Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (789)

Search Parameters:
Keywords = vendors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5770 KiB  
Article
Assessment of Influencing Factors and Robustness of Computable Image Texture Features in Digital Images
by Diego Andrade, Howard C. Gifford and Mini Das
Tomography 2025, 11(8), 87; https://doi.org/10.3390/tomography11080087 (registering DOI) - 31 Jul 2025
Viewed by 141
Abstract
Background/Objectives: There is significant interest in using texture features to extract hidden image-based information. In medical imaging applications using radiomics, AI, or personalized medicine, the quest is to extract patient or disease specific information while being insensitive to other system or processing variables. [...] Read more.
Background/Objectives: There is significant interest in using texture features to extract hidden image-based information. In medical imaging applications using radiomics, AI, or personalized medicine, the quest is to extract patient or disease specific information while being insensitive to other system or processing variables. While we use digital breast tomosynthesis (DBT) to show these effects, our results would be generally applicable to a wider range of other imaging modalities and applications. Methods: We examine factors in texture estimation methods, such as quantization, pixel distance offset, and region of interest (ROI) size, that influence the magnitudes of these readily computable and widely used image texture features (specifically Haralick’s gray level co-occurrence matrix (GLCM) textural features). Results: Our results indicate that quantization is the most influential of these parameters, as it controls the size of the GLCM and range of values. We propose a new multi-resolution normalization (by either fixing ROI size or pixel offset) that can significantly reduce quantization magnitude disparities. We show reduction in mean differences in feature values by orders of magnitude; for example, reducing it to 7.34% between quantizations of 8–128, while preserving trends. Conclusions: When combining images from multiple vendors in a common analysis, large variations in texture magnitudes can arise due to differences in post-processing methods like filters. We show that significant changes in GLCM magnitude variations may arise simply due to the filter type or strength. These trends can also vary based on estimation variables (like offset distance or ROI) that can further complicate analysis and robustness. We show pathways to reduce sensitivity to such variations due to estimation methods while increasing the desired sensitivity to patient-specific information such as breast density. Finally, we show that our results obtained from simulated DBT images are consistent with what we see when applied to clinical DBT images. Full article
Show Figures

Figure 1

18 pages, 7222 KiB  
Article
Assessing Risks and Innovating Traceability in Campania’s Illegal Mussel Sale: A One Health Perspective
by Valeria Vuoso, Attilio Mondelli, Carlotta Ceniti, Iolanda Venuti, Giorgio Ciardella, Yolande Thérèse Rose Proroga, Bruna Nisci, Rosa Luisa Ambrosio and Aniello Anastasio
Foods 2025, 14(15), 2672; https://doi.org/10.3390/foods14152672 - 29 Jul 2025
Viewed by 365
Abstract
The illegal sale of mussels is a persistent problem for food safety and public health in the Campania region, where bivalve molluscs are often sold without traceability, evading regulatory controls. In this study, ten batches of mussels seized from unauthorized vendors were analyzed [...] Read more.
The illegal sale of mussels is a persistent problem for food safety and public health in the Campania region, where bivalve molluscs are often sold without traceability, evading regulatory controls. In this study, ten batches of mussels seized from unauthorized vendors were analyzed to evaluate their microbiological safety and trace their geographical origin. High loads of Escherichia coli, exceeding European regulatory limits (Regulation (EC) No 2073/2005), were detected in all samples. In addition, Salmonella Infantis strains resistant to trimethoprim-sulfamethoxazole and azithromycin were isolated, raising further concerns about antimicrobial resistance. Of the 93 Vibrio isolates, identified as V. alginolyticus and V. parahaemolyticus, 37.63% showed multidrug resistance. Approximately 68.57% of the isolates were resistant to tetracyclines and cephalosporins. The presence of resistance to last-resort antibiotics such as carbapenems (11.43%) is particularly alarming. Near-infrared spectroscopy, combined with chemometric models, was used to obtain traceability information, attributing a presumed origin to the seized mussel samples. Of the ten samples, seven were attributed to the Phlegraean area. These findings have provided valuable insights, reinforcing the need for continuous and rigorous surveillance and the integration of innovative tools to ensure seafood safety and support One Health approaches. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

