ to inactive NFκB signaling cascade and
change protein expression related to EMT
(in vitro and in vivo)

[148]

Bufo gargarizans Cantor Bufalin
Non-small cell lung cancer NSCLC A549 cells
At 2.5–10 µM, bufalin- induced apoptosis and cell cycle
arrest in G1 phase

[105,149]

HepG2 cell (IC50 = 0.61 ± 0.06 µM)
R-HepG2 cells (IC50 = 0.24 ± 0.02 µM)
Induces cell cycle arrest at G2/M phase
after 48 h
(in vitro)

Bufo gargarizans Cantor and
Bufo melanostictus Schneider

Bufotalin HepG2 cell (IC50 = 0.43 ± 0.07 µM)
R-HepG2 cells(IC50 = 0.13 ± 0.01 µM)
Induces cell cycle arrest at G2/M phase
after 48 h
(in vitro)

[149]

Bufo gargarizans Cantor and
Bufo melanostictus Schneider

Hellebrigenin HepG2 cells
(IC50 = 0.40 ± 0.05 µmol/L)
After 24 h
(IC50 = 0.13 ± 0.01µmol/L)
After 48 h
(IC50 = 0.10 ± 0.01 µmol/L)
After 72 h
Induces cell cycle arrest at G2/M phase
(in vitro)

[150,151]

Bufo gargarizans Cantor Gamabufotalin
(CS-6)

NSCLC (IC50 = 50 nM)
Inhibit NSCLC cells growth and enhance apoptosis
induction
(in vitro)

[152]



Molecules 2022, 27, 6586 14 of 23

Table 2. Cont.

Toad Species Detected CTS Target Cell and Mechanism of Action Ref.

Bufo gargarizans Cinobufatolin
H157 cancer cells
IC50 = 131.12 ng/mL
A549 cancer cells
IC50 = 23.08 ng/mL
after 72 h
(in vitro)

[147,149]

HepG2 cell (IC50 = 1.58 ± 0.21 µM)
R-HepG2 cells(IC50 = 0.74 ± 0.07 µM)
Induces cell cycle arrest at G2/M phase
after 48 h
(in vitro)

Bufo gargarizans Telocinobufagin H157 cancer cells
IC50 = 23.60 ng/mL
A549 cancer cells
IC50 = 27.882 ng/mL
after 72 h
(in vitro)

[147,149]

HepG2 cell (IC50 = 1.28 ± 0.19 µM)
R-HepG2 cells(IC50 = 0.49 ± 0.05 µM)
after 48 h
Induces cell cycle arrest at G2/M phase
(in vitro)

Bufo gargarizans Resibufogenin Gastric carcinoma cells (MGC-803)
(4 and 8 µM)
for 24 h and 48 h
Increased Bax/Bcl-2 expression, and suppressed cyclin D1,
cyclin E, PI3K, phosphorylated AKT, phosphorylated
GSK3β, and β-catenin protein expression in MGC-803
cells.
(in vitro)

[143]

5. Anti-Inflammatory Activity

Some research has suggested that cardiotonic steroids, including bufalin, have im-
munomodulatory properties [153], as they interact with numerous inflammatory responses
such as vascular permeability, cell migration, and proinflammatory cytokines [153,154].
The main CTS with anti-inflammatory activity are shown in Table 3. Carvalho et al. [155]
demonstrated that the anti-inflammatory activity of obufagenin in vivo and in vitro ex-
posed a novel endogenous function for this steroid in mammals, owing to its ability to
reduce cytokine levels in peritoneal macrophage culture (Table 2).

