Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,118)

Search Parameters:
Keywords = vegetation line

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2288 KB  
Article
On Farm Camelina Performance on Salt-Affected Mediterranean Coastal Soils: Evidence from Northeastern Italy
by Rossella Mastroberardino, Federica Zanetti, Maria Giovanna Sessa, Alexandro Ferreira, Andrea Parenti, Federico Ferioli and Andrea Monti
Agronomy 2026, 16(3), 340; https://doi.org/10.3390/agronomy16030340 - 29 Jan 2026
Viewed by 89
Abstract
Salinity is an emerging constraint for Mediterranean coastal agriculture, where shallow groundwater, seawater intrusion, and summer evapo-concentration generate relevant intra-seasonal variability in soil electrical conductivity. Camelina [Camelina sativa (L.) Crantz] has been proposed as a diversification oilseed for constrained environments, but its [...] Read more.
Salinity is an emerging constraint for Mediterranean coastal agriculture, where shallow groundwater, seawater intrusion, and summer evapo-concentration generate relevant intra-seasonal variability in soil electrical conductivity. Camelina [Camelina sativa (L.) Crantz] has been proposed as a diversification oilseed for constrained environments, but its field performance under realistic, dynamic salinity in Mediterranean soils remains unexplored. This two season on farm study compared three commercial camelina lines at an inland non-saline site and a coastal saline–sodic site in northeastern Italy, combining agronomic measurements with phenology aligned monitoring of soil saturated paste electrical conductivity (ECe). At the saline site, ECe increased from 1.8 dS m−1 at the vegetative stage to 6.2 dS m−1 at seed filling, while camelina completed its cycle earlier than at the inland site. Despite similar aboveground and root biomass yield at flowering across lines, performance diverged during the reproductive phase. Two lines maintained similar seed yields (1.30 Mg ha−1) at the coastal site compared with the inland site, whereas one line declined from 1.45 Mg ha−1 to 0.40 Mg ha−1. Differences among lines in seed yield under salinity were accompanied by contrasting responses in seed oil composition. Oil yield at the saline site was more strongly associated with the increase in ECe from flowering to seed filling than with absolute ECe at seed filling. These results provide the first field-based evidence of line-specific salinity responses in camelina and highlight its potential to diversify moderately salt-affected Mediterranean coastal cropping systems, while emphasizing the need to account for temporal salinity dynamics in genotype selection and crop planning. Full article
(This article belongs to the Special Issue Crop Productivity and Management in Agricultural Systems)
26 pages, 4762 KB  
Article
Morphology, Heterosis, and Fertility of Novel CMS-Based Solanum melongena × S. aethiopicum Hybrids
by Konstantinos Krommydas, Athanasios Mavromatis, Fotios Bletsos and Demetrios Roupakias
Agronomy 2026, 16(3), 306; https://doi.org/10.3390/agronomy16030306 - 26 Jan 2026
Viewed by 178
Abstract
Although cytoplasmic male sterility (CMS) is well established in eggplant, CMS-based interspecific hybrids with allied species have not yet been reported or studied. In this study, five previously developed CMS-based interspecific F1 hybrids between eggplant and Solanum aethiopicum Group Aculeatum (=S. [...] Read more.
Although cytoplasmic male sterility (CMS) is well established in eggplant, CMS-based interspecific hybrids with allied species have not yet been reported or studied. In this study, five previously developed CMS-based interspecific F1 hybrids between eggplant and Solanum aethiopicum Group Aculeatum (=S. integrifolium) and Group Gilo (=S. gilo), together with their parental lines, were morphologically evaluated for 67 seedling, vegetative, floral, and fruit traits, and their heterosis for vegetative growth was studied. Male fertility was assessed based on anther morphology and pollen viability, while female fertility was evaluated through backcrosses to both parents. The hybrids exhibited predominantly intermediate phenotypes and clustered distinctly from parental lines as confirmed by principal component analysis. Remarkable heterosis was observed for most growth-related traits, indicating favorable nuclear–cytoplasmic interactions despite the use of CMS eggplant lines as maternal parents. All hybrids showed complete male sterility, characterized by non-viable pollen and pronounced anther homeotic alterations, the latter indicating CMS-related effects on male fertility. Female fertility was severely reduced, likely due to meiotic irregularities, as evidenced by the failure of most attempted backcrosses. However, successful recovery of BC1 progeny after backcrossing one CMS-based F1 hybrid to S. gilo demonstrates partial reproductive compatibility and provides a genetic bridge for CMS introgression into S. gilo. These results indicate that CMS systems are suitable for eggplant interspecific crosses aimed at vigorous rootstock production and CMS cytoplasm introgression into allied germplasm. Full article
Show Figures

