Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,476)

Search Parameters:
Keywords = vegetal biomass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 871 KiB  
Article
Low-Cost Production of Brazilian Mahogany Clones Based on Indole-3-Butyric Acid Use, Clonal Mini-Hedge Nutrition and Vegetative Propagule Type
by Rafael Barbosa Diógenes Lienard, Annanda Souza de Campos, Lucas Graciolli Savian, Barbara Valentim de Oliveira, Felippe Coelho de Souza and Paulo André Trazzi
Forests 2025, 16(8), 1292; https://doi.org/10.3390/f16081292 (registering DOI) - 7 Aug 2025
Abstract
Swietenia macrophylla King, commonly known as Brazilian mahogany, is a high-value neotropical tree species currently threatened due to intensive logging in previous decades. Technologies aimed at clonal production are essential for this species’ conservation and sustainable use at times of climate change and [...] Read more.
Swietenia macrophylla King, commonly known as Brazilian mahogany, is a high-value neotropical tree species currently threatened due to intensive logging in previous decades. Technologies aimed at clonal production are essential for this species’ conservation and sustainable use at times of climate change and increasing demand for ecological restoration. The aim of the present study is to develop a low-cost protocol for mahogany clonal propagation through mini-cutting by assessing clonal mini-hedge nutrition, vegetative propagule type and indole-3-butyric acid (IBA) application effects on rooting and early clone growth. The experiment was conducted in nursery under controlled conditions based on using basal and apical mini-cuttings rooted in a low-cost mini-greenhouse subjected to three nutrient solution concentrations (50%, 100%, and 200%) and five IBA doses (0–8000 ppm). The mini-cutting technique proved efficient and led to over 90% survival after the hardening phase. The 200% nutrient solution concentration allowed balanced performance between cutting types and optimized clonal yield. IBA concentration at 4000 ppm accounted for higher root percentages at the bottom of the tube and the trend towards higher dry biomass production at 160 days. The results highlighted mini-cutting’s potential as a viable mahogany conservation and sustainable production technique. It also supported tropical forestry sector adaptation to challenges posed by climate change. Full article
17 pages, 4991 KiB  
Article
Understory Plant Diversity in Cunninghamia lanceolata (Lamb.) Hook. Plantations Under Different Mixed Planting Patterns
by Minsi Wang, Hongting Guo and Jiang Jiang
Forests 2025, 16(8), 1290; https://doi.org/10.3390/f16081290 (registering DOI) - 7 Aug 2025
Abstract
The composition and structure of understory plants are crucial for forest ecosystem succession and stability. This study examined the impact of various Cunninghamia lanceolata mixed plantation patterns on understory biodiversity, aiming to provide a theoretical foundation for sustainable management. Six patterns were evaluated [...] Read more.
The composition and structure of understory plants are crucial for forest ecosystem succession and stability. This study examined the impact of various Cunninghamia lanceolata mixed plantation patterns on understory biodiversity, aiming to provide a theoretical foundation for sustainable management. Six patterns were evaluated using sample plots at Guanshan Forest Farm in Jiangxi Province, China. Understory vegetation diversity, biomass, and soil properties—including total nitrogen, available nitrogen, total phosphorus, available phosphorus, total potassium, available potassium, soil organic matter, and pH—were quantitatively analyzed. Significant differences in diversity among the patterns were revealed. The ‘Cunninghamia lanceolata + Phoebe bournei (Hemsl.) Yen C. Yang + Schima superba Gardner & Champ’ mixed plantation exhibited the most pronounced enhancement of understory plant diversity, whereas the ‘C. lanceolata + Liquidambar formosana Hance’ pattern demonstrated the least significant effects among all treatments. Significant correlations were detected between soil nutrients and diversity indices. Mixed patterns enhance diversity through expanded ecological niches and optimized microenvironments, thereby strengthening ecological functions and management efficiency. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

