Non-Destructive Detection of Heat Stress in Tobacco Plants Using Visible-Near-Infrared Spectroscopy and Aquaphotomics Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Conditions
2.2. Measurement of NDVI and Chlorophyll Index
2.3. Near-Infrared Spectral Measurement, Data Analysis, Classification Models, and Aquagrams
2.4. Statistical Analysis
3. Results
3.1. NDVI and Chlorophyll Content Index Values
3.2. NIR Spectra of Tobacco Plants
3.3. Tobacco Plants’ Aquagrams
3.4. PLS Models for the Determination of Days of Heat Stress
3.5. Models for Classification of Plants According to Stress Factors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| NIR | Near-infrared |
| NDVI | Normalized Difference Vegetation Index |
| CCI | Chlorophyll Content Index |
| PLS | Partial Least Squares regression |
| Rcal | Multiple correlation coefficients between reference values and NIR predicted values calibration |
| SEC | Standard error of calibration |
| Rcv | Multiple correlation coefficients between reference values and NIR predicted values for cross-validation |
| SECV | Standard error of cross-validation |
| SIMCA | Soft Independent Modeling of Class Analogy |
| PLS-DA | Partial Least Squares–Discriminant Analysis |
References
- Bohnert, H.J.; Nelson, D.E.; Jensen, R.G. Adaptations to environmental stresses. Plant Cell 1995, 7, 1099–1111. [Google Scholar] [CrossRef]
- Madhava Rao, K.V. Introduction. In Physiology and Molecular Biology of Stress Tolerance in Plants, 1st ed.; Madhava Rao, K.V., Raghavendra, A.S., Janardhan Reddy, K., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 1–14. [Google Scholar]
- Salvucci, M.E.; Crafts-Brandner, S.J. Inhibition of photosynthesis by heat stress: The activation state of Rubisco as a limiting factor in photosynthesis. Physiol. Plant. 2004, 120, 179–186. [Google Scholar] [CrossRef]
- Feller, U.; Vaseva, I.I. Extreme climatic events: Impacts of drought and high temperature on physiological processes in agronomically important plants. Front. Environ. Sci. 2014, 2, 39. [Google Scholar] [CrossRef]
- Gourdji, S.M.; Sibley, A.M.; Lobell, D.B. Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections. Environ. Res. Lett. 2013, 8, 24041. [Google Scholar] [CrossRef]
- Kulik, M.C.; Bialous, S.A.; Munthali, S.; Max, W. Tobacco growing and the sustainable development goals, Malawi. Bull. WHO 2017, 95, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Appau, A.; Drope, J.; Witoelar, F.; Chavez, J.J.; Lencucha, R. Why Do Farmers Grow Tobacco? A Qualitative Exploration of Farmers Perspectives in Indonesia and Philippines. Int. J. Environ. Res. Public Health 2019, 16, 2330. [Google Scholar] [CrossRef]
- Gu, K.; Hou, S.; Chen, J.; Guo, J.; Wang, F.; He, C.; Zou, C.; Xie, X. The physiological response of different tobacco varieties to chilling stress during the vigorous growing period. Sci. Rep. 2021, 11, 22136. [Google Scholar] [CrossRef]
