Intelligent Vehicle Repeater for Satellite Networks: A Promising Device for Tourists and Explorers Without Terrestrial Networks
Abstract
1. Introduction
- A dual-mode relay coverage mechanism that supports low-power in-vehicle access and extended outside-vehicle coverage (up to 50 m), allowing for connectivity for multiple nearby users or small convoys.
- A DoA-assisted, attitude-compensated hybrid beamforming scheme that fuses inertial sensor measurements with subspace-based direction estimation to maintain accurate satellite alignment under vehicular mobility.
- A protocol-layer relay architecture that enables terrestrial devices to access satellite links without specialized hardware. It integrates protocol decapsulation, lightweight Layer-2/Layer-3 adaptation, and re-encapsulation for seamless satellite–vehicle–device interoperability.
2. Intelligent Vehicle Repeater for Satellite Networks
2.1. System Model
2.2. Communications with Satellites
2.3. Coverage for Mobile Terminals
2.4. Network Protocols Conversions and Compatibilities
2.5. Data and Signal Processing
3. Key Technical Issues
3.1. Orientation Perceptions and Predictions
3.2. Intelligent Antenna Techniques
4. Potential Research Directions
4.1. Advanced Intelligent Sensor Techniques
4.2. AI-Based Orientation Perceptions and Predictions
4.3. Intelligent Antenna Controls
5. Future Applications Prospects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, J.; Kishk, M.A.; Alouini, M.S. Space-air-ground-sea integrated networks: Modeling and coverage analysis. IEEE Trans. Wirel. Commun. 2023, 22, 6298–6313. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, D.; Wang, Z.; Chen, J.; Quek, T.Q. Seamless handover in LEO based non-terrestrial networks: Service continuity and optimization. IEEE Trans. Commun. 2022, 71, 1008–1023. [Google Scholar] [CrossRef]
- Abdelsadek, M.Y.; Chaudhry, A.U.; Darwish, T.; Erdogan, E.; Karabulut-Kurt, G.; Madoery, P.G.; Yahia, O.B.; Yanikomeroglu, H. Future space networks: Toward the next giant leap for humankind. IEEE Trans. Commun. 2022, 71, 949–1007. [Google Scholar] [CrossRef]
- Li, X.; Shi, W. Hybrid satellite-UAV-terrestrial maritime networks: Network selection for users on a vessel optimized with transmit power and UAV position. China Commun. 2022, 19, 37–46. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, S.; Zhang, X. Key technologies for networking in satellite-terrestrial integrated network. Chin. J. Aeronaut. 2025, 38, 103641. [Google Scholar] [CrossRef]
- Bakhsh, Z.M.; Omid, Y.; Chen, G.; Kayhan, F.; Ma, Y.; Tafazolli, R. Multi-satellite MIMO systems for direct satellite-to-device communications: A survey. IEEE Commun. Surv. Tutor. 2024, 27, 1536–1564. [Google Scholar] [CrossRef]
- Al-Hraishawi, H.; Chougrani, H.; Kisseleff, S.; Lagunas, E.; Chatzinotas, S. A survey on nongeostationary satellite systems: The communication perspective. IEEE Commun. Surv. Tutor. 2022, 25, 101–132. [Google Scholar] [CrossRef]
- Ullah, M.A.; Mikhaylov, K.; Alves, H. Massive machine-type communication and satellite integration for remote areas. IEEE Wirel. Commun. 2021, 28, 74–80. [Google Scholar] [CrossRef]
- Maral, G.; Bousquet, M.; Sun, Z. Satellite Communications Systems: Systems, Techniques and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Zhang, X.; Qin, X.; Wang, Y.; Xu, Y.; Zhou, H.; Zhuang, W. Robust Downlink Data Transmission in LEO Satellite-Terrestrial Networks: A Rate-Splitting Multiple Access Approach. IEEE Internet Things J. 2025, 12, 27364–27378. [Google Scholar] [CrossRef]
- Araniti, G.; Iera, A.; Pizzi, S.; Rinaldi, F. Toward 6G non-terrestrial networks. IEEE Netw. 2021, 36, 113–120. [Google Scholar] [CrossRef]
