Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,879)

Search Parameters:
Keywords = vehicle security

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1986 KiB  
Article
Machine Learning-Based Blockchain Technology for Secure V2X Communication: Open Challenges and Solutions
by Yonas Teweldemedhin Gebrezgiher, Sekione Reward Jeremiah, Xianjun Deng and Jong Hyuk Park
Sensors 2025, 25(15), 4793; https://doi.org/10.3390/s25154793 - 4 Aug 2025
Abstract
Vehicle-to-everything (V2X) communication is a fundamental technology in the development of intelligent transportation systems, encompassing vehicle-to-vehicle (V2V), infrastructure (V2I), and pedestrian (V2P) communications. This technology enables connected and autonomous vehicles (CAVs) to interact with their surroundings, significantly enhancing road safety, traffic efficiency, and [...] Read more.
Vehicle-to-everything (V2X) communication is a fundamental technology in the development of intelligent transportation systems, encompassing vehicle-to-vehicle (V2V), infrastructure (V2I), and pedestrian (V2P) communications. This technology enables connected and autonomous vehicles (CAVs) to interact with their surroundings, significantly enhancing road safety, traffic efficiency, and driving comfort. However, as V2X communication becomes more widespread, it becomes a prime target for adversarial and persistent cyberattacks, posing significant threats to the security and privacy of CAVs. These challenges are compounded by the dynamic nature of vehicular networks and the stringent requirements for real-time data processing and decision-making. Much research is on using novel technologies such as machine learning, blockchain, and cryptography to secure V2X communications. Our survey highlights the security challenges faced by V2X communications and assesses current ML and blockchain-based solutions, revealing significant gaps and opportunities for improvement. Specifically, our survey focuses on studies integrating ML, blockchain, and multi-access edge computing (MEC) for low latency, robust, and dynamic security in V2X networks. Based on our findings, we outline a conceptual framework that synergizes ML, blockchain, and MEC to address some of the identified security challenges. This integrated framework demonstrates the potential for real-time anomaly detection, decentralized data sharing, and enhanced system scalability. The survey concludes by identifying future research directions and outlining the remaining challenges for securing V2X communications in the face of evolving threats. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

25 pages, 394 KiB  
Article
SMART DShot: Secure Machine-Learning-Based Adaptive Real-Time Timing Correction
by Hyunmin Kim, Zahid Basha Shaik Kadu and Kyusuk Han
Appl. Sci. 2025, 15(15), 8619; https://doi.org/10.3390/app15158619 (registering DOI) - 4 Aug 2025
Viewed by 27
Abstract
The exponential growth of autonomous systems demands robust security mechanisms that can operate within the extreme constraints of real-time embedded environments. This paper introduces SMART DShot, a groundbreaking machine learning-enhanced framework that transforms the security landscape of unmanned aerial vehicle motor control systems [...] Read more.
The exponential growth of autonomous systems demands robust security mechanisms that can operate within the extreme constraints of real-time embedded environments. This paper introduces SMART DShot, a groundbreaking machine learning-enhanced framework that transforms the security landscape of unmanned aerial vehicle motor control systems through seamless integration of adaptive timing correction and real-time anomaly detection within Digital Shot (DShot) communication protocols. Our approach addresses critical vulnerabilities in Electronic Speed Controller (ESC) interfaces by deploying four synergistic algorithms—Kalman Filter Timing Correction (KFTC), Recursive Least Squares Timing Correction (RLSTC), Fuzzy Logic Timing Correction (FLTC), and Hybrid Adaptive Timing Correction (HATC)—each optimized for specific error characteristics and attack scenarios. Through comprehensive evaluation encompassing 32,000 Monte Carlo test iterations (500 per scenario × 16 scenarios × 4 algorithms) across 16 distinct operational scenarios and PolarFire SoC Field-Programmable Gate Array (FPGA) implementation, we demonstrate exceptional performance with 88.3% attack detection rate, only 2.3% false positive incidence, and substantial vulnerability mitigation reducing Common Vulnerability Scoring System (CVSS) severity from High (7.3) to Low (3.1). Hardware validation on PolarFire SoC confirms practical viability with minimal resource overhead (2.16% Look-Up Table utilization, 16.57 mW per channel) and deterministic sub-10 microsecond execution latency. The Hybrid Adaptive Timing Correction algorithm achieves 31.01% success rate (95% CI: [30.2%, 31.8%]), representing a 26.5% improvement over baseline approaches through intelligent meta-learning-based algorithm selection. Statistical validation using Analysis of Variance confirms significant performance differences (F(3,1996) = 30.30, p < 0.001) with large effect sizes (Cohen’s d up to 4.57), where 64.6% of algorithm comparisons showed large practical significance. SMART DShot establishes a paradigmatic shift from reactive to proactive embedded security, demonstrating that sophisticated artificial intelligence can operate effectively within microsecond-scale real-time constraints while providing comprehensive protection against timing manipulation, de-synchronization, burst interference, replay attacks, coordinated multi-channel attacks, and firmware-level compromises. This work provides essential foundations for trustworthy autonomous systems across critical domains including aerospace, automotive, industrial automation, and cyber–physical infrastructure. These results conclusively demonstrate that ML-enhanced motor control systems can achieve both superior security (88.3% attack detection rate with 2.3% false positives) and operational performance (31.01% timing correction success rate, 26.5% improvement over baseline) simultaneously, establishing SMART DShot as a practical, deployable solution for next-generation autonomous systems. Full article
Show Figures

