Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,297)

Search Parameters:
Keywords = vehicle speed measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3931 KB  
Article
Experimental Determination of Material Behavior Under Compression of a Carbon-Reinforced Epoxy Composite Boat Damaged by Slamming-like Impact
by Erkin Altunsaray, Mustafa Biçer, Haşim Fırat Karasu and Gökdeniz Neşer
Polymers 2026, 18(2), 173; https://doi.org/10.3390/polym18020173 - 8 Jan 2026
Viewed by 126
Abstract
Carbon-reinforced epoxy laminated composite (CREC) structures are increasingly utilized in high-speed marine vehicles (HSMVs) due to their high specific strength and stiffness; however, they are frequently subjected to impact loads like slamming and aggressive environmental agents during operation. This study experimentally investigates the [...] Read more.
Carbon-reinforced epoxy laminated composite (CREC) structures are increasingly utilized in high-speed marine vehicles (HSMVs) due to their high specific strength and stiffness; however, they are frequently subjected to impact loads like slamming and aggressive environmental agents during operation. This study experimentally investigates the Compression After Impact (CAI) behavior of CREC plates with varying lamination sequences under both atmospheric and accelerated aging conditions. The samples were produced using the vacuum-assisted resin infusion method with three specific orientation types: quasi-isotropic, cross-ply, and angle-ply. To simulate the marine environment, specimens were subjected to accelerated aging in a salt fog and cyclic corrosion cabin for periods of 2, 4, and 6 weeks. Before and following the aging process, low-velocity impact tests were conducted at an energy level of 30 J, after which the residual compressive strength was measured by CAI tests. At the end of the aging process, after the sixth week, the performance of plates with different layer configuration characteristics can be summarized as follows: Plates 1 and 2, which are quasi-isotropic, exhibit opposite behavior. Plate 1, with an initial toughness of 23,000 mJ, increases its performance to 27,000 mJ as it ages, while these values are around 27,000 and 17,000 mJ, respectively, for Plate 2. It is thought that the difference in configurations creates this difference, and the presence of the 0° layer under the effect of compression load at the beginning and end of the configuration has a performance-enhancing effect. In Plates 3 and 4, which have a cross-ply configuration, almost the same performance is observed; the performance, which is initially 13,000 mJ, increases to around 23,000 mJ with the effect of aging. Among the options, angle-ply Plates 5 and 6 demonstrate the highest performance with values around 35,000 mJ, along with an undefined aging effect. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS) analyses confirmed the presence of matrix cracking, fiber breakage, and salt accumulation (Na and Ca compounds) on the aged surfaces. The study concludes that the impact of environmental aging on CRECs is not uniformly negative; while it degrades certain configurations, it can enhance the toughness and energy absorption of brittle, cross-ply structures through matrix plasticization. Full article
Show Figures

Figure 1

26 pages, 12830 KB  
Article
Modelling and Parametrisation Approach for an Electric Powertrain in a Hardware-in-the-Loop Environment
by Carl Hübner and Günther Prokop
Vehicles 2026, 8(1), 12; https://doi.org/10.3390/vehicles8010012 - 7 Jan 2026
Viewed by 76
Abstract
A device under test, when applied to the test rig, often does not come with much information about its mechanical properties to the user. There are different applications in which specific properties of the device under test are of interest to the user. [...] Read more.
A device under test, when applied to the test rig, often does not come with much information about its mechanical properties to the user. There are different applications in which specific properties of the device under test are of interest to the user. Therefore, a suitable model approach and a parameterisation method are required. If there is a torsional model of the plant, including the device under test and the load machines, it can, for example, be used in a model predictive control architecture. The focus of the publication is on the frequency range of driveability (f< 30 Hz) and, in particular, on the phenomenon of the vehicle shuffle mode, which is important for driving comfort. The model approach has to map these characteristics. To make this possible, the publication presents a suitable, simplified modelling approach for electric powertrains in the hardware-in-the-loop environment and the possibility of indirect parameterisation for the moment of inertia and stiffness. The investigations demonstrate that the model possesses the essential eigenmodes and frequencies observed in the measurements on the test rig. Taking into account extensions, the model enables the incorporation of the properties of an open differential, including delta speeds. The natural frequency matches the measured one with deviations less than 1%. The results also show that the parameters are smaller than assumed. The authors will revise the developed method on this basis to achieve higher information value and a better confidence interval. This further work will discuss the influence of the confidence interval on the resulting parameters. Full article
Show Figures