- Sarala, K.; Prabhakara Rao, K.; Nanda, C.; Baghyalakshmi, K.; Darvishzadeh, R.; Gangadhara, K.; Rajappa, J.J. Abiotic Stress Resistance in Tobacco: Advances and Strategies. In Genomic Designing for Abiotic Stress Resistant Technical Crops, 1st ed.; Kole, C., Ed.; Springer: Cham, Switzerland, 2022; pp. 329–427. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Song, Y.; Hu, Y.; Yang, C.; Li, J.; Jin, S.; Gu, K.; Yang, Z.; Huang, W.; et al. Tobacco production under global climate change: Combined effects of heat and drought stress and coping strategies. Front. Plant Sci. 2024, 15, 1489993. [Google Scholar] [CrossRef]
- Kuznetsov, V.V.; Shevyakova, N.I. Stress responses of tobacco cells to high temperature and salinity. Proline accumulation and phosphorylation of polypeptides. Physiol. Plant. 1997, 100, 320–326. [Google Scholar] [CrossRef]
- Lipiec, J.; Doussan, C.; Nosalewicz, A.; Kondracka, K. Effect of drought and heat stresses on plant growth and yield: A review. Int. Agrophys. 2013, 27, 463–477. [Google Scholar] [CrossRef]
- Yang, L.Y.; Yang, S.L.; Li, J.Y.; Ma, J.H.; Pang, T.; Zou, C.M.; He, B.; Gong, M. Effects of different growth temperatures on growth, development, and plastid pigments metabolism of tobacco (Nicotiana tabacum L.) plants. Bot. Stud. 2018, 59, 5. [Google Scholar] [CrossRef]
- Bittner, R.J.; Arellano, C.; Mila, A.L. Effect of temperature and resistance of tobacco cultivars to the progression of bacterial wilt, caused by Ralstonia solanacearum. Plant Soil 2016, 408, 299–310. [Google Scholar] [CrossRef]
- Yanhui, C.; Hongrui, W.; Beining, Z.; Shixing, G.; Zihan, W.; Yue, W.; Huihui, Z.; Guangyu, S. Elevated air temperature damage to photosynthetic apparatus alleviated by enhanced cyclic electron flow around photosystem I in tobacco leaves. Ecotoxicol. Environ. Saf. 2020, 204, 111136. [Google Scholar] [CrossRef]
- Falcioni, R.; Chicati, M.L.; de Oliveira, R.B.; Antunes, W.C.; Hasanuzzaman, M.; Demattê, J.A.M.; Nanni, M.R. Decreased Photosynthetic Efficiency in Nicotiana tabacum L. under Transient Heat Stress. Plants 2024, 13, 395. [Google Scholar] [CrossRef]
- Mathur, S.; Agrawal, D.; Jajoo, A. Photosynthesis: Response to high temperature stress. J. Photochem. Photobiol. B Biol. 2014, 137, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Hammer, G.L.; Chenu, K.; Zheng, B.; McLean, G.; Chapman, S.C. The shifting influence of drought and heat stress for crops in northeast Australia. Glob. Change Biol. 2015, 21, 4115–4127. [Google Scholar] [CrossRef]
- Carter, G.A.; Knapp, A.K. Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration. Am. J. Bot. 2001, 88, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Badgley, G.; Field, C.B.; Berry, J.A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 2017, 3, e1602244. [Google Scholar] [CrossRef]
- Katsoulas, N.; Elvanidi, A.; Ferentinos, K.P.; Bartzanas, T.; Kittas, C. Crop reflectance monitoring as a tool for water stress detection in greenhouses: A review. Biosyst. Eng. 2016, 151, 374–398. [Google Scholar] [CrossRef]
- Zubler, A.V.; Yoon, J.-Y. Review. Proximal Methods for Plant Stress Detection Using Optical Sensors and Machine Learning. Biosensors 2020, 10, 193. [Google Scholar] [CrossRef]