20 pages, 11966 KiB  
Article
Improved Photosynthetic Accumulation Models for Biomass Estimation of Soybean and Cotton Using Vegetation Indices and Canopy Height
by Jinglong Liu, Jordi J. Mallorqui, Albert Aguasca, Xavier Fàbregas, Antoni Broquetas, Jordi Llop, Mireia Mas, Feng Zhao and Yanan Wang
Remote Sens. 2025, 17(15), 2736; https://doi.org/10.3390/rs17152736 (registering DOI) - 7 Aug 2025
Abstract
Most crops accumulate above-ground biomass (AGB) through photosynthesis, inspiring the development of the Photosynthetic Accumulation Model (PAM) and Simplified PAM (SPAM). Both models estimate AGB based on time-series optical vegetation indices (VIs) and canopy height. To further enhance the model performance and evaluate [...] Read more.
Most crops accumulate above-ground biomass (AGB) through photosynthesis, inspiring the development of the Photosynthetic Accumulation Model (PAM) and Simplified PAM (SPAM). Both models estimate AGB based on time-series optical vegetation indices (VIs) and canopy height. To further enhance the model performance and evaluate its applicability across different crop types, an improved PAM model (IPAM) is proposed with three strategies. They are as follows: (i) using numerical integration to reduce reliance on dense observations, (ii) introduction of Fibonacci sequence-based structural correction to improve model accuracy, and (iii) non-photosynthetic area masking to reduce overestimation. Results from both soybean and cotton demonstrate the strong performance of the PAM-series models. Among them, the proposed IPAM model achieved higher accuracy, with mean R2 and RMSE values of 0.89 and 207 g/m2 for soybean and 0.84 and 251 g/m2 for cotton, respectively. Among the vegetation indices tested, the recently proposed Near-Infrared Reflectance of vegetation (NIRv) and Kernel-based normalized difference vegetation index (Kndvi) yielded the most accurate results. Both Monte Carlo simulations and theoretical error propagation analyses indicate a maximum deviation percentage of approximately 20% for both crops, which is considered acceptable given the expected inter-annual variation in model transferability. In addition, this paper discusses alternatives to height measurements and evaluates the feasibility of incorporating synthetic aperture radar (SAR) VIs, providing practical insights into the model’s adaptability across diverse data conditions. Full article
Show Figures

Figure 1

24 pages, 1967 KiB  
Article
Water Stress Promotes Secondary Sexual Dimorphism in Ecophysiological Traits of Papaya Seedlings
by Ingrid Trancoso, Guilherme A. R. de Souza, João Vitor Paravidini de Souza, Rosana Maria dos Santos Nani de Miranda, Diesily de Andrade Neves, Miroslava Rakocevic and Eliemar Campostrini
Plants 2025, 14(15), 2445; https://doi.org/10.3390/plants14152445 - 7 Aug 2025
Abstract
Plant genders could express different functional strategies to compensate for different reproductive costs, as females have an additional role in fruit and seed production. Secondary sexual dimorphism (SSD) expression is frequently greater under stress than under optimal growth conditions. The early gender identification [...] Read more.
Plant genders could express different functional strategies to compensate for different reproductive costs, as females have an additional role in fruit and seed production. Secondary sexual dimorphism (SSD) expression is frequently greater under stress than under optimal growth conditions. The early gender identification in papaya may help to reduce orchard costs because the most desirable fruit shape is formed by hermaphrodite plants. We hypothesized that (a) gender ecophysiological phenotyping can be an alternative to make gender segregations in papaya seedlings, and (b) such gender segregation will be more efficient after a short drought exposure than under adequate water conditions. To test such hypotheses, seedlings of two papaya varieties (‘Candy’ and ‘THB’) were exposed to two kind of treatments: (1) water shortage (WS) for 45 h, after which they were well watered, and (2) continuously well-watered (WW). Study assessed the ecophysiological responses, such as stomatal conductance (gs), SPAD index, optical reflectance indices, morphological traits, and biomass accumulation in females (F) and hermaphrodites (H). In WS treatment, the SSD was expressed in 14 of 18 traits investigated, while in WW treatment, the SSD was expressed only in 7 of 18 traits. As tools for SSD expression, gs and simple ratio pigment index (SRPI) must be measured on the first or second day after the imposed WS was interrupted, respectively, while the other parameters must be measured after a period of four days. In some traits, the SSD was expressed in only one variety, or the response of H and F plants were of opposite values for two varieties. The choice of the clearest responses of gender segregation in WS treatment will be greenness index, combination of normalized difference vegetation index (CNDVI), photochemical reflectance index (PRI), water band index (WBI), SRPI, leaf number, leaf dry mass, and leaf mass ratio. If the WW conditions are maintained for papaya seedling production, the recommendation in gender segregation will be the analysis of CNDVI, carotenoid reflectance index 2 (CRI2), WBI, and SRPI. The non-destructive optical leaf indices segregated papaya hermaphrodites from females under both water conditions and eventually could be adjusted for wide-scale platform evaluations, with planned space arrangements of seedlings, and sensor’s set. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