39 pages, 936 KiB  
Article
Prioritizing ERP System Selection Challenges in UAE Ports: A Fuzzy Delphi and Relative Importance Index Approach
by Nadin Alherimi, Alyaa Alyaarbi, Sara Ali, Zied Bahroun and Vian Ahmed
Logistics 2025, 9(3), 98; https://doi.org/10.3390/logistics9030098 - 23 Jul 2025
Viewed by 492
Abstract
Background: Selecting enterprise resource planning (ERP) systems for complex port environments is a significant challenge. This study addresses a key research gap by identifying and prioritizing the critical factors for ERP selection within the strategic context of United Arab Emirates (UAE) ports, which [...] Read more.
Background: Selecting enterprise resource planning (ERP) systems for complex port environments is a significant challenge. This study addresses a key research gap by identifying and prioritizing the critical factors for ERP selection within the strategic context of United Arab Emirates (UAE) ports, which function as vital hubs in global trade. Methods: A hybrid methodology was employed, first using the Fuzzy Delphi Method (FDM) to validate thirteen challenges with five industry experts. Subsequently, the Relative Importance Index (RII) was used to rank these challenges based on survey data from 48 UAE port professionals. Results: The analysis revealed “Cybersecurity concerns” as the highest-ranked challenge (RII = 0.896), followed by “Engagement with external stakeholders” (RII = 0.842), and both “Process optimization” and “Technical capabilities” (RII = 0.808). Notably, factors traditionally seen as critical in other sectors, such as “Organizational readiness” (RII = 0.746), were ranked significantly lower. Conclusions: The findings indicate a strategic shift in ERP selection priorities toward digital resilience and external integration rather than internal organizational factors. This research provides a sector-specific decision-support framework and offers actionable insights for port authorities, vendors, and policymakers to enhance ERP implementation in the maritime industry. Full article
(This article belongs to the Section Maritime and Transport Logistics)
Show Figures

Figure 1

27 pages, 2572 KiB  
Article
Parallel Agent-Based Framework for Analyzing Urban Agricultural Supply Chains
by Manuel Ignacio Manríquez, Veronica Gil-Costa and Mauricio Marin
Future Internet 2025, 17(7), 316; https://doi.org/10.3390/fi17070316 - 19 Jul 2025
Viewed by 159
Abstract
This work presents a parallel agent-based framework designed to analyze the dynamics of vegetable trade within a metropolitan area. The system integrates agent-based and discrete event techniques to capture the complex interactions among farmers, vendors, and consumers in urban agricultural supply chains. Decision-making [...] Read more.
This work presents a parallel agent-based framework designed to analyze the dynamics of vegetable trade within a metropolitan area. The system integrates agent-based and discrete event techniques to capture the complex interactions among farmers, vendors, and consumers in urban agricultural supply chains. Decision-making processes are modeled in detail: farmers select crops based on market trends and environmental risks, while vendors and consumers adapt their purchasing behavior according to seasonality, prices, and availability. To efficiently handle the computational demands of large-scale scenarios, we adopt an optimistic approximate parallel execution strategy. Furthermore, we introduce a credit-based load balancing mechanism that mitigates the effects of heterogeneous communication patterns and improves scalability. This framework enables detailed analysis of food distribution systems in urban contexts, offering insights relevant to smart cities and digital agriculture initiatives. Full article
(This article belongs to the Special Issue Intelligent Agents and Their Application)
Show Figures

Figure 1

23 pages, 3721 KiB  
Article
Influence of Surface Isolation Layers on High-Voltage Tolerance of Small-Pitch 3D Pixel Sensors
by Jixing Ye and Gian-Franco Dalla Betta
Sensors 2025, 25(14), 4478; https://doi.org/10.3390/s25144478 - 18 Jul 2025
Viewed by 207
Abstract
In recent years, 3D pixel sensors have been a topic of increasing interest within the High Energy Physics community. Due to their inherent radiation hardness, demonstrated up to a fluence of 3×1016 1 MeV equivalent neutrons per square centimeter, 3D [...] Read more.
In recent years, 3D pixel sensors have been a topic of increasing interest within the High Energy Physics community. Due to their inherent radiation hardness, demonstrated up to a fluence of 3×1016 1 MeV equivalent neutrons per square centimeter, 3D pixel sensors have been used to equip the innermost tracking layers of the ATLAS and CMS detector upgrades at the High-Luminosity Large Hadron Collider. Additionally, the next generation of vertex detectors calls for precise measurement of charged particle timing at the pixel level. Owing to their fast response times, 3D sensors present themselves as a viable technology for these challenging applications. Nevertheless, both radiation hardness and fast timing require 3D sensors to be operated with high bias voltages on the order of ∼150 V and beyond. Special attention should therefore be devoted to avoiding problems that could cause premature electrical breakdown, which could limit sensor performance. In this paper, TCAD simulations are used to gain deep insight into the impact of surface isolation layers (i.e., p-stop and p-spray) used by different vendors on the high-voltage tolerance of small-pitch 3D sensors. Results relevant to different geometrical configurations and irradiation scenarios are presented. The advantages and disadvantages of the available technologies are discussed, offering guidance for design optimization. Experimentalmeasurements from existing samples based on both isolation techniques show good agreement with simulated breakdown voltages, thereby validating the simulation approach. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