Figure 1

24 pages, 650 KiB  
Article
Investigating Users’ Acceptance of Autonomous Buses by Examining Their Willingness to Use and Willingness to Pay: The Case of the City of Trikala, Greece
by Spyros Niavis, Nikolaos Gavanas, Konstantina Anastasiadou and Paschalis Arvanitidis
Urban Sci. 2025, 9(8), 298; https://doi.org/10.3390/urbansci9080298 - 1 Aug 2025
Viewed by 283
Abstract
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in [...] Read more.
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in terms of time and cost, due to better fleet management and platooning. However, challenges also arise, mostly related to data privacy, security and cyber-security, high acquisition and infrastructure costs, accident liability, even possible increased traffic congestion and air pollution due to induced travel demand. This paper presents the results of a survey conducted among 654 residents who experienced an autonomous bus (AB) service in the city of Trikala, Greece, in order to assess their willingness to use (WTU) and willingness to pay (WTP) for ABs, through testing a range of factors based on a literature review. Results useful to policy-makers were extracted, such as that the intention to use ABs was mostly shaped by psychological factors (e.g., users’ perceptions of usefulness and safety, and trust in the service provider), while WTU seemed to be positively affected by previous experience in using ABs. In contrast, sociodemographic factors were found to have very little effect on the intention to use ABs, while apart from personal utility, users’ perceptions of how autonomous driving will improve the overall life standards in the study area also mattered. Full article
Show Figures

Figure 1

17 pages, 460 KiB  
Article
Efficient Multi-Layer Credential Revocation Scheme for 6G Using Dynamic RSA Accumulators and Blockchain
by Guangchao Wang, Yanlong Zou, Jizhe Zhou, Houxiao Cui and Ying Ju
Electronics 2025, 14(15), 3066; https://doi.org/10.3390/electronics14153066 - 31 Jul 2025
Viewed by 195
Abstract
As a new generation of mobile communication networks, 6G security faces many new security challenges. Vehicle to Everything (V2X) will be an important part of 6G. In V2X, connected and automated vehicles (CAVs) need to frequently share data with other vehicles and infrastructures. [...] Read more.
As a new generation of mobile communication networks, 6G security faces many new security challenges. Vehicle to Everything (V2X) will be an important part of 6G. In V2X, connected and automated vehicles (CAVs) need to frequently share data with other vehicles and infrastructures. Therefore, identity revocation technology in the authentication is an important way to secure CAVs and other 6G scenario applications. This paper proposes an efficient credential revocation scheme with a four-layer architecture. First, a rapid pre-filtration layer is constructed based on the cuckoo filter, responsible for the initial screening of credentials. Secondly, a directed routing layer and the precision judgement layer are designed based on the consistency hash and the dynamic RSA accumulator. By proposing the dynamic expansion of the RSA accumulator and load-balancing algorithm, a smaller and more stable revocation delay can be achieved when many users and terminal devices access 6G. Finally, a trusted storage layer is built based on the blockchain, and the key revocation parameters are uploaded to the blockchain to achieve a tamper-proof revocation mechanism and trusted data traceability. Based on this architecture, this paper also proposes a detailed identity credential revocation and verification process. Compared to existing solutions, this paper’s solution has a combined average improvement of 59.14% in the performance of the latency of the cancellation of the inspection, and the system has excellent load balancing, with a standard deviation of only 11.62, and the maximum deviation is controlled within the range of ±4%. Full article
(This article belongs to the Special Issue Connected and Autonomous Vehicles in Mixed Traffic Systems)
Show Figures