- Zahir, S.; Omar, A.F.; Jamlos, M.F.; Azmi, M.A.M.; Muncan, J. A review of visible and near-infrared (Vis-NIR) spectroscopy application in plant stress detection. Sens. Actuators A Phys. 2022, 338, 113468. [Google Scholar] [CrossRef]
- Zahir, S.A.D.M.; Jamlos, M.F.; Omar, A.F.; Jamlos, M.A.; Mamat, R.; Muncan, J.; Tsenkova, R. Review—Plant nutritional status analysis employing the visible and near-infrared spectroscopy spectral sensor. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 304, 123273. [Google Scholar] [CrossRef]
- Krishnamoorthi, S.; Koh, S.S.; Ang, M.C.-Y.; Teo, J.T.; Jie, R.A.; Dinish, U.S.; Strano, M.S.; Urano, D. Advancements in Plant Diagnostic and Sensing Technologies. Adv. Sens. Res. 2025, 4, e00045. [Google Scholar] [CrossRef]
- Lu, M.; Zhou, Q.; Chen, T.; Li, J.; Jiang, S.; Gao, Q.; Wang, C.; Chen, D. Qualitative Discrimination of Intact Tobacco Leaves Based on Near-Infrared Technology. J. Spectrosc. 2021, 2021, 8807199. [Google Scholar] [CrossRef]
- Lu, X.; Zhao, C.; Qin, Y.; Xie, L.; Wang, T.; Wu, Z.; Xu, Z. The Application of Hyperspectral Images in the Classification of Fresh Leaves’ Maturity for Flue-Curing Tobacco. Processes 2023, 11, 1249. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Q.; Yang, W.; Yu, J.; Wu, T.; Xiong, Z.; Du, Y. NIR and MIR spectral feature information fusion strategy for multivariate quantitative analysis of tobacco components. Chem. Int. Lab Syst. 2024, 253, 105222. [Google Scholar] [CrossRef]
- Rodrigues, M.; de Oliveira, R.B.; dos Santos, G.L.A.A.; de Oliveira, K.M.; Reis, A.S.; Furlanetto, R.H.; Bernardo Júnior, L.A.Y.; Coelho, F.S.; Nanni, M.R. Rapid quantification of alkaloids, sugar and yield of tobacco (Nicotiana tabacum L.) varieties by using Vis–NIR–SWIR spectroradiometry. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 274, 121082. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, T.; Gu, X.; Chen, D.; Wang, C.; Wu, W.; Zhu, Q.; Zhao, C. Hyperspectral remote sensing for tobacco quality estimation, yield prediction, and stress detection: A review of applications and methods. Front. Plant Sci. 2023, 14, 1073346. [Google Scholar] [CrossRef]
- Zhu, H.; Chu, B.; Zhang, C.; Liu, F.; Jiang, L.; He, Y. Hyperspectral Imaging for Presymptomatic Detection of Tobacco Disease with Successive Projections Algorithm and Machine-learning Classifiers. Sci. Rep. 2017, 7, 4125. [Google Scholar] [CrossRef] [PubMed]
- Ying, L.; Kun, M.; Xinyu, Z.; Qifu, Y.; Jiaquan, W.; Shuangyan, Y. Identification of Disease Type of Tobacco Leaves Based on Near Infrared Spectroscopy and Convolutional Neural Network. J. Braz. Chem. Soc. 2024, 35, e-20230181. [Google Scholar] [CrossRef]
- Tsenkova, R. Aquaphotomics: Dynamic Spectroscopy of Aqueous and Biological Systems Describes Peculiarities of Water. J. Near Inf. Spec. 2009, 17, 303–314. [Google Scholar] [CrossRef]
- Tsenkova, R.; Muncan, J.; Pollner, B.; Kovacs, Z. Essentials of Aquaphotomics and Its Chemometrics Approaches. Front. Chem. 2018, 6, 363. [Google Scholar] [CrossRef]