31 pages, 2113 KiB  
Article
Electric Multiple Unit Spare Parts Vendor-Managed Inventory Contract Mechanism Design
by Ziqi Shao, Jie Xu and Cunjie Lei
Systems 2025, 13(7), 585; https://doi.org/10.3390/systems13070585 - 15 Jul 2025
Viewed by 175
Abstract
As electric multiple unit (EMU) operations and maintenance demands have expanded, spare parts supply chain management has become increasingly crucial. This study emphasizes the supply challenges of EMU spare parts, including inadequate minimum inventory levels and prolonged response times. Redesigning the OEM–railway bureau [...] Read more.
As electric multiple unit (EMU) operations and maintenance demands have expanded, spare parts supply chain management has become increasingly crucial. This study emphasizes the supply challenges of EMU spare parts, including inadequate minimum inventory levels and prolonged response times. Redesigning the OEM–railway bureau vendor-managed inventory (VMI) model contract incentive and penalty system is the key goal. Connecting the spare parts supply system with its characteristics yields a game theory model. This study analyzes and compares the equilibrium strategies and profits of supply chain members under different mechanisms for managing critical spare parts. The findings demonstrate that mechanism contracts can enhance supply chain performance in a Pareto-improving manner. An in-depth analysis of downtime loss costs, procurement challenges, and order losses reveals their effects on supply chain coordination and profit allocation, providing railway bureaus and OEMs with a theoretical framework for supply chain decision-making. This study offers theoretical justification and a framework for decision-making on cooperation between OEMs and railroad bureaus in the management of spare parts supply chains, particularly for extensive EMU operations. Full article
(This article belongs to the Section Supply Chain Management)
Show Figures

Figure 1

24 pages, 1605 KiB  
Article
Quantum-Secure Coherent Optical Networking for Advanced Infrastructures in Industry 4.0
by Ofir Joseph and Itzhak Aviv
Information 2025, 16(7), 609; https://doi.org/10.3390/info16070609 - 15 Jul 2025
Viewed by 459
Abstract
Modern industrial ecosystems, particularly those embracing Industry 4.0, increasingly depend on coherent optical networks operating at 400 Gbps and beyond. These high-capacity infrastructures, coupled with advanced digital signal processing and phase-sensitive detection, enable real-time data exchange for automated manufacturing, robotics, and interconnected factory [...] Read more.
Modern industrial ecosystems, particularly those embracing Industry 4.0, increasingly depend on coherent optical networks operating at 400 Gbps and beyond. These high-capacity infrastructures, coupled with advanced digital signal processing and phase-sensitive detection, enable real-time data exchange for automated manufacturing, robotics, and interconnected factory systems. However, they introduce multilayer security challenges—ranging from hardware synchronization gaps to protocol overhead manipulation. Moreover, the rise of large-scale quantum computing intensifies these threats by potentially breaking classical key exchange protocols and enabling the future decryption of stored ciphertext. In this paper, we present a systematic vulnerability analysis of coherent optical networks that use OTU4 framing, Media Access Control Security (MACsec), and 400G ZR+ transceivers. Guided by established risk assessment methodologies, we uncover critical weaknesses affecting management plane interfaces (e.g., MDIO and I2C) and overhead fields (e.g., Trail Trace Identifier, Bit Interleaved Parity). To mitigate these risks while preserving the robust data throughput and low-latency demands of industrial automation, we propose a post-quantum security framework that merges spectral phase masking with multi-homodyne coherent detection, strengthened by quantum key distribution for key management. This layered approach maintains backward compatibility with existing infrastructure and ensures forward secrecy against quantum-enabled adversaries. The evaluation results show a substantial reduction in exposure to timing-based exploits, overhead field abuses, and cryptographic compromise. By integrating quantum-safe measures at the optical layer, our solution provides a future-proof roadmap for network operators, hardware vendors, and Industry 4.0 stakeholders tasked with safeguarding next-generation manufacturing and engineering processes. Full article
Show Figures