Bufalin has a long history of being used as an anti-inflammatory medicinal drug in
China and other Asian countries [156]. Wen et al. [157] investigated bufalin’s analgesic and
anti-inflammatory properties in vivo, suggesting that it could be a possible drug treatment
for inflammatory diseases. They observed that bufalin effectively suppressed NF-κB
activation in vivo by preserving IκBα levels, decreasing the nuclear translocation of NF-κB
p65, and inhibiting downstream proinflammatory mediators. Ye et al. [158] demonstrated
that bufalin suppressed the nuclear translocation of NF-κB in response to TNF in vitro.
In addition, bufalin has been shown to control NF-κB activity [159], a key regulator of
the inflammatory process that plays a significant role in inflammation. It modulates the
expression of proinflammatory mediators, including cyclooxygenase-2, IL-6, inducible
nitric oxide synthase, and TNF, IL-1β [160]. NF-κB signaling is the ideal therapeutic target
for inflammation pathogenesis. Furthermore, the bufalin substitutes, ouabain and digoxin,
have potent anti-inflammatory properties [161,162]. Ye et al. [158] revealed that bufalin
suppressed tumor necrosis factor (TNF) signaling in human 293T cells via interfering
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with NF-κB nuclear translocation. Zhakeer et al. [9] demonstrated that bufalin attenuated
hyperresponsiveness and suppressed increases of total inflammatory cells in a mouse
asthma model. The levels of IL-4, IL-5, and IL-13 in serum were significantly reduced.
Cell infiltration, goblet cell hyperplasia, IκBα degradation from NF-κB, and the level of
phosphorylated p65 protein levels in the lung tissues were all decreased, indicating that it
may mediate its anti-inflammatory effects via inhibiting NF-κB activity. Bufalin may inhibit
the activation of NF-κB and may reduce the production of its downstream proinflammatory
mediators during acute inflammation [157].

Table 3. Anti-inflammatory activities of cardiotonic steroids (CTS) from different toad species.

Toad Species Detected CTS Activity Ref.

Rhinella schneideri Marinobufagenin Anti-inflammatory
(10, 100, 1000, and 10,000 nM),
decreased IL-1β, IL-6, and TNF-α levels
(in vitro, in vivo)

[155]

Bufo gargarizans Cantor Bufotalin Anti-inflammatory against chronic inflammatory
autoimmune disease
100 µg/kg in vivo and 200 nM in vitro
inhibiting proinflammatory Th17 population and
secretion of inflammatory cytokines

[163]

Bufo gargarizans Cantor Bufalin Anti-inflammatory against carrageenan-induced paw
edema model
(0.3 and 0.6 mg/kg, i.p.)
Downregulation of expression levels of nitric oxide
synthase (iNOS), cyclooxygenase-2 (COX-2), 1β (IL-1β),
(IL-6), (TNF-α), and inhibited the activation of NF-κB
signaling
(in vivo)

[157]

Bufo gargarizans Gammabufotalin Anti-inflammatory
(1, 4, and 12 (50 µM); 2, 13, and 14 (10 µM); 3 and 6 (5 µM);
5 and 8 (1 µM); 7, 9, and 11 (0.5 µM); 10 (4 µM))
Inhibits LPS-induced inflammation
by suppressing myeloid differentiation primary response
88/nuclear factor-kappa B and STAT3 signal pathways.
(in vivo)

[164]

6. CTS with Antiviral, Anticancer, and Anti-Inflammatory Properties

The potential pharmaceutical properties of bufadienolides isolated from toad venom
have been investigated recently. Anticancer activity of bufalin has been seen against breast,
liver, and gastric and leukemia cancer cells, as listed in Table 1. It has been indicated that
bufalin inhibited tumor growth through apoptosis induction by multiple pathways [165].
In in vivo studies, bufalin suppressed human hepatocellular carcinoma (HHC) cell growth
and induced apoptosis by activating Bax without noticeable toxicity [114]. In another study,
nude mice injected with HCCLM3-R cells were studied after bufalin treatment. Significant
antitumor activities, manifested with the regress noticed in the metastatic growth in parallel
with the inhibition of AKT/GSK3/catenin/E-cadherin signaling pathways, were evident [166].
Bufalin inhibited tumor growth by inducing cell apoptosis through the intrinsic apoptotic
pathway. A reduction in tumor size of the human lung cancer cell line, NCI-H460, was
confirmed after bufalin treatment without significant drug-related toxicity [167].

Anti-inflammatory and anticancer effects of bufalin have been illustrated through
the inhibiting NF-B pathway, which is an important pathway in both anti-inflammation
and cancer [168,169]. Bufalin reduces hyperresponsiveness, and inhibits the OVA-induced
activation of inflammatory cells, including macrophages, eosinophils, lymphocytes, and
neutrophils, as well as cytokines, including IL-4, IL-5, and IL-13. Additionally, a reduction
in inflammatory cell infiltration and goblet cell hyperplasia and blockage of NF-B have
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been noticed [9]. The anti-inflammatory and analgesic effects of bufalin have been studied
in a carrageenan-induced paw oedema model. Bufalin downregulated the expression of
nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 (IL-1), interleukin-6
(IL-6), and tumor necrosis factor (TNF), to which the inhibitory effect on the master switch
of NF-B signaling was attributed [157]. Moreover, bufalin had high anti-MERS-CoV activity,
and had the most potent anti-SARS-CoV and SARS-CoV-2 activity [70].