- Muncan, J.; Tsenkova, R. Aquaphotomics-From Innovative Knowledge to Integrative Platform in Science and Technology. Molecules 2019, 24, 2742. [Google Scholar] [CrossRef]
- Jinendra, B.; Tamaki, K.; Kuroki, S.; Vassileva, M.; Yoshida, S.; Tsenkova, R. Near infrared spectroscopy and aquaphotomics: Novel approach for rapid in vivo diagnosis of virus infected soybean. Biochem. Biophys. Res. Commun. 2010, 397, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Atanassova, S.; Yorgov, D.; Veleva, P.; Nedyalkova, S. Visible and near-infrared spectroscopy for detection of fungal diseases on Durum wheat. AIP Conf. Proc. 2021, 2889, 080013. [Google Scholar] [CrossRef]
- Muncan, J.; Jinendra, B.M.S.; Kuroki, S.; Tsenkova, R. Aquaphotomics Research of Cold Stress in Soybean Cultivars with Different Stress Tolerance Ability: Early Detection of Cold Stress Response. Molecules 2022, 27, 744. [Google Scholar] [CrossRef]
- Moyankova, D.; Stoykova, P.; Veleva, P.; Christov, N.K.; Petrova, A.; Atanassova, S. An Aquaphotomics Approach for Investigation of Water-Stress-Induced Changes in Maize Plants. Sensors 2023, 23, 9678. [Google Scholar] [CrossRef] [PubMed]
- Atanassova, S.; Petrova, A.; Yorgov, D.; Mineva, R.; Veleva, P. Visible and Near-Infrared Spectroscopy for Investigation of Water and Nitrogen Stress in Tomato Plants. AgriEngineering 2025, 7, 155. [Google Scholar] [CrossRef]
- Maeda, H.; Ozaki, Y.; Tanaka, M.; Hayashi, N.; Kojima, T. Near Infrared Spectroscopy and Chemometrics Studies of Temperature-Dependent Spectral Variations of Water: Relationship between Spectral Changes and Hydrogen Bonds. J. Near Infrared Spectrosc. 1995, 3, 191–201. [Google Scholar] [CrossRef]
- Kojić, D.; Tsenkova, R.; Tomobe, K.; Yasuoka, K.; Yasui, M. Water confined in the local field of ions. ChemPhysChem 2014, 15, 4077–4086. [Google Scholar] [CrossRef]
- Gowen, A.A.; Esquerre, C.; O’Donnell, C.P.; Downey, G.; Tsenkova, R. Use of near infrared hyperspectral imaging to identify water matrix co-ordinates in mushrooms (Agaricus bisporus) subjected to mechanical vibration. J. Near Infrared Spectrosc. 2009, 17, 363–371. [Google Scholar] [CrossRef]
- Vitalis, F.; Muncan, J.; Anantawittayanon, S.; Kovacs, Z.; Tsenkova, R. Aquaphotomics Monitoring of Lettuce Freshness During Cold Storage. Foods 2023, 12, 258. [Google Scholar] [CrossRef] [PubMed]
- Moyankova, D.; Stoykova, P.; Veleva, P.; Christov, N.K.; Petrova, A.; Rusanov, K.; Atanassova, S. Low-Temperature Stress-Induced Changes in Cucumber Plants—A Near-Infrared Spectroscopy and Aquaphotomics Approach for Investigation. Sensors 2025, 25, 7602. [Google Scholar] [CrossRef]
- Wang, M.; An, H.; Cai, W.; Shao, X. Wavelet Transform Makes Water an Outstanding Near-Infrared Spectroscopic Probe. Chemosensors 2023, 11, 37. [Google Scholar] [CrossRef]
- Workman, J.; Weyer, L. Practical Guide to Interpretive Near-Infrared Spectroscopy, 1st ed.; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2007. [Google Scholar] [CrossRef]