Figure 1

19 pages, 3297 KiB  
Article
Secrecy Rate Maximization via Joint Robust Beamforming and Trajectory Optimization for Mobile User in ISAC-UAV System
by Lvxin Xu, Zhi Zhang and Liuguo Yin
Drones 2025, 9(8), 536; https://doi.org/10.3390/drones9080536 - 30 Jul 2025
Viewed by 154
Abstract
Unmanned aerial vehicles (UAVs) have emerged as a promising platform for integrated sensing and communication (ISAC) due to their mobility and deployment flexibility. By adaptively adjusting their flight trajectories, UAVs can maintain favorable line-of-sight (LoS) communication links and sensing angles, thus enhancing overall [...] Read more.
Unmanned aerial vehicles (UAVs) have emerged as a promising platform for integrated sensing and communication (ISAC) due to their mobility and deployment flexibility. By adaptively adjusting their flight trajectories, UAVs can maintain favorable line-of-sight (LoS) communication links and sensing angles, thus enhancing overall system performance in dynamic and complex environments. However, ensuring physical layer security (PLS) in such UAV-assisted ISAC systems remains a significant challenge, particularly in the presence of mobile users and potential eavesdroppers. This manuscript proposes a joint optimization framework that simultaneously designs robust transmit beamforming and UAV trajectories to secure downlink communication for multiple ground users. At each time slot, the UAV predicts user positions and maximizes the secrecy sum-rate, subject to constraints on total transmit power, multi-target sensing quality, and UAV mobility. To tackle this non-convex problem, we develop an efficient optimization algorithm based on successive convex approximation (SCA) and constrained optimization by linear approximations (COBYLA). Numerical simulations validate that the proposed framework effectively enhances the secrecy performance while maintaining high-quality sensing, achieving near-optimal performance under realistic system constraints. Full article
Show Figures

Figure 1

21 pages, 2255 KiB  
Article
Cloud-Based Architecture for Hydrophone Data Acquisition and Processing of Surface and Underwater Vehicle Detection
by Francisco Pérez Carrasco, Anaida Fernández García, Alberto García, Verónica Ruiz Bejerano, Álvaro Gutiérrez and Alberto Belmonte-Hernández
J. Mar. Sci. Eng. 2025, 13(8), 1455; https://doi.org/10.3390/jmse13081455 - 30 Jul 2025
Viewed by 273
Abstract
This paper presents a cloud-based architecture for the acquisition, transmission, and processing of acoustic data from hydrophone arrays, designed to enable the detection and monitoring of both surface and underwater vehicles. The proposed system offers a modular and scalable cloud infrastructure that supports [...] Read more.
This paper presents a cloud-based architecture for the acquisition, transmission, and processing of acoustic data from hydrophone arrays, designed to enable the detection and monitoring of both surface and underwater vehicles. The proposed system offers a modular and scalable cloud infrastructure that supports real-time and distributed processing of hydrophone data collected in diverse aquatic environments. Acoustic signals captured by heterogeneous hydrophones—featuring varying sensitivity and bandwidth—are streamed to the cloud, where several machine learning algorithms can be deployed to extract distinguishing acoustic signatures from vessel engines and propellers in interaction with water. The architecture leverages cloud-based services for data ingestion, processing, and storage, facilitating robust vehicle detection and localization through propagation modeling and multi-array geometric configurations. Experimental validation demonstrates the system’s effectiveness in handling high-volume acoustic data streams while maintaining low-latency processing. The proposed approach highlights the potential of cloud technologies to deliver scalable, resilient, and adaptive acoustic sensing platforms for applications in maritime traffic monitoring, harbor security, and environmental surveillance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