Figure 1

21 pages, 11722 KB  
Article
Simultaneous Hyperspectral and Radar Satellite Measurements of Soil Moisture for Hydrogeological Risk Monitoring
by Kalliopi Karadima, Andrea Massi, Alessandro Patacchini, Federica Verde, Claudia Masciulli, Carlo Esposito, Paolo Mazzanti, Valeria Giliberti and Michele Ortolani
Remote Sens. 2026, 18(3), 393; https://doi.org/10.3390/rs18030393 - 24 Jan 2026
Viewed by 307
Abstract
Emerging landslides and severe floods highlight the urgent need to analyse and support predictive models and early warning systems. Soil moisture is a crucial parameter and it can now be determined from space with a resolution of a few tens of meters, potentially [...] Read more.
Emerging landslides and severe floods highlight the urgent need to analyse and support predictive models and early warning systems. Soil moisture is a crucial parameter and it can now be determined from space with a resolution of a few tens of meters, potentially leading to the continuous global monitoring of landslide risk. We address this issue by determining the volumetric water content (VWC) of a testbed in Southern Italy (bare soil with significant flood and landslide hazard) through the comparison of two different satellite observations on the same day. In the first observation (Sentinel-1 mission of the European Space Agency, C-band Synthetic Aperture Radar (SAR)), the back-scattered radar signal is used to determine the VWC from the dielectric constant in the microwave range, using a time-series approach to calibrate the algorithm. In the second observation (hyperspectral PRISMA mission of the Italian Space Agency), the short-wave infrared (SWIR) reflectance spectra are used to calculate the VWC from the spectral weight of a vibrational absorption line of liquid water (wavelengths 1800–1950 nm). As the main result, we obtained a Pearson’s correlation coefficient of 0.4 between the VWC values measured with the two techniques and a separate ground-truth confirmation of absolute VWC values in the range of 0.10–0.30 within ±0.05. This overlap validates that both SAR and hyperspectral data can be well calibrated and mapped with 30 m ground resolution, given the absence of artifacts or anomalies in this particular testbed (e.g., vegetation canopy or cloud presence). If hyperspectral data in the SWIR range become more broadly available in the future, our systematic procedure to synchronise these two technologies in both space and time can be further adapted to cross-validate the global high-resolution soil moisture dataset. Ultimately, multi-mission data integration could lead to quasi-real-time hydrogeological risk monitoring from space. Full article
(This article belongs to the Special Issue Remote Sensing in Geomatics (Second Edition))
Show Figures

Figure 1

45 pages, 17559 KB  
Article
The Use of GIS Techniques for Land Use in a South Carpathian River Basin—Case Study: Pesceana River Basin, Romania
by Daniela Mihaela Măceșeanu, Remus Crețan, Ionuț-Adrian Drăguleasa, Amalia Niță and Marius Făgăraș
Sustainability 2026, 18(2), 1134; https://doi.org/10.3390/su18021134 - 22 Jan 2026
Viewed by 228
Abstract
This study is essential for medium- and long-term land-use management, as land-use patterns directly influence local economic and social development. Geographic Information System (GIS) techniques are fundamental tools for analyzing a wide range of geomorphological processes, including relief fragmentation density, relief energy, soil [...] Read more.
This study is essential for medium- and long-term land-use management, as land-use patterns directly influence local economic and social development. Geographic Information System (GIS) techniques are fundamental tools for analyzing a wide range of geomorphological processes, including relief fragmentation density, relief energy, soil texture, slope gradient, and slope orientation. The present research focuses on the Pesceana river basin in the Southern Carpathians, Romania. It addresses three main objectives: (1) to analyze land-use dynamics derived from CORINE Land Cover (CLC) data between 1990 and 2018, along with the long-term distribution of the Normalized Difference Vegetation Index (NDVI) for the period 2000–2025; (2) to evaluate the basin’s natural potential byintegrating topographic data (contour lines and profiles) with relief fragmentation density, relief energy, vegetation cover, soil texture, slope gradient, aspect, the Stream Power Index (SPI), and the Topographic Wetness Index (TWI); and (3) to assess the spatial distribution of habitat types, characteristic plant associations, and soil properties obtained through field investigations. For the first two research objectives, ArcGIS v. 10.7.2 served as the main tool for geospatial processing. For the third, field data were essential for geolocating soil samples and defining vegetation types across the entire 247 km2 area. The spatiotemporal analysis from 1990 to 2018 reveals a landscape in which deciduous forests clearly dominate; they expanded from an initial area of 80 km2 in 1990 to over 90 km2 in 2012–2018. This increase, together with agricultural expansion, is reflected in the NDVI values after 2000, which show a sharp increase in vegetation density. Interestingly, other categories—such as water bodies, natural grasslands, and industrial areas—barely changed, each consistently representing less than 1 km2 throughout the study period. These findings emphasize the importance of land-use/land-cover (LULC) data within the applied GIS model, which enhances the spatial characterization of geomorphological processes—such as vegetation distribution, soil texture, slope morphology, and relief fragmentation density. This integration allows a realistic assessment of the physical–geographic, landscape, and pedological conditions of the river basin. Full article
(This article belongs to the Special Issue Agro-Ecosystem Approaches to Sustainable Land Use and Food Security)
Show Figures