- Muncan, J.; Anantawittayanon, S.; Furuta, T.; Kaneko, T.; Tsenkova, R. Aquaphotomics monitoring of strawberry fruit during cold storage—A comparison of two cooling systems. Front. Nutr. 2022, 9, 058173. [Google Scholar] [CrossRef] [PubMed]










| WAMACS | Range (nm) | Assignment |
|---|---|---|
| C1 | 1336–1348 | 2ν3: H2O asymmetric stretching vibration |
| C2 | 1360–1366 | OH-·(H2O)1,2,4: Water solvation shell |
| C3 | 1370–1376 | ν1 + ν3: H2O symmetrical stretching vibration and H2O asymmetric stretching vibration |
| C4 | 1380–1388 | OH-·(H2O)1,4: Water solvation shell O2-·(H2O)4: Hydrated superoxide clusters 2ν1: H2O symmetrical stretching vibration |
| C5 | 1398–1418 | Water confined in a local field of ions (trapped water) S0: Free water. Water with free OH- |
| C6 | 1421–1430 | Water hydration band H-OH bend and O-H…O |
| C7 | 1432–1444 | S1: Water molecules with 1 hydrogen bond |
| C8 | 1448–1454 | OH-·(H2O)4,5: Water solvation shell |
| C9 | 1458–1468 | S2: Water molecules with 2 hydrogen bonds. 2ν2 + ν3: H2O bending and asymmetrical stretching vibration |
| C10 | 1472–1482 | S3: Water molecules with 3 hydrogen bonds |
| C11 | 1482–1495 | S4: Water molecules with 4 hydrogen bonds |
| C12 | 1506–1516 | ν1: H2O symmetrical stretching vibration. ν2: H2O bending vibration Strongly bound water |
| Treatment | NDVI | CCI | ||
|---|---|---|---|---|
| N | N | |||
| Burley tobacco plants | ||||
| control | 105 | 0.050 a | 119 | 8.417 a |
| high-temperature | 66 | 0.152 a | 80 | 14.286 b |
| recovery | 18 | 0.223 a | 20 | 17.539 ab |
| Oriental tobacco plants | ||||
| control | 119 | 0.048 a | 120 | 5.514 a |
| high-temperature | 85 | 0.129 a | 76 | 10.862 a |
| recovery | 26 | 0.143 a | 26 | 11.853 a |
| Virginia tobacco plants | ||||
| control | 108 | 0.049 a | 121 | 8.368 a |
| high-temperature | 96 | 0.155 ab | 80 | 14.286 b |
| recovery | 22 | 0.258 ab | 20 | 17.537 ab |
| Day | NDVI | CCI | ||
|---|---|---|---|---|
| N | N | |||
| Burley tobacco plants | ||||
| 0 (control) | 24 | 0.035 a | 39 | 8.110 |
| 3rd day | 24 | 0.102 | 33 | 10.993 |
| 5th day | 22 | 0.154 | 26 | 13.675 |
| 7th day | 20 | 0.192 a | 21 | 19.256 |
| Oriental tobacco plants | ||||
| 0 (control) | 30 | 0.049 a | 30 | 5.396 a |
| 3rd day | 24 | 0.056 b | 30 | 7.547 b |
| 5th day | 25 | 0.094 | 20 | 7.061 c |
| 7th day | 36 | 0.164 ab | 26 | 13.290 abc |
| Virginia tobacco plants | ||||
| 0 (control) | 30 | 0.057 a | 41 | 7.913 |
| 3rd day | 48 | 0.102 b | 33 | 10.993 |
| 5th day | 27 | 0.121 | 26 | 13.673 |
| 7th day | 21 | 0.255 ab | 21 | 19.256 |
| PLS Factors | SECV | Rcv | SEC | Rcal | |
|---|---|---|---|---|---|
| Burley | 6 | 0.49 | 0.98 | 0.46 | 0.98 |
| Oriental | 2 | 0.61 | 0.97 | 0.61 | 0.97 |
| Virginia | 5 | 0.62 | 0.96 | 0.61 | 0.96 |
| Determined as Control Plants | Determined as Heat-Stressed Plants | Determined as Recovered Plants | No Match | Precision, % | F1 Score, % | |
|---|---|---|---|---|---|---|
| Spectral data for control, heat-stressed at 3 and 5 days, and recovery plants | ||||||
| Control plants | 88 | 8 | 1 | 0 | 90.72 | 90.26 |