Figure 1

15 pages, 3706 KiB  
Article
Short Circuit Withstand Time Screening of 1.2 kV Commercial SiC MOSFETs: A Non-Destructive Approach
by Monikuntala Bhattacharya, Hengyu Yu, Michael Jin, Shiva Houshmand, Jiashu Qian, Limeng Shi, Marvin H. White, Atsushi Shimbori and Anant K. Agarwal
Electronics 2025, 14(14), 2786; https://doi.org/10.3390/electronics14142786 - 10 Jul 2025
Viewed by 296
Abstract
SiC MOSFETs are becoming increasingly popular due to their superior material properties, but they lack the required reliability and ruggedness for safe applications. One of the biggest challenges in short-circuit (SC) reliability of the commercial devices and hence in the SC protection circuit [...] Read more.
SiC MOSFETs are becoming increasingly popular due to their superior material properties, but they lack the required reliability and ruggedness for safe applications. One of the biggest challenges in short-circuit (SC) reliability of the commercial devices and hence in the SC protection circuit design is the variability of SC withstand time (SCWT) among the devices from the same vendor, even with the same lot and batch number. In this work, a novel SC screening methodology has been presented to remove devices with lower SCWT from a pool of devices without damaging the reliable ones. The SC screening methodology has been developed using Sentaurus TCAD simulation, which is further verified using commercial devices. This work can potentially reduce field failure and, as a result, can enhance the reliability of the SiC MOSFETs in real-world applications. Full article
Show Figures

Figure 1

22 pages, 2534 KiB  
Article
Impact of the Mean Radiant Temperature (Tmrt) on Outdoor Thermal Comfort Based on Urban Renewal: A Case Study of the Panjiayuan Antique Market in Beijing, China
by Chenxiao Liu, Yani Fang, Yanglu Shi, Mingli Wang, Mo Han and Xiaobing Chen
Buildings 2025, 15(14), 2398; https://doi.org/10.3390/buildings15142398 - 8 Jul 2025
Viewed by 233
Abstract
Like other mega cities in China, Beijing is undergoing a large-scale urban renewal process. However, in the context of global warming and the goal of promoting human health and well-being, urban renewal should follow the principle of minimal intervention, draw inspiration from the [...] Read more.
Like other mega cities in China, Beijing is undergoing a large-scale urban renewal process. However, in the context of global warming and the goal of promoting human health and well-being, urban renewal should follow the principle of minimal intervention, draw inspiration from the condition of the climate and environment itself, and pursue the goal of common health and development between humans and non-human beings. This study takes the Panjiayuan Antique Market as the research object. Unlike previous studies that focused on the behavior patterns of vendors and buyers, this study focuses on the increase in users’ expectation on environmental thermal comfort when the Panjiayuan Antique Market transforms from a conventional commercial market into an urban public space. This study aimed to find a minimal intervention strategy suitable for urban public space renewal from the perspective of the microclimate, encouraging people to use outdoor public spaces more, thereby promoting physical and mental health, as well as social well-being. We used a mixed-methods approach comprising microclimate measurements, questionnaires (n = 254), and field measurements. Our results show that the mean radiant temperature (Tmrt) is the key factor that affects thermal comfort, and it is a comprehensive concept that is associated with other microclimate factors. Linking the quantitative sun-related factors, such as the solar position angle (SAA), the shadow area ratio (SAR), and direct sun hours (DSHs), we also found that the correlation between the Tmrt and physical spatial characteristics, such as the ratio of the visible sky (SVF), the aspect ratio (H/W), and orientation of the building layout, helped us to generate design strategies oriented by regulating microclimate, such as controlling thermal mass/radiant heating, solar radiation, and air convection. One of the significances of this study is its development of a design method that minimizes intervention in urban public spaces from the perspective of regulating the microclimate. In addition, this study proposes a new perspective of promoting people’s health and well-being by improving outdoor thermal comfort. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 1560 KiB  
Article
Practical Aspects of Cross-Vendor TSN Time Synchronization Using IEEE 802.1AS
by Kilian Brunner, Florian Frick, Martin Ostertag and Armin Lechler
J. Sens. Actuator Netw. 2025, 14(4), 67; https://doi.org/10.3390/jsan14040067 - 30 Jun 2025
Viewed by 695
Abstract
Multi-vendor interoperability is essential for the stable operation, scalability, and successful market adoption of Time-Sensitive Networking (TSN). Conformance tests address protocol conformance. Informal interoperability testing and plugfests help to improve the quality and interoperability of specific implementations, and of the underlying international standard [...] Read more.
Multi-vendor interoperability is essential for the stable operation, scalability, and successful market adoption of Time-Sensitive Networking (TSN). Conformance tests address protocol conformance. Informal interoperability testing and plugfests help to improve the quality and interoperability of specific implementations, and of the underlying international standard documents. This paper presents three findings related to time synchronization in a multi-vendor TSN system. Differing interpretations of released standards and inconsistent setting of relevant system parameters resulted in undesirable behavior impacting the performance of the complete TSN system. The findings relevant to the standards themselves have been submitted to IEEE as maintenance items or are already being considered in work in progress at IEEE. In addition to interoperability testing, the importance of consistent system engineering and industry-specific TSN profiles are identified as important ingredients for successful implementation of TSN-based systems. Full article
(This article belongs to the Section Communications and Networking)
Show Figures