Figure 1

20 pages, 1448 KB  
Article
Exogenous Melatonin Modulates Drought Response and Recovery in Wheat with Contrasting Grain Colour
by Martin Zelený, Kamil Kraus, Tomáš Müller and Helena Hniličková
Agronomy 2026, 16(2), 237; https://doi.org/10.3390/agronomy16020237 - 20 Jan 2026
Viewed by 135
Abstract
Melatonin is recognised as a multifunctional regulatory molecule that enhances plant tolerance to abiotic stresses, but its effectiveness is often strongly genotype-dependent. This study aimed to elucidate how exogenous melatonin (200 µM) modulates the physiological and biochemical responses of wheat during drought and [...] Read more.
Melatonin is recognised as a multifunctional regulatory molecule that enhances plant tolerance to abiotic stresses, but its effectiveness is often strongly genotype-dependent. This study aimed to elucidate how exogenous melatonin (200 µM) modulates the physiological and biochemical responses of wheat during drought and subsequent recovery in two genotypes with contrasting grain pigmentation: the standard cv. Bohemia (red grain) and an experimental purple-pericarp (PP) line. Plants were exposed to drought at the early vegetative stage (BBCH 15), and gas exchange, leaf water potential, and biochemical markers (proline, malondialdehyde, phenolics, and flavonoids) were assessed during drought and after rehydration. In cv. Bohemia, water deficit led to a pronounced decrease in CO2 assimilation, stomatal conductance, and leaf water potential, accompanied by strong increases in proline (Pro) and malondialdehyde (MDA). Melatonin application in this genotype markedly reduced the accumulation of Pro and MDA and accelerated the recovery of gas exchange, indicating a significant protective effect. The lower Pro levels in melatonin-treated Bohemia plants suggest that melatonin mitigated the perceived stress intensity, thereby reducing the physiological demand for osmotic adjustment. In contrast, the PP line exhibited higher inherent stability of the photosynthetic apparatus and more moderate biochemical shifts; its recovery was almost complete and independent of melatonin. Overall, these results indicate that the functional benefit of exogenous melatonin is greater in genotypes with a lower intrinsic stress-buffering capacity. This study highlights the importance of considering constitutive genotype traits and the recovery phase when using physiological regulators to improve wheat drought resilience. Full article
Show Figures