41 pages, 3023 KiB  
Article
Enhanced Scalability and Security in Blockchain-Based Transportation Systems for Mass Gatherings
by Ahmad Mutahhar, Tariq J. S. Khanzada and Muhammad Farrukh Shahid
Information 2025, 16(8), 641; https://doi.org/10.3390/info16080641 - 28 Jul 2025
Viewed by 409
Abstract
Large-scale events, such as festivals and public gatherings, pose serious problems in terms of traffic congestion, slow transaction processing, and security risks to transportation planning. This study proposes a blockchain-based solution for enhancing the efficiency and security of intelligent transport systems (ITS) by [...] Read more.
Large-scale events, such as festivals and public gatherings, pose serious problems in terms of traffic congestion, slow transaction processing, and security risks to transportation planning. This study proposes a blockchain-based solution for enhancing the efficiency and security of intelligent transport systems (ITS) by utilizing state channels and rollups. Throughput is optimized, enabling transaction speeds of 800 to 3500 transactions per second (TPS) and delays of 5 to 1.5 s. Prevent data tampering, strengthen security, and enhance data integrity from 89% to 99.999%, as well as encryption efficacy from 90% to 98%. Furthermore, our system reduces congestion, optimizes vehicle movement, and shares real-time, secure data with stakeholders. Practical applications include fast and safe road toll payments, faster public transit ticketing, improved emergency response coordination, and enhanced urban mobility. The decentralized blockchain helps maintain trust among users, transportation authorities, and event organizers. Our approach extends beyond large-scale events and proposes a path toward ubiquitous, Artificial Intelligence (AI)-driven decision-making in a broader urban transit network, informing future operations in dynamic traffic optimization. This study demonstrates the potential of blockchain to create more intelligent, more secure, and scalable transportation systems, which will help reduce urban mobility inefficiencies and contribute to the development of resilient smart cities. Full article
Show Figures

Figure 1

17 pages, 274 KiB  
Article
“I Shouldn’t Have to Drive to the Suburbs”: Grocery Store Access, Transportation, and Food Security in Detroit During the COVID-19 Pandemic
by Aeneas O. Koosis, Alex B. Hill, Megan Whaley and Alyssa W. Beavers
Nutrients 2025, 17(15), 2441; https://doi.org/10.3390/nu17152441 - 26 Jul 2025
Viewed by 300
Abstract
Objective: To explore the relationship between type of grocery store used (chain vs. independent), transportation access, food insecurity, and fruit and vegetable intake in Detroit, Michigan, USA, during the COVID-19 pandemic. Design: A cross-sectional online survey was conducted from December 2021 to May [...] Read more.
Objective: To explore the relationship between type of grocery store used (chain vs. independent), transportation access, food insecurity, and fruit and vegetable intake in Detroit, Michigan, USA, during the COVID-19 pandemic. Design: A cross-sectional online survey was conducted from December 2021 to May 2022. Setting: Detroit, Michigan. Participants: 656 Detroit residents aged 18 and older. Results: Bivariate analyses showed that chain grocery store shoppers reported significantly greater fruit and vegetable intake (2.42 vs. 2.14 times/day for independent grocery store shoppers, p < 0.001) and lower rates of food insecurity compared to independent store shoppers (45.9% vs. 65.3% for independent grocery store shoppers, p < 0.001). Fewer independent store shoppers used their own vehicle (52.9% vs. 76.2% for chain store shoppers, p < 0.001). After adjusting for socioeconomic and demographic variables transportation access was strongly associated with increased odds of shopping at chain stores (OR = 1.89, 95% CI [1.21,2.95], p = 0.005) but food insecurity was no longer associated with grocery store type. Shopping at chain grocery stores was associated with higher fruit and vegetable intake after adjusting for covariates (1.18 times more per day, p = 0.042). Qualitative responses highlighted systemic barriers, including poor food quality, high costs, and limited transportation options, exacerbating food access inequities. Conclusions: These disparities underscore the need for targeted interventions to improve transportation options and support food security in vulnerable populations, particularly in urban areas like Detroit. Addressing these structural challenges is essential for reducing food insecurity and promoting equitable access to nutritious foods. Full article
(This article belongs to the Section Nutrition and Public Health)
22 pages, 3082 KiB  
Article
A Lightweight Intrusion Detection System with Dynamic Feature Fusion Federated Learning for Vehicular Network Security
by Junjun Li, Yanyan Ma, Jiahui Bai, Congming Chen, Tingting Xu and Chi Ding
Sensors 2025, 25(15), 4622; https://doi.org/10.3390/s25154622 - 25 Jul 2025
Viewed by 326
Abstract
The rapid integration of complex sensors and electronic control units (ECUs) in autonomous vehicles significantly increases cybersecurity risks in vehicular networks. Although the Controller Area Network (CAN) is efficient, it lacks inherent security mechanisms and is vulnerable to various network attacks. The traditional [...] Read more.
The rapid integration of complex sensors and electronic control units (ECUs) in autonomous vehicles significantly increases cybersecurity risks in vehicular networks. Although the Controller Area Network (CAN) is efficient, it lacks inherent security mechanisms and is vulnerable to various network attacks. The traditional Intrusion Detection System (IDS) makes it difficult to effectively deal with the dynamics and complexity of emerging threats. To solve these problems, a lightweight vehicular network intrusion detection framework based on Dynamic Feature Fusion Federated Learning (DFF-FL) is proposed. The proposed framework employs a two-stream architecture, including a transformer-augmented autoencoder for abstract feature extraction and a lightweight CNN-LSTM–Attention model for preserving temporal and local patterns. Compared with the traditional theoretical framework of the federated learning, DFF-FL first dynamically fuses the deep feature representation of each node through the transformer attention module to realize the fine-grained cross-node feature interaction in a heterogeneous data environment, thereby eliminating the performance degradation caused by the difference in feature distribution. Secondly, based on the final loss LAEX,X^ index of each node, an adaptive weight adjustment mechanism is used to make the nodes with excellent performance dominate the global model update, which significantly improves robustness against complex attacks. Experimental evaluation on the CAN-Hacking dataset shows that the proposed intrusion detection system achieves more than 99% F1 score with only 1.11 MB of memory and 81,863 trainable parameters, while maintaining low computational overheads and ensuring data privacy, which is very suitable for edge device deployment. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