Figure 1

22 pages, 2561 KiB  
Article
JPSS-4 VIIRS Pre-Launch Calibration Performance and Assessment
by Amit Angal, David Moyer, Xiaoxiong Xiong, Daniel Link, Thomas Schwarting, Jeff McIntire, Qiang Ji and Chengbo Sun
Remote Sens. 2025, 17(13), 2146; https://doi.org/10.3390/rs17132146 - 23 Jun 2025
Viewed by 313
Abstract
The Joint Polar Satellite System (JPSS) is a collaborative program between NASA and NOAA to provide scientific measurements from multiple polar-orbiting satellites. The development, testing, launch, and operation of the satellites is jointly overseen by NASA and NOAA, with NASA responsible for developing [...] Read more.
The Joint Polar Satellite System (JPSS) is a collaborative program between NASA and NOAA to provide scientific measurements from multiple polar-orbiting satellites. The development, testing, launch, and operation of the satellites is jointly overseen by NASA and NOAA, with NASA responsible for developing and building instruments, spacecraft, ground systems, and launching into orbit. While three VIIRS instruments are currently on-orbit, spacecraft integration of the two VIIRS instruments planned for launch on the JPSS-3 and -4 spacecraft is ongoing. The latest build in the series, set to be launched on the JPSS-4 platform, recently completed its main ground calibration program at the vendor facility. This program covered a comprehensive series of performance metrics designed to ensure that the instrument can maintain its calibration successfully on-orbit. In this paper, we present the results from the radiometric calibration process, which includes metrics such as dynamic range, signal-to-noise ratio, noise equivalent differential temperature, polarization sensitivity, scattered light response, relative spectral response, response versus scan angle, and crosstalk. All key metrics have met or exceeded their design requirements, with some minor exceptions. Also included are comparisons with previous VIIRS instruments, as well as a description of their expected performance once on-orbit. Full article
(This article belongs to the Collection The VIIRS Collection: Calibration, Validation, and Application)
Show Figures