Figure 1

12 pages, 707 KB  
Article
Intelligent Vehicle Repeater for Satellite Networks: A Promising Device for Tourists and Explorers Without Terrestrial Networks
by Yitao Li and Conglu Huang
Telecom 2026, 7(1), 8; https://doi.org/10.3390/telecom7010008 - 7 Jan 2026
Viewed by 60
Abstract
Existing vehicle-mounted satellite terminals primarily rely on mechanical or purely analog electronically steered antennas. They lack protocol-level relay capability and usually provide only short-range hotspot connectivity. These limitations make it difficult for such systems to deliver stable, high-throughput satellite access for personal mobile [...] Read more.
Existing vehicle-mounted satellite terminals primarily rely on mechanical or purely analog electronically steered antennas. They lack protocol-level relay capability and usually provide only short-range hotspot connectivity. These limitations make it difficult for such systems to deliver stable, high-throughput satellite access for personal mobile devices in dynamic vehicular environments, especially in remote regions without terrestrial networks. This paper proposes an intelligent vehicle repeater for satellite networks (IVRSN) that builds a dedicated satellite–vehicle–device relay architecture. It enables reliable broadband connectivity for conventional mobile terminals without requiring specialized satellite hardware. The IVRSN consists of three key technical components. Firstly, a dual-mode relay coverage mechanism is designed to support energy-efficient in-vehicle access and extended out-of-vehicle coverage. Secondly, a DoA-assisted, attitude-compensated hybrid beamforming scheme is developed. It combines subspace-based direction estimation with inertial sensor measurements to maintain high-precision satellite pointing under vehicle dynamics. Finally, a bidirectional protocol conversion module is introduced to ensure compatibility between ground wireless protocols and satellite link-layer formats with integrity-checked data forwarding. Compared to existing solutions, the proposed IVRSN provides higher stability and broader device compatibility, making it a feasible solution for high-speed, high-quality communications in remote or disaster regions. Full article
Show Figures

Figure 1

16 pages, 5203 KB  
Article
Traffic Modelling and Emission Calculation: Integration of the COPERT Method into the PTV-VISUM Software
by Anett Gosztola, Bence Verebélyi and Balázs Horváth
Appl. Sci. 2026, 16(2), 567; https://doi.org/10.3390/app16020567 - 6 Jan 2026
Viewed by 101
Abstract
The environmental impacts of road transport, in particular air pollution and noise, are receiving increasing attention in urban and regional planning, as they can not only predict vehicle movements but also provide detailed information on traffic volumes and speed distributions, which are indispensable [...] Read more.
The environmental impacts of road transport, in particular air pollution and noise, are receiving increasing attention in urban and regional planning, as they can not only predict vehicle movements but also provide detailed information on traffic volumes and speed distributions, which are indispensable for effective regulation, targeted interventions and health-conscious urban planning. This study presents an emission calculation module that can be integrated into traffic models and provides detailed estimates of pollutants emitted by road vehicles. The developed module builds on the COPERT methodology, which accounts not only for exhaust emissions such as CO2, NOx and PM, but also for non-exhaust emissions from brake wear, tyre wear, road abrasion and evaporation. The presented system has an open architecture, enabling further customisation, particularly when local measured data are available. This contributes to building a stronger, data-driven link between transport planning and environmental protection. Full article
Show Figures