19 pages, 1307 KiB  
Article
Three-Dimensional Non-Stationary MIMO Channel Modeling for UAV-Based Terahertz Wireless Communication Systems
by Kai Zhang, Yongjun Li, Xiang Wang, Zhaohui Yang, Fenglei Zhang, Ke Wang, Zhe Zhao and Yun Wang
Entropy 2025, 27(8), 788; https://doi.org/10.3390/e27080788 - 25 Jul 2025
Viewed by 194
Abstract
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between [...] Read more.
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between the UAVs in the THz band. The proposed channel model considers not only the 3D scattering and reflection scenarios (i.e., reflection and scattering fading) but also the atmospheric molecule absorption attenuation, arbitrary 3D trajectory, and antenna arrays of both terminals. In addition, the statistical properties of the proposed GSCM (i.e., the time auto-correlation function (T-ACF), space cross-correlation function (S-CCF), and Doppler power spectrum density (DPSD)) are derived and analyzed under several important UAV-related parameters and different carrier frequencies, including millimeter wave (mmWave) and THz bands. Finally, the good agreement between the simulated results and corresponding theoretical ones demonstrates the correctness of the proposed GSCM, and some useful observations are provided for the system design and performance evaluation of UAV-based air-to-air (A2A) THz-MIMO wireless communications. Full article
Show Figures

Figure 1

39 pages, 13464 KiB  
Article
Micro-Doppler Signal Features of Idling Vehicle Vibrations: Dependence on Gear Engagements and Occupancy
by Ram M. Narayanan, Benjamin D. Simone, Daniel K. Watson, Karl M. Reichard and Kyle A. Gallagher
Signals 2025, 6(3), 35; https://doi.org/10.3390/signals6030035 - 24 Jul 2025
Viewed by 364
Abstract
This study investigates the use of a custom-built 10 GHz continuous wave micro-Doppler radar system to analyze external vibrations of idling vehicles under various conditions. Scenarios included different gear engagements with one occupant and parked gear with up to four occupants. Motivated by [...] Read more.
This study investigates the use of a custom-built 10 GHz continuous wave micro-Doppler radar system to analyze external vibrations of idling vehicles under various conditions. Scenarios included different gear engagements with one occupant and parked gear with up to four occupants. Motivated by security concerns, such as the threat posed by idling vehicles with multiple occupants, the research explores how micro-Doppler signatures can indicate vehicle readiness to move. Experiments focused on a mid-size SUV, with similar trends seen in other vehicles. Radar data were compared to in situ accelerometer measurements, confirming that the radar system can detect subtle frequency changes, especially during gear shifts. The system’s sensitivity enables it to distinguish variations tied to gear state and passenger load. Extracted features like frequency and magnitude show strong potential for use in machine learning models, offering a non-invasive, remote sensing method for reliably identifying vehicle operational states and occupancy levels in security or monitoring contexts. Spectrogram and PSD analyses reveal consistent tonal vibrations around 30 Hz, tied to engine activity, with harmonics at 60 Hz and 90 Hz. Gear shifts produce impulse signatures primarily below 20 Hz, and transient data show distinct peaks at 50, 80, and 100 Hz. Key features at 23 Hz and 45 Hz effectively indicate engine and gear states. Radar and accelerometer data align well, supporting the potential for remote sensing and machine learning-based classification. Full article
Show Figures