Figure 1

13 pages, 553 KiB  
Article
Evaluating the Diagnostic Utility of dd-cfDNA in Renal Allograft Surveillance: A Single-Center Perspective
by Aja Aravamudhan, Kira Krug, Michelle Stoffel and Penn Muluhngwi
Genes 2025, 16(7), 724; https://doi.org/10.3390/genes16070724 - 21 Jun 2025
Viewed by 446
Abstract
Background: Donor-derived cell-free DNA (dd-cfDNA) testing offers a non-invasive approach for monitoring allograft health in transplant recipients. However, its diagnostic performance and clinical utility remain insufficiently characterized across diverse populations. Objectives: This study assesses concordance between dd-cfDNA, donor-specific antibody (DSA) testing, and biopsy, [...] Read more.
Background: Donor-derived cell-free DNA (dd-cfDNA) testing offers a non-invasive approach for monitoring allograft health in transplant recipients. However, its diagnostic performance and clinical utility remain insufficiently characterized across diverse populations. Objectives: This study assesses concordance between dd-cfDNA, donor-specific antibody (DSA) testing, and biopsy, while also comparing two commercial assays (AlloSure and Prospera) in kidney and pancreas transplant recipients. Methods: We retrospectively analyzed 271 transplant patient records from 2019 to 2024 at our institution, focusing on dd-cfDNA testing. Statistical analyses evaluated assay performance in relation to DSA and biopsy results. The impact of multi-organ transplantation (MOT) on dd-cfDNA levels was also assessed. Results: In our predominantly Caucasian cohort (61.5%) with a mean age of 53 years, increased levels of dd-cfDNA were significantly associated with DSA positivity, particularly within the Prospera group (p = 0.002), and were particularly higher in patients with HLA class II DSA. Both assays showed a limited correlation with biopsy-confirmed rejection. AlloSure had high specificity (80%) but low sensitivity (19%), whereas Prospera showed higher sensitivity (75%) with moderate specificity (60%). Dd-cfDNA levels were elevated in MOT recipients in a vendor-dependent manner. Conclusions: Our findings highlight the differing clinical strengths of dd-cfDNA assays: AlloSure demonstrates greater preference for ruling out rejection, whereas Prospera appears better suited for early detection. Dd-cfDNA interpretation in MOT recipients warrants cautious consideration. Overall, tailoring assay selection and optimizing diagnostic thresholds to clinical context may enhance transplant surveillance and patient management strategies. Full article
(This article belongs to the Special Issue Molecular Assays for Mutation and Infectious Agent Detection)
Show Figures

Figure 1

16 pages, 11889 KiB  
Article
Controlled Synthesis of Tungsten Oxide Nanomaterials with Different Morphologies and Their Gas-Sensing Properties for Formaldehyde in Vegetables
by Weihao Wu, Yaochong Yang, Cheng Zhao, Xingyu Wang, Yitong Xie, Kexin Jiang, Huafeng Feng and Yongheng Zhu
Biosensors 2025, 15(7), 400; https://doi.org/10.3390/bios15070400 - 20 Jun 2025
Viewed by 357
Abstract
Formaldehyde is illegally applied to vegetables by vendors as a preservative to extend their shelf life, and it poses health risks to consumers. Herein, a series of WO3 with different morphologies were synthesized and employed as the sensing material in gas sensors [...] Read more.
Formaldehyde is illegally applied to vegetables by vendors as a preservative to extend their shelf life, and it poses health risks to consumers. Herein, a series of WO3 with different morphologies were synthesized and employed as the sensing material in gas sensors to detect formaldehyde in vegetables rapidly. Among all the samples, the WO3 nanoplate sensor exhibited the best sensitivity (16.5@200 ppm), a rapid response/recovery time (10/12 s), superior selectivity, and a low limit of detection (500 ppb). This was mainly attributed to its abundant mesopores and large specific surface area, which enhanced the formaldehyde adsorption capacity and adsorption/desorption rates while providing more active sites, thereby improving the sensor’s response speed and resistance variation range. The WO3 nanoplate sensor also achieved reliable formaldehyde detection in actual vegetable samples (baby cabbage). This study provides systematic guidance for optimizing the gas-sensing performance of functional materials. It establishes a foundation for developing rapid, non-destructive formaldehyde detection technologies applicable for vegetable quality control. Full article
Show Figures