Figure 1

25 pages, 2288 KB  
Article
Driving Simulator Performance After Acquired Brain Injury: A Comparative Study of Neuropsychological Predictors
by Marek Sokol, Petr Volf, Jan Hejda, Jiří Remr, Lýdie Leová and Patrik Kutílek
Big Data Cogn. Comput. 2026, 10(1), 20; https://doi.org/10.3390/bdcc10010020 - 6 Jan 2026
Viewed by 220
Abstract
Acquired brain injury (ABI) often results in cognitive and motor impairments that can compromise driving ability, an essential aspect of independence and social participation. This study utilized a custom-designed driving simulator to compare driving performance between individuals with ABI and controls, and to [...] Read more.
Acquired brain injury (ABI) often results in cognitive and motor impairments that can compromise driving ability, an essential aspect of independence and social participation. This study utilized a custom-designed driving simulator to compare driving performance between individuals with ABI and controls, and to examine the relationship between cognitive performance and driving behavior within the control group. All participants completed a series of standardized driving simulation tasks of varying complexity. The control group also completed a neuropsychological battery that assessed attention, processing speed, executive function, and visuospatial abilities. Simulator data were analyzed using generalized linear mixed models to evaluate group differences and, for the control group, cognitive predictors of performance. Results showed that individuals with ABI performed comparably to controls in basic operational tasks but demonstrated reduced performance in cognitively demanding scenarios requiring sustained attention, visuospatial monitoring, and adaptive control, such as rural driving, vehicle following, and parking. In the control group, strong associations were found between simulator outcomes and measures of attention, processing speed, and spatial orientation. The findings support the use of simulator-based assessment as an objective tool sensitive to post-injury impairments and highlight its links to cognitive domains relevant to driving. Full article
Show Figures

Figure 1

23 pages, 11032 KB  
Article
Work Zone Performance Measures Derived from Connected Vehicle Data for Safety and Mobility Assessment
by Rahul Suryakant Sakhare, Jairaj Desai, Myles Overall, Justin Mukai, Juan Pava, John McGregor and Darcy M. Bullock
Future Transp. 2026, 6(1), 12; https://doi.org/10.3390/futuretransp6010012 - 5 Jan 2026
Viewed by 102
Abstract
On 1 November 2024, the Federal Highway Administration issued a final rule updating the 23 CFR Part 630 Subpart J on Work Zone Safety and Mobility, detailing performance measures and reporting requirements. The rule suggests that state agencies should define formal performance measures [...] Read more.
On 1 November 2024, the Federal Highway Administration issued a final rule updating the 23 CFR Part 630 Subpart J on Work Zone Safety and Mobility, detailing performance measures and reporting requirements. The rule suggests that state agencies should define formal performance measures that can be tracked consistently for the continuity of work zone program management across states. The objective is to help identify work zones needing mobility or safety improvements, as well as provide quantitative feedback on the best practices. The emergence of connected vehicle data over the past few years provides a scalable approach for agencies to calculate and monitor the performance measures defined in the CFR, covering, but not limited to, speed, travel time, queue length and duration, hard braking events and speed differentials. This paper describes techniques that use connected vehicle data to estimate different measures that map into the performance measures defined in this rule. A 2024 work zone in Illinois along I-24 was chosen to demonstrate the utility of the measures. The paper concludes with a discussion of ongoing work applying these derived measures to 101 work zones across 9 states in 2025 to demonstrate scalability. Full article
Show Figures