- Wei, Q.; Chen, X.; Ni, Z.; Jiang, C.; Huang, Z.; Zhang, S. Integrated Doppler positioning in a narrowband satellite system: Performance bound, parameter estimation, and receiver architecture. IEEE Internet Things J. 2023, 11, 10893–10910. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Zhou, D.; Zhang, Z. A Mode Steering Antenna for Vehicular to LEO Satellite Communication. IEEE Trans. Veh. Technol. 2025, 74, 19859–19863. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, P.; Zheng, L.; Zhang, Y. DNN-DANM: A high-accuracy two-dimensional DOA estimation method using practical RIS. IEEE Trans. Veh. Technol. 2023, 73, 1792–1802. [Google Scholar] [CrossRef]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Chan, C.; Li, B.; Song, X. Multi-sensor fusion methodology for enhanced land vehicle positioning. Inf. Fusion 2019, 46, 51–62. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Shen, Z.; Li, X.; Li, X. Advancing high-precision navigation: Leveraging homogeneous sensors in tightly coupled PPP-RTK/IMU integration. IEEE Trans. Ind. Electron. 2024, 71, 15100–15110. [Google Scholar] [CrossRef]
- Mozaffari, S.; Al-Jarrah, O.Y.; Dianati, M.; Jennings, P.; Mouzakitis, A. Deep learning-based vehicle behavior prediction for autonomous driving applications: A review. IEEE Trans. Intell. Transp. Syst. 2020, 23, 33–47. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, A.; Li, P.; Jiang, S. Deep learning (DL)-based channel prediction and hybrid beamforming for LEO satellite massive MIMO system. IEEE Internet Things J. 2022, 9, 23705–23715. [Google Scholar] [CrossRef]





| Acronym | Full Name |
|---|---|
| CBF | Conventional Beamforming |
| DoA | Direction of Arrival |
| DSPM | Data Storage and Processing Module |
| E2E | End-to-End |
| ESA | Electronically Steered Antennas |
| FDD | Frequency-Division Duplexing |
| IVRSN | Intelligent Vehicle Repeater for Satellite Networks |
| MUSIC | Multiple Signal Classification |
| NTN | Non-Terrestrial Network |
| PCDFM | Protocol Conversion and Data Forwarding Module |
| RF | Radio Frequency |
| RMSE | Root Mean Square Error |
| SNR | Signal-to-Noise Ratio |
| SOTM | Satellite-On-The-Move |
| ULA | Uniform Linear Array |
| System | Terminal Category | Broadband Data | Internet Performance | Multi-Device | Mobility Support | Relay Capability | User Interface Type | Commercial Availability |
|---|---|---|---|---|---|---|---|---|
| SpaceX Starlink Aviation | Broadband terminal | Yes | High (100–250 Mbps) | Multi-user in-cabin | High mobility | No | In-cabin WiFi hotspot | Yes |
| Galaxy Space | Broadband terminal | Yes | High (∼200 Mbps) | Multi-user in-vehicle | High mobility | No | In-vehicle WiFi hotspot | No |
| Ruoson RUV-900 | Broadband terminal | Yes | Mid (5–46 Mbps) | Multi-user in-vehicle | High mobility | No | In-vehicle WiFi hotspot | Yes |
| Huawei Vehicle Satellite System | Satellite telephony | No | Low (voice only) | Short-range sharing | Low mobility | No | In-vehicle WiFi hotspot | Yes |
| Proposed IVRSN | Intelligent satellite relay node | Yes | High | Long-range (up to 50 m) | High mobility | Yes | WiFi/LTE relay access | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, Y.; Huang, C. Intelligent Vehicle Repeater for Satellite Networks: A Promising Device for Tourists and Explorers Without Terrestrial Networks. Telecom 2026, 7, 8. https://doi.org/10.3390/telecom7010008
Li Y, Huang C. Intelligent Vehicle Repeater for Satellite Networks: A Promising Device for Tourists and Explorers Without Terrestrial Networks. Telecom. 2026; 7(1):8. https://doi.org/10.3390/telecom7010008
Chicago/Turabian StyleLi, Yitao, and Conglu Huang. 2026. "Intelligent Vehicle Repeater for Satellite Networks: A Promising Device for Tourists and Explorers Without Terrestrial Networks" Telecom 7, no. 1: 8. https://doi.org/10.3390/telecom7010008
APA StyleLi, Y., & Huang, C. (2026). Intelligent Vehicle Repeater for Satellite Networks: A Promising Device for Tourists and Explorers Without Terrestrial Networks. Telecom, 7(1), 8. https://doi.org/10.3390/telecom7010008