7. Conclusions

Using natural products as therapeutic agents has gained much attention, therefore, it
is noteworthy to document the recent updates in the literature with particular emphasis
on the possible applications of cardiotonic steroids in the promotion of anticancer and
antiviral strategies. Limited numbers of CTS have been expected to have anticancer activity.
Cardenolides, mainly attributed to digitalis and digoxin, have potential effects in the
treatment of congestive heart failure and atrial fibrillation by binding to the extracellular
membrane and activating Na+/K+-ATPase. Targeting Na+/K+-ATPase and altering the
expression of the sodium pump subunits represents a novel means to fight the growing
number of cancers. For instance, marinobufagenin has been shown to inhibit the growth
of glioma cancer in vivo and in vitro via the sodium pump α1 subunit and ERK signaling-
mediated mitochondrial apoptotic pathways. Additionally, γ bufotalin has been reported
to suppress vascular endothelial growth factor (VEGF)-triggered proliferation, migration,
and invasion by suppressing the VEGF receptor-2 signaling pathway in vitro. Similarly,
resibufogenin (RB) is a known anticancer agent that acts via the inhibition of cell viability,
induces apoptosis, caspase 3, and caspase 8 activities in MGC 803 cells by suppressing the
PI3K/AKT/GSK3β signaling pathway. Finally, bufalin (BF) is active against corona viruses,
i.e., SARS-CoV-2 and MERS-CoV, via inhibition of Src signaling mediated by ATP1A1, and
thus, blocking entry of the virus into the host cells. As well, BF and cinobufagin inhibit
mRNA expression of the hepatitis B virus (HBV) and HIV-1. Furthermore, cinobufagin and
resibufogenin have been shown to prevent 71 (EV71) infections from enterovirous. In the
current review, we illustrate the significance of cardiotonic steroids as potential anticancer,
anti-inflammatory, and antiviral candidates.

Further studies are suggested to screen the efficacy of CTS isolated from toad species
from different geographical regions, and under different environmental conditions to
ensure stability of their chemical composition. Additional molecular mechanisms and
modeling, drug safety, and quality control are needed to motivate the future implications
of CTS as novel therapeutic agents that will certainly contribute to the development of
pharmaceutical industry.
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Bufalin, BF; cardiac glycosides, CGs; CTS, cardiotonic steroids; cyclooxygenase-2, COX-2;
cytomegalovirus, CMV; Chikungunya virus, CHIKV; epithelial–mesenchymal transition, EMT; en-
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terovirus 71, EV71; extracellular regulated kinase, ERK; focal adhesion kinase, FAK; glycogen syn-
thase kinase-3, GSK3β; human hepatocellular carcinoma, HepG2; human lung cancer cell line,
NCI-H460; human T-cell leukemia virus type-1, HTLV-1; human immunodeficiency virus type-1,
HIV-1; hepatitis B virus, HBV; human umbilical vein endothelial cells, HUVEC; herpes simplex
virus, nHSV; IκB kinase, IKKβ; induced inflammatory cytokines interleukin-1 beta, IL-1β; lung
cancer, A549; middle east respiratory syndrome coronavirus: MERS-CoV; myeloid cell leukemia-1,
Mcl-1; membrane permeability transition, MPT; marinobufagenin, MBG; Middle East respiratory
syndrome coronavirus, MERS-CoV; non-small cell lung cancer, NSCLC; nuclear factor kappa B,
NFκB; nitric oxide synthase, iNOS; pancreatic carcinoma, PANC-1; poly ADP-ribose polymerase,
PARP; phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR)
signaling pathways, PI3K/Akt/mTOR pathway; phosphoinositide 3-kinases, PI3K; resibufogenin,
RB; respiratory syncytial virus, RSV; structure activity relationships, SAR; severe acute respiratory
syndrome coronavirus 2, SARS-CoV-2; signal transducer and activator of transcription 3, STAT3;
tumor necrosis factor-α, TNF-α; vascular endothelial growth factor, VEGF.
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