Figure 1

19 pages, 4983 KB  
Article
Fluid Flow and Pollutant Dispersion in Naturally Ventilated Traffic Tunnels
by Cunjin Cai, Xinyi Yang, Xitong Yuan, Tianhao Shi, Wenyu Li, Wenting Lin and Tingzhen Ming
Atmosphere 2026, 17(1), 66; https://doi.org/10.3390/atmos17010066 - 4 Jan 2026
Viewed by 234
Abstract
With the rapid expansion of urban areas, short naturally ventilated traffic tunnels (NVTTs) have become prevalent in modern cities. However, their enclosed design and inadequate ventilation often lead to the accumulation of vehicle emissions, especially during peak traffic periods, which poses significant threats [...] Read more.
With the rapid expansion of urban areas, short naturally ventilated traffic tunnels (NVTTs) have become prevalent in modern cities. However, their enclosed design and inadequate ventilation often lead to the accumulation of vehicle emissions, especially during peak traffic periods, which poses significant threats to public health. Previous studies have shown that airflow in such tunnels is caused by ambient crosswinds (ACWs), which contribute to the dilution of pollutants. Based on this, a geometrical model including traffic tunnels belonging to a complex traffic system of the Second Ring Road in Wuhan City was established, followed by a mathematical model describing the fluid flow and pollutant transformation. The current flow characters and pollutant dispersion mechanism of CO and NOX were analyzed. Among them, the number and speeds of vehicles are measured to calculate the strength of the pollutant source. Then, the data was set as the initial contaminant source strength in Ansys Fluent 14.0 to compute the pollutant dispersion of the whole domain. The results indicate the following: (1) The airflow direction inside the tunnel varies with changes in ambient wind direction and wind speed. Specifically, variations in ambient wind direction result in changes in airflow direction in both tunnels. In contrast, changes in wind speed do not affect the airflow direction in both tunnels; only in the downstream tunnel does the airflow direction change with increasing westward wind speed. By comparison, in the upstream tunnel, the airflow direction remains unchanged regardless of the westward wind speed; (2) Pollutant accumulates along the downstream airflow in both the tunnels; (3) The mass fraction level of contaminate stratification differs along the tunnels. The pollutant tends to form y-component layering near the upwind opening and x-component stratification at the downwind opening of the two tunnels. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

28 pages, 14185 KB  
Article
Finite Element Analysis of Tire–Pavement Interaction Effects on Noise Reduction in Porous Asphalt Pavements
by Miao Yu, Geyun Lv, Anqi Li, Jing Yang, Zhexi Zhang, Dongzhao Jin, Rong Zhang and Jiqing Li
Appl. Sci. 2026, 16(1), 523; https://doi.org/10.3390/app16010523 - 4 Jan 2026
Viewed by 153
Abstract
This study investigated the noise reduction performance of porous asphalt concrete (PAC) pavement under tire–pavement coupling conditions, addressing the limitations of field measurements and laboratory testing. First, tire excitation amplitude parameters were determined based on vibrational contact operational scenarios. Then, finite element simulations [...] Read more.
This study investigated the noise reduction performance of porous asphalt concrete (PAC) pavement under tire–pavement coupling conditions, addressing the limitations of field measurements and laboratory testing. First, tire excitation amplitude parameters were determined based on vibrational contact operational scenarios. Then, finite element simulations were conducted to systematically analyzing the tire–pavement coupling noise characteristics of PAC pavement. The results indicate that PAC pavement effectively reduces the air pumping noise due to its highly porous internal structure, leading to significant noise attenuation. Furthermore, the study examined the key factors influencing the tire–pavement coupling noise in PAC pavement. When maintaining constant vehicle parameters (300 kg load, 60 km/h speed), pavement thickness became the critical noise-control variable, achieving minimum vibration at 6 cm surface layer thickness. Additionally, tire tread depth (5–17 mm) and mold release angle (0–30°) had a more pronounced impact on the air pumping noise compared to groove width (20–60 mm). Increasing the mold release angle and reducing tread depth effectively mitigated the air pumping noise. However, the tire–pavement coupling noise in PAC pavement increased considerably with increasing vehicle speed and load. Particularly, as the speed increased from 30 km/h to 60 km/h, the growth of the air pumping noise was most pronounced, revealing an acoustic transition of tire–pavement coupling noise from vibration-dominated to air-pumping-dominated mechanisms. Full article
Show Figures