Graphical abstract

15 pages, 2025 KiB  
Article
Comparison of ADMIRE, SAFIRE, and Filtered Back Projection in Standard and Low-Dose Non-Enhanced Head CT
by Georg Gohla, Anja Örgel, Uwe Klose, Andreas Brendlin, Malte Niklas Bongers, Benjamin Bender, Deborah Staber, Ulrike Ernemann, Till-Karsten Hauser and Christer Ruff
Diagnostics 2025, 15(12), 1541; https://doi.org/10.3390/diagnostics15121541 - 17 Jun 2025
Viewed by 427
Abstract
Background/Objectives: Iterative reconstruction (IR) techniques were developed to address the shortcomings of filtered back projection (FBP), yet research comparing different types of IR is still missing. This work investigates how reducing radiation dose influences both image quality and noise profiles when using [...] Read more.
Background/Objectives: Iterative reconstruction (IR) techniques were developed to address the shortcomings of filtered back projection (FBP), yet research comparing different types of IR is still missing. This work investigates how reducing radiation dose influences both image quality and noise profiles when using two iterative reconstruction techniques—Sinogram-Affirmed Iterative Reconstruction (SAFIRE) and Advanced Modeled Iterative Reconstruction (ADMIRE)—in comparison to filtered back projection (FBP) in non-enhanced head CT (NECT). Methods: In this retrospective single-center study, 21 consecutive patients underwent standard NECT on a 128-slice CT scanner. Raw data simulated dose reductions to 90% and 70% of the original dose via ReconCT software. For each dose level, images were reconstructed with FBP, SAFIRE 3, and ADMIRE 3. Image noise power spectra quantified objective image noise. Two blinded neuroradiologists scored overall image quality, image noise, image contrast, detail, and artifacts on a 10-point Likert scale in a consensus reading. Quantitative Hounsfield unit (HU) measurements were obtained in white and gray matter regions. Statistical analyses included the Wilcoxon signed-rank test, mixed-effects modeling, ANOVA, and post hoc pairwise comparisons with Bonferroni correction. Results: Both iterative reconstructions significantly reduced image noise compared to FBP across all dose levels (p < 0.001). ADMIRE exhibited superior image noise suppression at low (<0.51 1/mm) and high (>1.31 1/mm) spatial frequencies, whereas SAFIRE performed better in the mid-frequency range (0.51–1.31 1/mm). Subjective scores for overall quality, image noise, image contrast, and detail were higher for ADMIRE and SAFIRE versus FBP at the original dose and simulated doses of 90% and 70% (all p < 0.001). ADMIRE outperformed SAFIRE in artifact reduction (p < 0.001), while SAFIRE achieved slightly higher image contrast scores (p < 0.001). Objective HU values remained stable across reconstruction methods, although SAFIRE yielded marginally higher gray and white matter (WM) attenuations (p < 0.01). Conclusions: Both IR techniques—ADMIRE and SAFIRE—achieved substantial noise reduction and improved image quality relative to FBP in non-enhanced head CT at standard and reduced dose levels on the specific CT system and reconstruction strength tested. ADMIRE showed enhanced suppression of low- and high-frequency image noise and fewer artifacts, while SAFIRE preserved image contrast and reduced mid-frequency noise. These findings support the potential of iterative reconstruction to optimize radiation dose in NECT protocols in line with the ALARA principle, although broader validation in multi-vendor, multi-center settings is warranted. Full article
Show Figures

Figure 1

19 pages, 624 KiB  
Review
Digital Transformation in Water Utilities: Status, Challenges, and Prospects
by Neil S. Grigg
Smart Cities 2025, 8(3), 99; https://doi.org/10.3390/smartcities8030099 - 15 Jun 2025
Viewed by 1305
Abstract
While digital transformation in e-commerce receives the most publicity, applications in energy and water utilities have been ongoing for decades. Using a methodology based on a systematic review, the paper offers a model of how it occurs in water utilities, reviews experiences from [...] Read more.
While digital transformation in e-commerce receives the most publicity, applications in energy and water utilities have been ongoing for decades. Using a methodology based on a systematic review, the paper offers a model of how it occurs in water utilities, reviews experiences from the field, and derives lessons learned to create a road map for future research and implementation. Innovation in water utilities occurs more in the field than through organized research, and utilities share their experiences globally through networks such as water associations, focus groups, and media outlets. Their digital transformation journeys are evident in business practices, operations, and asset management, including methods like decision support systems, SCADA systems, digital twins, and process optimization. Meanwhile, they operate traditional regulated services while being challenged by issues like aging infrastructure and workforce capacity. They operate complex and expensive distribution systems that require grafting of new controls onto older systems with vulnerable components. Digital transformation in utilities is driven by return on investment and regulatory and workforce constraints and leads to cautious adoption of innovative methods unless required by external pressures. Utility adoption occurs gradually as digital tools help utilities to leverage system data for maintenance management, system renewal, and water loss control. Digital twins offer the advantages of enterprise data, decision support, and simulation models and can support distribution system optimization by integrating advanced metering infrastructure devices and water loss control through more granular pressure control. Models to anticipate water main breaks can also be included. With such advances, concerns about cyber security will grow. The lessons learned from the review indicate that research and development for new digital tools will continue, but utility adoption will continue to evolve slowly, even as many utilities globally are too stressed with difficult issues to adopt them. Rather than rely on government and academics for research support, utilities will need help from their support community of regulators, consultants, vendors, and all researchers to navigate the pathways that lie ahead. Full article
Show Figures

Figure 1

Back to TopTop