| Heat-stressed plants | 10 | 115 | 7 | 0 | 87.12 | 90.20 |
| Recovered plants | 0 | 0 | 31 | 0 | 100 | 88.57 |
| Sensitivity, % | 89.80 | 93.50 | 79.49 | |||
| Total accuracy 93.60% | ||||||
| Spectral data for only the fifth leaves—control, heat-stressed, and recovery plants | ||||||
| Control plants | 42 | 4 | 2 | 0 | 87.50 | 86.60 |
| Heat-stressed plants | 6 | 48 | 2 | 0 | 85.71 | 88.07 |
| Recovered plants | 1 | 1 | 8 | 0 | 80.00 | 72.70 |
| Sensitivity, % | 85.71 | 90.57 | 66.67 | |||
| Total accuracy 90.74% | ||||||
| Determined as Control Plants | Determined as Heat-Stressed Plants | Determined as Recovered Plants | No Match | Precision, % | F1 Score, % | |
|---|---|---|---|---|---|---|
| Spectral data for control, heat stressed at 3 and 5 days, and recovery plants | ||||||
| Control plants | 158 | 22 | 1 | 0 | 87.29 | 86.34 |
| Heat-stressed plants | 27 | 153 | 2 | 1 | 83.61 | 85.47 |
| Recovered plants | 0 | 0 | 42 | 0 | 100 | 96.55 |
| Sensitivity, % | 85.41 | 87.43 | 93.33 | |||
| Total accuracy 93.14% | ||||||
| Spectral data for only the fifth leaves—control, heat-stressed, and recovery plants | ||||||
| Control plants | 73 | 7 | 0 | 0 | 91.25 | 91.82 |
| Heat-stressed plants | 6 | 68 | 0 | 0 | 91.89 | 89.47 |
| Recovered plants | 0 | 3 | 7 | 0 | 70.00 | 82.36 |
| Sensitivity, % | 92.41 | 87.18 | 100 | |||
| Total accuracy 93.67% | ||||||
| Determined as Control Plants | Determined as Heat-Stressed Plants | Determined as Recovered Plants | No Match | Precision, % | F1 Score, % | |
|---|---|---|---|---|---|---|
| Spectral data for control, heat-stressed at 3 and 5 days, and recovery plants | ||||||
| Control plants | 106 | 13 | 1 | 0 | 88.33 | 85.48 |
| Heat-stressed plants | 22 | 204 | 18 | 1 | 83.27 | 87.93 |
| Recovered plants | 0 | 2 | 45 | 0 | 95.74 | 81.08 |
| Sensitivity, % | 82.81 | 93.15 | 70.31 | |||
| Total accuracy 91.03% | ||||||
| Spectral data for only the fifth leaves—control, heat-stressed, and recovery plants | ||||||
| Control plants | 73 | 3 | 0 | 0 | 96.05 | 96.67 |
| Heat-stressed plants | 2 | 84 | 0 | 0 | 97.67 | 96.55 |
| Recovered plants | 0 | 1 | 14 | 0 | 93.33 | 96.55 |
| Sensitivity, % | 97.33 | 95.45 | 100 | |||
| Total accuracy 97.71% | ||||||
| Determined as Control Plants | Determined as Heat-Stressed Plants | Determined as Recovered Plants | No Match | Precision, % | F1 Score, % | |
|---|---|---|---|---|---|---|
| Spectral data for control, heat-stressed at 3 and 5 days, and recovery plants | ||||||
| Control plants | 91 | 2 | 0 | 4 | 93.81 | 96.81 |
| Heat-stressed plants | 0 | 130 | 0 | 2 | 98.48 | 98.48 |
| Recovered plants | 0 | 0 | 28 | 3 | 90.32 | 94.92 |
| Sensitivity, % | 100 | 98.48 | 100 | |||
| Total accuracy 95.77 | ||||||
| Spectral data for only the fifth leaves—control, heat-stressed, and recovery plants | ||||||
| Control plants | 46 | 0 | 0 | 2 | 95.83 | 94.85 |
| Heat-stressed plants | 3 | 50 | 0 | 3 | 89.29 | 93.46 |
| Recovered plants | 0 | 1 | 9 | 0 | 90.00 | 94.74 |
| Sensitivity, % | 93.88 | 98.04 | 100 | |||