Figure 1

19 pages, 5926 KB  
Article
Full-Scale Collision Behavior of a Polyurea-Coated RC Intrusion Protection Wall for High-Speed Train Derailment
by Luong Ngoc Nguyen, Dong Hwi Im, Kwang Soo Youm, Jung Joong Kim and Nam Hyoung Lim
Buildings 2026, 16(1), 227; https://doi.org/10.3390/buildings16010227 - 4 Jan 2026
Viewed by 241
Abstract
High-speed train derailments can cause severe vehicle collisions with rail bridges and adjacent infrastructure; however, full-scale evidence for the collision response of trackside intrusion-protection walls and for material measures that limit concrete fragmentation remains scarce. This study addresses this safety-driven knowledge gap by [...] Read more.
High-speed train derailments can cause severe vehicle collisions with rail bridges and adjacent infrastructure; however, full-scale evidence for the collision response of trackside intrusion-protection walls and for material measures that limit concrete fragmentation remains scarce. This study addresses this safety-driven knowledge gap by reporting a full-scale collision test of a polyurea-coated reinforced concrete (RC) wall and by clarifying its governing response mechanisms and coating benefits. The inverted T-shaped RC wall was post-anchored to an existing deck and spray-coated with approximately 5 mm polyurea on the collision face and across the wall-footing junction. A 17.68 t container wagon was propelled to 34.59 km/h to reproduce the normal kinetic energy of a representative 68 t KTX car derailing at 300 km/h with a 3° collision angle. High-speed video tracking and post-test mapping captured displacements, rotations, and damage. The wall contained the container wagon without climb-over and without severe local crushing at the collision face; the response was dominated by stable wall-footing rocking, with a peak top displacement of 0.571 m, peak rotation of 19.9°, and residual inclination of approximately 15–17°. The peak collision-force estimate was approximately 1.17 MN, and most input energy (approximately 647–816 kJ) was dissipated through inelastic rocking and sliding while the anchors remained intact. The polyurea layer restrained spalling and fragment release and promoted a more global, repairable rocking-dominated damage state. These results provide rare full-scale benchmarks and mechanistic insight to support performance-based design and retrofit of derailment intrusion-protection walls for improved rail-bridge safety. Full article
Show Figures

Figure 1

31 pages, 7679 KB  
Article
Comparing Driver Behaviour with Measured Speed—An Innovative Approach to Designing Transition Zones for Smart Cities
by Stanisław Majer and Alicja Sołowczuk
Sustainability 2026, 18(1), 494; https://doi.org/10.3390/su18010494 - 4 Jan 2026
Viewed by 314
Abstract
Speed limits are widely used in transition zones between rural and urban areas, where road and environmental conditions change and drivers are expected to reduce their speed. These locations often generate particularly complex driver behaviour in response to applied traffic calming measures (TCMs). [...] Read more.
Speed limits are widely used in transition zones between rural and urban areas, where road and environmental conditions change and drivers are expected to reduce their speed. These locations often generate particularly complex driver behaviour in response to applied traffic calming measures (TCMs). Previous studies have mainly focused on the effectiveness of individual TCMs in reducing speed; however, analyses directly comparing drivers’ declared behaviours with actual measured speeds remain limited. The aim of this study was to assess the effectiveness of selected TCMs—chicanes, central island, refuges island, and dynamic speed feedback signs (DSFSs)—across 26 transition zones, taking into account land-use characteristics, driver fixation points, and the road’s visual perspective. To evaluate consistency or discrepancies, the declared behaviours of survey respondents assessing these locations were compared with speed measurements collected from other drivers travelling through the same zones. The analyses help define the relationship between drivers’ perception and their actual behaviour, identifying which TCMs, when combined with specific road-environment features, are most effective in achieving the target speed of 50 km/h in built-up areas. The most effective chicanes proved to be those with the greatest width (2.5 m), i.e., almost equal to the width of a traffic lane, as well as those with a width of 2.0 m combined with a change in pavement surface from asphalt to stone paving, or those located upstream of a road section characterised by high curvature and limited visibility. In contrast, symmetrical islands, even with a width of 3.0 m, were found to be completely ineffective. The findings support the development of more effective transition-zone design principles and provide guidance for future mobility strategies, including the integration of automated vehicles in smart cities. Full article
(This article belongs to the Special Issue Smart Cities with Innovative Solutions in Sustainable Urban Future)
Show Figures