Figure 1

15 pages, 2079 KB  
Article
Influence of Forest Cover and Human Activity on the Distribution of Sites Where Jaguars (Panthera onca) Feed on Sea Turtles in Santa Rosa National Park, Costa Rica
by Jóse M. Chopin-Rodríguez, Víctor H. Montalvo, Kevin J. Lloyd, Carolina Sáenz-Bolaños, Brayan Morera, Juan C. Cruz-Díaz, Eduardo Carrillo and Todd K. Fuller
Wild 2026, 3(1), 5; https://doi.org/10.3390/wild3010005 - 19 Jan 2026
Viewed by 127
Abstract
Predation of sea turtles by jaguars (Panthera onca) in the Santa Rosa National Park (SRNP) has been well documented over the past decade. However, the factors that influence jaguar feeding behavior, including environmental factors or characteristics of the beaches and the [...] Read more.
Predation of sea turtles by jaguars (Panthera onca) in the Santa Rosa National Park (SRNP) has been well documented over the past decade. However, the factors that influence jaguar feeding behavior, including environmental factors or characteristics of the beaches and the adjacent forest, are poorly known. This study aimed to identify the relationship between vegetation density and human activity on the distribution of feeding sites of jaguar on sea turtles at nesting beaches in Santa Rosa National Park, Costa Rica. We sampled three beaches (Naranjo, Nancite, and Colorada), where we identified and registered sea turtle carcasses preyed on by jaguars between June and November 2019. Through systematic searches of the forest adjacent to the beach, we documented the species, geographic coordinates, carcass length and width, vegetation cover at the carcass site, and the average vegetation coverage corresponding to the date and beach of each sea turtle carcass. In total, we recorded 338 sea turtle carcasses preyed on by jaguars, 156 at Naranjo beach, 103 at Nancite beach, and 89 at Colorada beach. The beach with the highest average density of carcasses was Colorada (8.7 (SD = 5.42)/ha), followed by Nancite (6.06 (SD = 5.58)/ha) and Naranjo (2.64 (SD = 1.79)/ha). The dragging distance from the beach line to sea turtle carcasses was best explained by the interaction of nesting beach and canopy cover at the carcass. Our canopy cover results may reflect that jaguars select sites that better hide their prey, in the same way that green turtles (Chelonia mydas) usually prefer areas with good coverage to nest in, contrasting to the nesting behavior of olive ridleys (Lepidochelys olivacea). On beaches, higher concentrations were observed where there was less human presence and this may reflect both turtle nesting and jaguar predation activity. Full article
Show Figures

Figure 1

24 pages, 1911 KB  
Article
Non-Destructive Detection of Heat Stress in Tobacco Plants Using Visible-Near-Infrared Spectroscopy and Aquaphotomics Approach
by Daniela Moyankova, Petya Stoykova, Antoniya Petrova, Nikolai K. Christov, Petya Veleva, Gergana Savova and Stefka Atanassova
AgriEngineering 2026, 8(1), 33; https://doi.org/10.3390/agriengineering8010033 - 16 Jan 2026
Viewed by 248
Abstract
Non-destructive estimation of high-temperature stress effects on tobacco plants is crucial for both scientific research and practical applications. Normalized difference vegetation index (NDVI), chlorophyll index, and spectra in the range of 900–1700 nm of Burley, Oriental, and Virginia tobacco plants under control and [...] Read more.
Non-destructive estimation of high-temperature stress effects on tobacco plants is crucial for both scientific research and practical applications. Normalized difference vegetation index (NDVI), chlorophyll index, and spectra in the range of 900–1700 nm of Burley, Oriental, and Virginia tobacco plants under control and high-temperature stress conditions were measured using portable instruments. NDVI and chlorophyll index measurements indicate that young leaves of all tobacco types are tolerant to high temperatures. In contrast, the older leaves (the fifth leaf) showed increased sensitivity to heat stress. The chlorophyll content of these leaves decreased by 40 to 60% after five days of stress, and by the seventh day, the reduction reached 80% or more in all plants. The vegetative index of the fifth leaf also decreased on the seventh day of stress in all tobacco types. Differences in near-infrared spectra were observed between control, stressed, and recovered plants, as well as among different stress days, and among tobacco lines. The most significant differences were in the 1300–1500 nm range. The first characterization of heat-induced changes in the molecular structure of water in tobacco leaves using an aquaphotomics approach was conducted. Models for determining days of high-temperature treatment based on near-infrared spectra achieved a standard error of cross-validation (SECV) from 0.49 to 0.62 days. The total accuracy of the Soft Independent Modeling of Class Analogy (SIMCA) classification models of control, stressed, and recovered plants ranged from 91.0 to 93.6% using leaves’ spectra of the first five days of high-temperature stress, and from 90.7 to 97.7% using spectra of only the fifth leaf. Similar accuracy was obtained using Partial Least Squares–Discriminant Analysis (PLS-DA). Near-infrared spectroscopy and aquaphotomics can be used as a fast and non-destructive approach for early detection of stress and additional tools for investigating high-temperature tolerance in tobacco plants. Full article
Show Figures