| Total accuracy 94.59% | ||||||
| Determined as Control Plants | Determined as Heat-Stressed Plants | Determined as Recovered Plants | No Match | Precision, % | F1 Score, % | |
|---|---|---|---|---|---|---|
| Spectral data for control, heat-stressed at 3 and 5 days, and recovery plants | ||||||
| Control plants | 153 | 14 | 0 | 14 | 84.53 | 84.07 |
| Heat-stressed plants | 30 | 134 | 0 | 18 | 73.63 | 79.76 |
| Recovered plants | 0 | 6 | 34 | 2 | 80.95 | 89.47 |
| Sensitivity, % | 83.61 | 87.01 | 100 | |||
| Total accuracy 85.60 | ||||||
| Spectral data for only the fifth leaves—control, heat-stressed, and recovery plants | ||||||
| Control plants | 71 | 7 | 0 | 2 | 88.75 | 91.61 |
| Heat-stressed plants | 4 | 57 | 1 | 12 | 77.03 | 80.85 |
| Recovered plants | 0 | 3 | 4 | 3 | 40.00 | 53.33 |
| Sensitivity, % | 94.67 | 85.07 | 80.00 | |||
| Total accuracy 82.50% | ||||||
| Determined as Control Plants | Determined as Heat-Stressed Plants | Determined as Recovered Plants | No Match | Precision, % | F1 Score, % | |
|---|---|---|---|---|---|---|
| Spectral data for control, heat-stressed at 3 and 5 days, and recovery plants | ||||||
| Control plants | 100 | 14 | 0 | 6 | 83.33 | 85.84 |
| Heat-stressed plants | 13 | 209 | 0 | 22 | 85.66 | 87.27 |
| Recovered plants | 0 | 12 | 31 | 4 | 65.96 | 79.49 |
| Sensitivity, % | 88.50 | 88.94 | 100 | |||
| Total accuracy 85.43 | ||||||
| Spectral data for only the fifth leaves—control, heat-stressed, and recovery plants | ||||||
| Control plants | 67 | 6 | 0 | 3 | 88.16 | 89.93 |
| Heat-stressed plants | 6 | 75 | 0 | 5 | 87.12 | 87.72 |
| Recovered plants | 0 | 4 | 9 | 2 | 60.00 | 75.00 |
| Sensitivity, % | 91.78 | 88.24 | 100 | |||
| Total accuracy 88.30% | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Moyankova, D.; Stoykova, P.; Petrova, A.; Christov, N.K.; Veleva, P.; Savova, G.; Atanassova, S. Non-Destructive Detection of Heat Stress in Tobacco Plants Using Visible-Near-Infrared Spectroscopy and Aquaphotomics Approach. AgriEngineering 2026, 8, 33. https://doi.org/10.3390/agriengineering8010033
Moyankova D, Stoykova P, Petrova A, Christov NK, Veleva P, Savova G, Atanassova S. Non-Destructive Detection of Heat Stress in Tobacco Plants Using Visible-Near-Infrared Spectroscopy and Aquaphotomics Approach. AgriEngineering. 2026; 8(1):33. https://doi.org/10.3390/agriengineering8010033
Chicago/Turabian StyleMoyankova, Daniela, Petya Stoykova, Antoniya Petrova, Nikolai K. Christov, Petya Veleva, Gergana Savova, and Stefka Atanassova. 2026. "Non-Destructive Detection of Heat Stress in Tobacco Plants Using Visible-Near-Infrared Spectroscopy and Aquaphotomics Approach" AgriEngineering 8, no. 1: 33. https://doi.org/10.3390/agriengineering8010033
APA StyleMoyankova, D., Stoykova, P., Petrova, A., Christov, N. K., Veleva, P., Savova, G., & Atanassova, S. (2026). Non-Destructive Detection of Heat Stress in Tobacco Plants Using Visible-Near-Infrared Spectroscopy and Aquaphotomics Approach. AgriEngineering, 8(1), 33. https://doi.org/10.3390/agriengineering8010033