Figure 1

18 pages, 879 KB  
Article
Sensor-Detected Differences in Behaviors of Older Drivers with Pre-MCI and Mild Cognitive Impairment vs. Unimpaired Drivers
by Ruth M. Tappen, David Newman, Mónica Rosselli, Joshua Conniff, Subhosit Ray, Sonia Moshfeghi, Jinwoo Jang, KwangSoo Yang and Borko Furht
Sensors 2026, 26(1), 290; https://doi.org/10.3390/s26010290 - 2 Jan 2026
Viewed by 275
Abstract
Background: Research to identify changes in driving behavior that occur with the onset of Pre-MCI and MCI is an emerging area with many gaps still to be addressed. These gaps include limited use of objective, continuous measurement of driver behavior in real-life [...] Read more.
Background: Research to identify changes in driving behavior that occur with the onset of Pre-MCI and MCI is an emerging area with many gaps still to be addressed. These gaps include limited use of objective, continuous measurement of driver behavior in real-life traffic conditions and comprehensive, biomarker-validated, cognitive evaluation based upon both testing and clinical ratings. Using these strategies, the questions addressed in this exploratory study are whether or not differences in driving behavior are indicative of Pre-MCI/MCI and which behaviors are most predictive of Pre-MCI/MCI. Methods: As part of a naturalistic longitudinal study, older drivers with a Montreal Cognitive Assessment score ≥ 19 had telematic sensors installed in their vehicles and underwent comprehensive cognitive assessment quarterly for three years. Thirty-six participants were classified as Unimpaired (n = 23) or Pre-MCI/MCI (n = 10/3) based upon a neuropsychological battery and diagnostic algorithm. A penalized generalized linear mixed-effects model (GLMM) with a logistic link and LASSO regularization was used to model Pre-MCI/MCI group membership vs. unimpaired as a function of ten trip-level telematic features (trip distance, hard acceleration, hard braking, hard turns, speed average, maximum speed, RPM average, fuel level, throttle average, and throttle variability) at the end of their first 12 months in the study. Results: Higher RPM, shorter average trips, and greater throttle variability predicted higher odds of Pre-MCI/MCI, while more frequent hard braking, hard turns, higher mean speed, and lower average throttle (steadier pedal control) predicted lower odds of Pre-MCI/MCI. Conclusions: The model clearly distinguished unimpaired older drivers from those with MCI or Pre-MCI, suggesting that distinct patterns of driver behavior may be related to levels of cognitive function. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

21 pages, 6041 KB  
Article
Unraveling the Drivers of Continuous Summer Ozone Pollution Episodes in Bozhou, China: Toward Targeted Control Strategies
by Ke Wu, Xuezhong Wang, Dandan Zhang, Hong Li, Fang Bi, Zhenhai Wu, Fanxiu Li, Wanghui Chu and Cong An
Toxics 2026, 14(1), 37; https://doi.org/10.3390/toxics14010037 - 29 Dec 2025
Viewed by 280
Abstract
Given the deteriorating situation of ambient ozone (O3) pollution in some areas of China, understanding the mechanisms driving O3 formation is essential for formulating effective control measures. This study examines O3 formation mechanisms and ROx (OH, HO2, [...] Read more.
Given the deteriorating situation of ambient ozone (O3) pollution in some areas of China, understanding the mechanisms driving O3 formation is essential for formulating effective control measures. This study examines O3 formation mechanisms and ROx (OH, HO2, and RO2) radical cycling driven by photochemical processes in Bozhou, located at the junction of Jiangsu–Anhui–Shandong–Henan (JASH), a region heavily affected by O3 pollution, by applying a zero-dimensional box model (Framework for 0-Dimensional Atmospheric Modeling, F0AM) coupled with the Master Chemical Mechanism (MCM v3.3.1) and Positive Matrix Factorization (PMF 5.0) to characterize O3 pollution, identify volatile organic compound (VOC) sources, and quantify radical budgets during pollution episodes. The results show that O3 episodes in Bozhou mainly occurred in June under conditions of high temperature and low wind speed. Oxygenated volatile organic compounds (OVOCs), alkanes, and halocarbons were the dominant VOCs groups. The CH3O2 + NO reaction accounted for 24.3% of O3 production, while photolysis contributed 68.7% of its removal. Elevated VOCs concentrations in Bozhou were largely maintained by anthropogenic sources such as vehicle exhaust, solvent utilization, and gasoline evaporation, which collectively enhanced O3 production. The findings indicate that O3 formation in the region is primarily regulated by NOx availability. Therefore, emission reductions targeting NOx, along with selective control of OVOCs and alkenes, would be the most effective strategies for lowering O3 levels. Model simulations further highlight Bozhou’s strong atmospheric oxidation capacity, with OVOC photolysis identified as the dominant contributor to ROx generation, accounting for 33% of the total. Diurnal patterns were evident: NOx-related reactions dominated radical sinks in the morning, while HO2 + RO2 reactions accounted for 28.5% in the afternoon. By clarifying the mechanisms of O3 formation in Bozhou, this study provides a scientific basis for designing ozone control strategies across the JASH junction region. In addition, ethanol was not directly measured in this study; given its potential to generate acetaldehyde and affect local O3 formation, its possible contribution introduces additional uncertainty that warrants further investigation. Full article
Show Figures