Figure 1

20 pages, 5519 KB  
Article
BjuFKF1_1, a Plant-Specific LOV Blue Light Receptor Gene, Positively Regulates Flowering in Brassica juncea
by Jian Gao, Keran Ren, Chengrun Wu, Qing Wang, Daiyu Huang and Jing Zeng
Plants 2026, 15(2), 270; https://doi.org/10.3390/plants15020270 - 15 Jan 2026
Viewed by 275
Abstract
Stem mustard (Brassica juncea var. tumida Tsen et Lee) is an important economic vegetable in China. Premature bolting induced by temperature fluctuations has become a major cultivation constraint. Photoreceptors (PHRs) serve as critical photosensor proteins that interpret light signals and regulate physiological [...] Read more.
Stem mustard (Brassica juncea var. tumida Tsen et Lee) is an important economic vegetable in China. Premature bolting induced by temperature fluctuations has become a major cultivation constraint. Photoreceptors (PHRs) serve as critical photosensor proteins that interpret light signals and regulate physiological responses in plants. In this study, five core PHR families, namely F-box-containing flavin binding proteins (ZTL/FKF1/LKP2), phytochrome (PHY), cryptochrome (CRY), phototropin (PHOT) and UV RESISTANCE LOCUS 8 (UVR8) were identified in Brassica species. RNA-seq analysis revealed their expression patterns during organogenesis in B. juncea. Seven candidate PHRs were validated by qRT-PCR in B. juncea early-bolting (‘YA-1’) and late-bolting (‘ZT-1’) cultivars. Agrobacterium-mediated BjuFKF1_1 overexpression (OE) lines resulted in significantly earlier flowering under field conditions. Histochemical GUS staining indicated that BjuFKF1_1 was expressed in seedlings, leaves, flower buds and siliques. Transcript analysis revealed that the expression level of BjuFKF1_1 was up-regulated in all tissues at both the vegetative and reproductive stages, whereas the expression of BjuFKF1_1 interacting protein-encoding genes were down-regulated in flowers. Under blue light, genes encoding interacting proteins (BjuCOL5, BjuSKP1, BjuCOL3, BjuAP2, BjuAP2-1 and BjuLKP2) were up-regulated in flower buds, whereas BjuCOL and BjuPP2C52 were down-regulated in flowers. Developmental stage analysis revealed the up-regulation of five (BjuAP2, BjuCOL3, BjuCOL5, BjuAP2-1 and BjuLKP2) and four (BjuCOL, BjuCOL5, BjuAP2 and BjuLKP2) interaction protein-encoding genes during the reproductive stage under white and blue light, respectively. These findings elucidate the role of BjuFKF1_1 in flowering regulation and provide molecular targets for B. juncea bolting-resistant variety breeding. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

17 pages, 1112 KB  
Article
Small but Mighty: Low Bio-Accessibility Preserves Polyphenols from Mini Purple Carrots for Direct Action Against Colon Cancer Cells
by Amel Hamdi, Emel Hasan Yusuf, Rocío Rodríguez-Arcos, Ana Jiménez-Araujo, Paulina Nowicka, Rafael Guillén-Bejarano and Sara Jaramillo-Carmona
Antioxidants 2026, 15(1), 113; https://doi.org/10.3390/antiox15010113 - 15 Jan 2026
Viewed by 385
Abstract
Carrots are exceptional sources of bioactive compounds with potential health benefits. This study investigated the relationship between the biodiversity of carrot cultivars (colour and size) and their potential chemopreventive properties. Four distinct carrot cultivars (orange, white, yellow, and purple) of normal and miniature [...] Read more.
Carrots are exceptional sources of bioactive compounds with potential health benefits. This study investigated the relationship between the biodiversity of carrot cultivars (colour and size) and their potential chemopreventive properties. Four distinct carrot cultivars (orange, white, yellow, and purple) of normal and miniature sizes were comprehensively analysed for polyphenolic composition, bio-accessibility through in vitro simulated digestion, and in vitro antiproliferative activity against the HCT-116 colon cancer cell line. Our findings revealed that vegetable size influenced phytochemical composition more than vegetable colour, with mini purple carrots exhibiting exceptionally high polyphenolic concentrations and superior antiproliferative activity compared to orange, yellow, or white varieties. Notably, the bioaccessibility of bioactive compounds remained remarkably low across all samples, suggesting that these phytochemicals reach the colon in intact form, potentially enabling direct interaction with cancer cells. Interestingly, we found no direct correlation between total phenolic content and antiproliferative activity. In vitro cell cycle analysis revealed that mini purple carrot extracts induced S-phase arrest similar to the chemotherapeutic agent 5-FU, whereas other extracts caused G0/G1-phase arrest. The specific polyphenolic composition appears to be fundamentally important for bioactivity, with chlorogenic acid and diferulic acid-derivative isomer 2 potentially acting synergistically. These findings highlight the importance of carrot biodiversity in delivering functional foods with enhanced health-promoting properties, particularly for colorectal cancer prevention. Full article
Show Figures