Graphical abstract

26 pages, 1579 KiB  
Article
Forecasting Infrastructure Needs, Environmental Impacts, and Dynamic Pricing for Electric Vehicle Charging
by Osama Jabr, Ferheen Ayaz, Maziar Nekovee and Nagham Saeed
World Electr. Veh. J. 2025, 16(8), 410; https://doi.org/10.3390/wevj16080410 - 22 Jul 2025
Viewed by 279
Abstract
In recent years, carbon dioxide (CO2) emissions have increased at the fastest rates ever recorded. This is a trend that contradicts global efforts to stabilise greenhouse gas (GHG) concentrations and prevent long-term climate change. Over 90% of global transport relies on [...] Read more.
In recent years, carbon dioxide (CO2) emissions have increased at the fastest rates ever recorded. This is a trend that contradicts global efforts to stabilise greenhouse gas (GHG) concentrations and prevent long-term climate change. Over 90% of global transport relies on oil-based fuels. The continued use of diesel and petrol raises concerns related to oil costs, supply security, GHG emissions, and the release of air pollutants and volatile organic compounds. This study explored electric vehicle (EV) charging networks by assessing environmental impacts through GHG and petroleum savings, developing dynamic pricing strategies, and forecasting infrastructure needs. A substantial dataset of over 259,000 EV charging records from Palo Alto, California, was statistically analysed. Machine learning models were applied to generate insights that support sustainable and economically viable electric transport planning for policymakers, urban planners, and other stakeholders. Findings indicate that GHG and gasoline savings are directly proportional to energy consumed, with conversion rates of 0.42 kg CO2 and 0.125 gallons per kilowatt-hour (kWh), respectively. Additionally, dynamic pricing strategies such as a 20% discount on underutilised days and a 15% surcharge during peak hours are proposed to optimise charging behaviour and improve station efficiency. Full article
Show Figures

Figure 1

25 pages, 1047 KiB  
Article
Integrated Blockchain and Federated Learning for Robust Security in Internet of Vehicles Networks
by Zhikai He, Rui Xu, Binyu Wang, Qisong Meng, Qiang Tang, Li Shen, Zhen Tian and Jianyu Duan
Symmetry 2025, 17(7), 1168; https://doi.org/10.3390/sym17071168 - 21 Jul 2025
Viewed by 352
Abstract
The Internet of Vehicles (IoV) operates in an environment characterized by asymmetric security threats, where centralized vulnerabilities create a critical imbalance that can be disproportionately exploited by attackers. This study addresses this imbalance by proposing a symmetrical security framework that integrates Blockchain and [...] Read more.
The Internet of Vehicles (IoV) operates in an environment characterized by asymmetric security threats, where centralized vulnerabilities create a critical imbalance that can be disproportionately exploited by attackers. This study addresses this imbalance by proposing a symmetrical security framework that integrates Blockchain and Federated Learning (FL) to restore equilibrium in the Vehicle–Road–Cloud ecosystem. The evolution toward sixth-generation (6G) technologies amplifies both the potential of vehicle-to-everything (V2X) communications and its inherent security risks. The proposed framework achieves a delicate balance between robust security and operational efficiency. By leveraging blockchain’s symmetrical and decentralized distribution of trust, the framework ensures data and model integrity. Concurrently, the privacy-preserving approach of FL balances the need for collaborative intelligence with the imperative of safeguarding sensitive vehicle data. A novel Cloud Proxy Re-Encryption Offloading (CPRE-IoV) algorithm is introduced to facilitate efficient model updates. The architecture employs a partitioned blockchain and a smart contract-driven FL pipeline to symmetrically neutralize threats from malicious nodes. Finally, extensive simulations validate the framework’s effectiveness in establishing a resilient and symmetrically secure foundation for next-generation IoV networks. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