Graphical abstract

26 pages, 2436 KB  
Article
ETA-Hysteresis-Based Reinforcement Learning for Continuous Multi-Target Hunting of Swarm USVs
by Nur Hamid and Haitham Saleh
Appl. Syst. Innov. 2026, 9(1), 7; https://doi.org/10.3390/asi9010007 - 25 Dec 2025
Viewed by 313
Abstract
Swarm unmanned surface vehicles (USVs) have been increasingly explored for maritime defense and security operations, particularly in scenarios requiring the rapid detection and interception of multiple attackers. The target detection reliability and defender–target assignment stability are significantly crucial to ensure quick responses and [...] Read more.
Swarm unmanned surface vehicles (USVs) have been increasingly explored for maritime defense and security operations, particularly in scenarios requiring the rapid detection and interception of multiple attackers. The target detection reliability and defender–target assignment stability are significantly crucial to ensure quick responses and prevent mission failure. A key challenge in such missions lies in the assignment of targets among multiple defenders, where frequent reassignment can cause instability and inefficiency. This paper proposes a novel ETA-hysteresis-guided reinforcement learning (RL) framework for continuous multi-target hunting with swarm USVs. The approach integrates estimated time of arrival (ETA)-based task allocation with a dual-threshold hysteresis mechanism to balance responsiveness and stability in multi-target assignments. The ETA module provides an efficient criterion for selecting the most suitable defender–target pair, while hysteresis prevents oscillatory reassignments triggered by marginal changes in ETA values. The framework is trained and evaluated in a 3D-simulated water environment with multiple continuous targets under static and dynamic water environments. Experimental results demonstrate that the proposed method achieves substantial measurable improvements compared to basic MAPPO and MAPPO-LSTM, including faster convergence speed (+20–30%), higher interception rates (improvement of +9.5% to +20.9%), and reduced mean time-to-capture (by 9.4–19.0%), while maintaining competitive path smoothness and energy efficiency. The findings highlight the potential of integrating time-aware assignment strategies with reinforcement learning to enable robust, scalable, and stable swarm USV operations for maritime security applications. Full article
Show Figures