Graphical abstract

23 pages, 5201 KB  
Article
HiFiRadio: High-Fidelity Radio Map Reconstruction for 3D Real-World Scenes
by Ke Liao, Mengyu Ma, Luo Chen, Yifan Zhang and Ning Jing
Technologies 2026, 14(1), 58; https://doi.org/10.3390/technologies14010058 - 12 Jan 2026
Viewed by 222
Abstract
The reconstruction of high-fidelity radio maps is pivotal for wireless network planning but remains challenging due to the tension between physical accuracy and computational efficiency. We propose HiFiRadio, a novel framework that achieves a breakthrough in this balance by integrating centimeter-resolution 3D environmental [...] Read more.
The reconstruction of high-fidelity radio maps is pivotal for wireless network planning but remains challenging due to the tension between physical accuracy and computational efficiency. We propose HiFiRadio, a novel framework that achieves a breakthrough in this balance by integrating centimeter-resolution 3D environmental meshes with semantic-aware propagation modeling. At its core, HiFiRadio introduces a semantic-enhanced 3D indexing structure that efficiently manages complex terrain data, enabling real-time classification of signal paths into line-of-sight, non-line-of-sight, and vegetation-obstructed categories. This classification directly guides a hybrid propagation model, which dynamically applies dedicated loss calculations for buildings and foliage, grounded in physical principles. Extensive experiments demonstrate that HiFiRadio attains an accuracy comparable to commercial ray-tracing tools while being orders of magnitude faster. It also significantly outperforms existing learning-based baselines in both accuracy and scalability, a claim further validated by field measurements. By making high-fidelity, real-time radio map reconstruction practical for large-scale scenes, HiFiRadio establishes a new state of the art with immediate applications in network planning, UAV pathing, and dynamic spectrum access. Full article
(This article belongs to the Topic Challenges and Future Trends of Wireless Networks)
Show Figures

Figure 1

18 pages, 4943 KB  
Article
Induction and Regeneration of Microspore-Derived Embryos for Doubled Haploid Production in Cabbage (Brassica oleracea var. capitata)
by Su Bin Choi, Suk Yeon Mo and Han Yong Park
Plants 2026, 15(2), 221; https://doi.org/10.3390/plants15020221 - 10 Jan 2026
Viewed by 366
Abstract
Cabbage (Brassica oleracea L. var. capitata) is an important leafy vegetable crop, and the development of homozygous parental lines is essential for F1 hybrid breeding. Isolated microspore culture (IMC) provides a rapid approach for producing haploid and doubled haploid (DH) [...] Read more.
Cabbage (Brassica oleracea L. var. capitata) is an important leafy vegetable crop, and the development of homozygous parental lines is essential for F1 hybrid breeding. Isolated microspore culture (IMC) provides a rapid approach for producing haploid and doubled haploid (DH) lines. However, its efficiency in cabbage remains highly dependent on genotype, donor plant growth conditions, and culture conditions. This study aimed to optimize key factors affecting microspore embryogenesis and plant regeneration in a Korean green cabbage (‘SJ-Ca 13’) and to evaluate the ploidy and genetic characteristics of regenerated plants. Microspore yield and embryogenesis were strongly influenced by flower bud size. Bud size of 4.0 ± 0.5 mm yielded the highest number of microspores (4.17 × 104 per bud) and exclusively produced microspore-derived embryos (2.33 embryos per Petri dish), whereas smaller or larger buds failed to induce embryogenesis. Heat shock treatment at 32.5 °C was essential for embryogenesis, with 24 or 48 h of treatment inducing embryo formation, while prolonged exposure (72 h) completely inhibited embryogenesis. Efficient shoot regeneration was achieved when microspore-derived embryos were cultured on semi-solid MS medium with reduced salt strength (1/3×) and higher agar concentration (1.0%), resulting in the highest shoot regeneration rate. Ploidy test revealed that 50% of regenerated plants were spontaneous doubled haploids. SSR analysis using 26 markers detected no genetic polymorphism among regenerated plants. Overall, this study establishes an efficient IMC and regeneration system for cabbage and demonstrates its potential for rapid DH line production to support cabbage breeding programs. Full article
(This article belongs to the Collection Plant Tissue Culture)
Show Figures