19 pages, 626 KiB  
Article
A Strong Anonymous Privacy Protection Authentication Scheme Based on Certificateless IOVs
by Xiaohu He, Shan Gao, Hua Wang and Chuyan Wang
Symmetry 2025, 17(7), 1163; https://doi.org/10.3390/sym17071163 - 21 Jul 2025
Viewed by 170
Abstract
The Internet of Vehicles (IoVs) uses vehicles as the main carrier to communicate with other entities, promoting efficient transmission and sharing of traffic data. Using real identities for communication may leak private data, so pseudonyms are commonly used as identity credentials. However, existing [...] Read more.
The Internet of Vehicles (IoVs) uses vehicles as the main carrier to communicate with other entities, promoting efficient transmission and sharing of traffic data. Using real identities for communication may leak private data, so pseudonyms are commonly used as identity credentials. However, existing anonymous authentication schemes have limitations, including large vehicle storage demands, information redundancy, time-dependent pseudonym updates, and public–private key updates coupled with pseudonym changes. To address these issues, we propose a certificateless strong anonymous privacy protection authentication scheme that allows vehicles to autonomously generate and dynamically update pseudonyms. Additionally, the trusted authority transmits each entity’s partial private key via a session key, eliminating reliance on secure channels during transmission. Based on the elliptic curve discrete logarithm problem, the scheme’s existential unforgeability is proven in the random oracle model. Performance analysis shows that it outperforms existing schemes in computational cost and communication overhead, with the total computational cost reduced by 70.29–91.18% and communication overhead reduced by 27.75–82.55%, making it more suitable for privacy-sensitive and delay-critical IoV environments. Full article
(This article belongs to the Special Issue Applications Based on Symmetry in Applied Cryptography)
Show Figures

Figure 1

36 pages, 8047 KiB  
Article
Fed-DTB: A Dynamic Trust-Based Framework for Secure and Efficient Federated Learning in IoV Networks: Securing V2V/V2I Communication
by Ahmed Alruwaili, Sardar Islam and Iqbal Gondal
J. Cybersecur. Priv. 2025, 5(3), 48; https://doi.org/10.3390/jcp5030048 - 19 Jul 2025
Viewed by 475
Abstract
The Internet of Vehicles (IoV) presents a vast opportunity for optimised traffic flow, road safety, and enhanced usage experience with the influence of Federated Learning (FL). However, the distributed nature of IoV networks creates certain inherent problems regarding data privacy, security from adversarial [...] Read more.
The Internet of Vehicles (IoV) presents a vast opportunity for optimised traffic flow, road safety, and enhanced usage experience with the influence of Federated Learning (FL). However, the distributed nature of IoV networks creates certain inherent problems regarding data privacy, security from adversarial attacks, and the handling of available resources. This paper introduces Fed-DTB, a new dynamic trust-based framework for FL that aims to overcome these challenges in the context of IoV. Fed-DTB integrates the adaptive trust evaluation that is capable of quickly identifying and excluding malicious clients to maintain the authenticity of the learning process. A performance comparison with previous approaches is shown, where the Fed-DTB method improves accuracy in the first two training rounds and decreases the per-round training time. The Fed-DTB is robust to non-IID data distributions and outperforms all other state-of-the-art approaches regarding the final accuracy (87–88%), convergence rate, and adversary detection (99.86% accuracy). The key contributions include (1) a multi-factor trust evaluation mechanism with seven contextual factors, (2) correlation-based adaptive weighting that dynamically prioritises trust factors based on vehicular conditions, and (3) an optimisation-based client selection strategy that maximises collaborative reliability. This work opens up opportunities for more accurate, secure, and private collaborative learning in future intelligent transportation systems with the help of federated learning while overcoming the conventional trade-off of security vs. efficiency. Full article
Show Figures

Figure 1

Back to TopTop