Figure 1

22 pages, 16021 KB  
Article
Optimization of the Process Parameters for Non-Penetration Laser Lap Welding of SUS301L Stainless Steel
by Haiyuan He, Yuhuan Liu, Shiming Huang, Ping Zhu, Peng Zhang, Weiguo Yan, Zhichao Zhang, Zhihui Xu, Yuncheng Jiang, Zhi Cheng, Bin Shi and Junchang Lin
Crystals 2026, 16(1), 9; https://doi.org/10.3390/cryst16010009 - 23 Dec 2025
Viewed by 222
Abstract
In this study, with the rapid development of the field of rail vehicles, the laser welding process with high energy and small thermal deformation is selected, which reduces the working hours of post-welding grinding, repainting, and other processes, and ensures the industrial design [...] Read more.
In this study, with the rapid development of the field of rail vehicles, the laser welding process with high energy and small thermal deformation is selected, which reduces the working hours of post-welding grinding, repainting, and other processes, and ensures the industrial design requirements of the beautiful body after welding. The welding process for the non-penetration laser lap welding of SUS301L stainless-steel plates was optimized to address the problem of welding marks on the outer surface of railway vehicle car bodies. The impact of laser power, welding speed, and defocusing amount on weld penetration and tensile shear load was investigated using the response surface methodology. The results showed that the optimal response model for tensile shear load was the linear model, while the optimal response model for weld penetration was the 2FI model. The defocusing amount had the greatest influence on tensile shear load and weld penetration. When the laser power was 1.44 kW, the welding speed was 15 mm/s, and the defocusing amount was −4 mm, the tensile shear load reached its maximum by prediction. The actual tensile shear load of welded joints using these parameters was 4293 N with an error of merely 0.31% relative to the predicted value. The shear strength of laser-welded joints was measured at 429.3 N/mm, meeting the criteria established by the relevant standards. The tensile fracture shows characteristics of brittle fracture. The surface of the welded joints was bright white and well-formed, while the back side of the lower plate exhibited no signs of melting or welding marks. The microstructure of the weld zone (WZ) exhibited irregular columnar austenite and plate-like ferrite, while the heat-affected zone (HAZ) comprised columnar austenite and elongated bars or networks of δ-ferrite. The small-angle grain in welded joints can reduce grain boundary defects and mitigate stress concentration. After welding, angular deformation occurred, resulting in a residual stress distribution that shows tensile stress near the weld and compressive stress at a distance from the weld. Full article
Show Figures

Figure 1

18 pages, 1342 KB  
Article
A Sensor-Based and GIS-Linked Analysis of Road Characteristics Influencing Lateral Passing Distance Between Motor Vehicles and Bicycles in Austria
by Tabea Fian, Georg Hauger, Aggelos Soteropoulos, Veronika Zuser and Maria Scheibmayr
Sensors 2026, 26(1), 87; https://doi.org/10.3390/s26010087 - 22 Dec 2025
Viewed by 310
Abstract
Lateral passing distance (LPD) when motor vehicles overtake cyclists is a key safety metric, yet infrastructure-aware evidence remains limited. This study analyses 11,399 overtaking measurements from Austria’s OpenBikeSensor (OBS) project, spatially linked to the national road graph (GIP), with urban and rural networks [...] Read more.
Lateral passing distance (LPD) when motor vehicles overtake cyclists is a key safety metric, yet infrastructure-aware evidence remains limited. This study analyses 11,399 overtaking measurements from Austria’s OpenBikeSensor (OBS) project, spatially linked to the national road graph (GIP), with urban and rural networks examined separately. LPD was treated as a continuous dependent variable, and bivariate relationships were tested using nonparametric methods: Spearman’s rho/Kendall’s tau for metric predictors (speed limit, lane width, number of lanes) and Kruskal–Wallis tests with Dunn–Holm post hoc adjustments for categorical factors (Functional Road Class, Road Configuration, Infrastructure Type). Effect sizes and confidence intervals supported substantive interpretation. LPD was higher in rural than urban contexts, with compliance to Austria’s 2023 legal thresholds averaging 40% in cities (≥1.5 m) and 19% in rural areas (≥2.0 m). Positive correlations were found between LPD and lane width, speed limit, and functional class. The findings highlight infrastructure-sensitive patterns in sensor-generated LPD and emphasise the importance of clear cyclist allocation or physical separation, especially where high speeds or spatial constraints increase close-passing risk. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

Back to TopTop