Figure 1

27 pages, 4787 KB  
Article
The Optimization of Maize Intercropped Agroforestry Systems by Changing the Fertilizing Level and Spacing Between Tree Lines
by Zibuyile Dlamini, Ágnes Kun, Béla Gombos, Mihály Zalai, Ildikó Kolozsvári, Mihály Jancsó, Beatrix Bakti and László Menyhárt
Land 2026, 15(1), 126; https://doi.org/10.3390/land15010126 - 8 Jan 2026
Viewed by 481
Abstract
Agroforestry is defined as a multifunctional approach to land management that enhances biodiversity and soil health while mitigating environmental impacts compared to intensive agriculture. The efficacy of maize cultivation in agroforestry systems is significantly influenced by nutrient competition. The factors that influence this [...] Read more.
Agroforestry is defined as a multifunctional approach to land management that enhances biodiversity and soil health while mitigating environmental impacts compared to intensive agriculture. The efficacy of maize cultivation in agroforestry systems is significantly influenced by nutrient competition. The factors that influence this phenomenon include the dimensions and configuration of the tree rows, as well as the availability of nutrients. This study examined the effect of nitrogen fertilization, tree line spacing, and seasonal changes on the productivity and the leaf spectral characteristics of the intercropped maize (Zea mays L.) within a willow-based agroforestry system in eastern Hungary. The experiment involved the cultivation of maize with two spacings (narrow and wide field strips) and four nitrogen levels (0, 50, 100, and 150 kg N ha−1) across two growing seasons (2023–2024). The results demonstrated that yield-related parameters, including biomass, cob size and weight, and grain weight, exhibited a strong response to nitrogen level and tree line spacing. The reduction in spacing resulted in a decline in maize productivity. However, a high nitrogen input (150 kg N ha−1) partially mitigated this effect in the first growing season. Vegetation indices demonstrated a high degree of sensitivity to annual variations, particularly with regard to tree competition and weather conditions. Multispectral vegetation indices exhibited a heightened responsiveness to environmental and management factors when compared to indices based on visible light (RGB). The findings of this study demonstrate that a combination of optimized tree spacing and optimized nitrogen management fosters productivity while maintaining agroecological sustainability in temperate agroforestry systems. Full article
Show Figures

Figure 1

29 pages, 9907 KB  
Article
Climate-Driven Cryospheric Changes and Their Impacts on Glacier Runoff Dynamics in the Northern Tien Shan
by Aigul N. Akzharkynova, Berik Iskakov, Gulnara Iskaliyeva, Nurmakhambet Sydyk, Rustam Abdrakhimov, Alima A. Amangeldi, Aibek Merekeyev and Aleksandr Chigrinets
Atmosphere 2026, 17(1), 63; https://doi.org/10.3390/atmos17010063 - 3 Jan 2026
Viewed by 630
Abstract
Glaciers in the Northern Tien Shan are a major source of Ile River runoff, supplying water to Kazakhstan’s largest city, Almaty. Under ongoing climate warming, their degradation alters the magnitude and seasonality of river discharge, increasing water-resource vulnerability. This study quantifies long-term changes [...] Read more.
Glaciers in the Northern Tien Shan are a major source of Ile River runoff, supplying water to Kazakhstan’s largest city, Almaty. Under ongoing climate warming, their degradation alters the magnitude and seasonality of river discharge, increasing water-resource vulnerability. This study quantifies long-term changes in glacier area, firn-line elevation, and glacier runoff in the northern Tien Shan from 1955 to 2021. The analysis uses multi-decadal meteorological observations, hydrological records, multi-temporal Landsat-7/8 and Sentinel-2 imagery, and DEMs combined with empirical and semi-empirical runoff estimation methods. The glacier area has declined by more than 45–60% since 1955, accompanied by a rise in firn-line altitude from ~3400 to 3700 m. At the Mynzhylky station, mean summer air temperature increased by 0.88 °C, reflecting persistent warming in glacierized elevations. The contribution of glacier meltwater to annual discharge decreased from ~32% in 1955–1990 to ~25% in 1991–2021, while total and vegetation-period runoff increased due to modified seasonal hydrological conditions. These results demonstrate the impact of climate warming on glacier-fed runoff in the Northern Tien Shan and highlight the need to integrate glacier degradation into water-resource management and long-term water-security assessments. Full article
(This article belongs to the Special Issue Climate Change in the Cryosphere and Its Impacts)
Show Figures

Figure 1

19 pages, 4511 KB  
Article
Selection of High-Yield Varieties (Lines) and Analysis on Molecular Regulation Mechanism About Yield Formation of Seeds in Alfalfa
by Zhili Ren and Huiling Ma
Agronomy 2026, 16(1), 108; https://doi.org/10.3390/agronomy16010108 - 1 Jan 2026
Viewed by 340
Abstract
The goal of this study was to elucidate the genetic and molecular regulatory mechanisms underlying agronomic traits in elite alfalfa (Medicago sativa L.). Through the analysis of 44 varieties and lines, we measured 19 yield-related traits and performed transcriptome sequencing to investigate [...] Read more.
The goal of this study was to elucidate the genetic and molecular regulatory mechanisms underlying agronomic traits in elite alfalfa (Medicago sativa L.). Through the analysis of 44 varieties and lines, we measured 19 yield-related traits and performed transcriptome sequencing to investigate the factors driving yield variation. The results indicated extensive variation in agronomic traits among the tested accessions, with the coefficients of variation (CVs) ranging from 7.85% to 42.66%, suggesting substantial potential for genetic improvement. Correlation analysis revealed that seed yield was significantly and positively correlated with the number of reproductive branches and inflorescences at maturity, whereas early vegetative growth was negatively correlated with 100-seed weight. The 44 accessions were categorized into three clusters: Cluster II (the largest group) exhibited balanced traits; Cluster I showed vigorous early growth but low pod yield; and Cluster III was characterized by the highest pod and branch numbers. Principal Component Analysis (PCA) explained 65.88% of the total variation (first six components), identifying GNS31 and GNS43 as the superior and inferior genotypes, respectively. Furthermore, transcriptome profiling detected the highest number of differentially expressed genes (10,089 DEGs) in pod tissues, with 66% being upregulated. Functional enrichment analyses (GO and KEGG) highlighted that varietal differences were primarily enriched in secondary metabolism, lipid metabolism, and plant hormone signal transduction pathways. Notably, within the auxin pathway, the SAUR and GH3 families displayed significant tissue-specific expression in pods. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

19 pages, 1691 KB  
Article
Repercussions of Symbiotic Bacteria Associated with Entomopathogenic Nematodes and Their Biogenic Silver Nanoparticles on Immune Responses at Root-Knot Nematode Suppression
by Rehab Y. Ghareeb, Shawky M. Eid, Hanan Alfy and Mohamed H. Elsheikh
Microorganisms 2026, 14(1), 92; https://doi.org/10.3390/microorganisms14010092 - 31 Dec 2025
Viewed by 263
Abstract
Root-knot nematodes (RKNs) of the Meloidogyne genus impact various plants, including crops, fruits, and vegetables. Few chemical control options exist globally, and many nematicides are banned due to health and environmental risks. This study tested a new nematicidal agent, the symbiotic bacterium Xenorhabdus [...] Read more.
Root-knot nematodes (RKNs) of the Meloidogyne genus impact various plants, including crops, fruits, and vegetables. Few chemical control options exist globally, and many nematicides are banned due to health and environmental risks. This study tested a new nematicidal agent, the symbiotic bacterium Xenorhabdus indica, which was molecularly identified (PV845100). Cell-free culture supernatants of Xenorhabdus spp. and their biogenic Ag-NPs were used in nematicidal assays. Meloidogyne incognita showed high mortality rates of 95.3%, 74.6%, and 72.6% after 72 h of treatment with the X. indica filtrate at three concentrations. At the same concentrations, biogenic Ag-NPs resulted in 82.0%, 90.0%, and 85.3% mortality rates, respectively. After 72 h, hatchability decreased by 53%, 74.6%, and 72.6% for the X. indica filtrate and 82.0%, 90.0%, and 85.3% for Ag-NPs. Quantitative real-time PCR (Q-PCR) revealed that Mi-Ache1 expression was lower in M. incognita second-stage juveniles (J2s) treated with the filtrate and Ag-NPs after 72 h compared to controls. Mi-Ache2 expression was also decreased, but only slightly. Furthermore, both the X. indica filtrate and biogenic Ag-NPs were safe in human lung (WI-38) and skin (HFB4) cell lines. These findings suggest that bacterial filtrates and their biogenic Ag-NPs could serve as cost-effective, environmentally friendly alternatives to commercial nematicides. Full article
(This article belongs to the Special Issue Silver Nanoparticles as Antimicrobial Agents)
Show Figures

Figure 1

Back to TopTop