22 pages, 2542 KiB  
Article
Wheat Under Warmer Nights: Shifting of Sowing Dates for Managing Impacts of Thermal Stress
by Roshan Subedi, Mani Naiker, Yash Chauhan, S. V. Krishna Jagadish and Surya P. Bhattarai
Agriculture 2025, 15(15), 1687; https://doi.org/10.3390/agriculture15151687 - 5 Aug 2025
Abstract
High nighttime temperature (HNT) due to asymmetric diurnal warming threatens wheat productivity. This study evaluated the effect of HNT on wheat phenology, physiology, and yield through field and controlled environment experiments in Central Queensland, Australia. Two wheat genotypes, Faraday and AVT#6, were assessed [...] Read more.
High nighttime temperature (HNT) due to asymmetric diurnal warming threatens wheat productivity. This study evaluated the effect of HNT on wheat phenology, physiology, and yield through field and controlled environment experiments in Central Queensland, Australia. Two wheat genotypes, Faraday and AVT#6, were assessed under three sowing dates—1 May (Early), 15 June (Mid), and 1 August (Late)—within the recommended sowing window for the region. In a parallel growth chamber study, the plants were exposed to two nighttime temperature regimes, of 15 °C (normal) and 20 °C (high), with consistent daytime conditions from booting to maturity. Late sowing resulted in shortened vegetative growth and grain filling periods and increased exposure to HNT during the reproductive phase. This resulted in elevated floret sterility, lower grain weight, and up to 40% yield loss. AVT#6 exhibited greater sensitivity to HNT despite maturing earlier. Leaf gas exchange analysis revealed increased nighttime respiration (Rn) and reduced assimilation (A), resulting in higher Rn/A ratio for late-sown crops. The results from controlled environment chambers resembled trends of the field experiment, producing lower grain yield and biomass under HNT. Cumulative nighttime hours above 20 °C correlated more strongly with yield losses than daytime heat. These findings highlight the need for HNT-tolerant genotypes and optimized sowing schedules under future climate scenarios. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

11 pages, 1381 KiB  
Article
Fertilization Promotes the Recovery of Plant Productivity but Decreases Biodiversity in a Khorchin Degraded Grassland
by Lina Zheng, Wei Zhao, Shaobo Gao, Ruizhen Wang, Haoran Yan and Mingjiu Wang
Nitrogen 2025, 6(3), 64; https://doi.org/10.3390/nitrogen6030064 - 4 Aug 2025
Viewed by 64
Abstract
Fertilization is a critical measure for vegetation restoration and ecological reconstruction in degraded grasslands. However, little is known about the long-term effects of different combinations of nitrogen (N), phosphorus (P), potassium (K) on plant and microbial communities in degraded grasslands. This study conducted [...] Read more.
Fertilization is a critical measure for vegetation restoration and ecological reconstruction in degraded grasslands. However, little is known about the long-term effects of different combinations of nitrogen (N), phosphorus (P), potassium (K) on plant and microbial communities in degraded grasslands. This study conducted a four-year (2017–2020) N, P, K addition experiment in the Khorchin Grassland, a degraded typical grassland located in Zhalute Banner, Tongliao City, Inner Mongolia, to investigate the effects of fertilization treatment on plant functional groups and microbial communities after grazing exclusion. Our results showed that the addition of P, NP, and NPK compound fertilizers significantly increased aboveground biomass of the plant community, which is mainly related to the improvement of nutrient availability to promote the growth of specific plant functional groups, especially annual and biennial plants and perennial bunchgrasses. However, the addition of N, P, and NP fertilizers significantly reduced the species diversity of the plant community. At the same time, the addition of N, P, and NP fertilizers and the application of N and NP significantly reduced fungal species diversity but had no significant effect on soil bacteria. Our study provides new insights into the relationships between different types of fertilization and plant community productivity and biodiversity in degraded grasslands over four years of fertilization, which is critical for evaluating the effect of fertilization on the restoration of degraded grassland. Full article
Show Figures

Figure 1

26 pages, 6044 KiB  
Article
Mapping Tradeoffs and Synergies in Ecosystem Services as a Function of Forest Management
by Hazhir Karimi, Christina L. Staudhammer, Matthew D. Therrell, William J. Kleindl, Leah M. Mungai, Amobichukwu C. Amanambu and C. Nathan Jones
Land 2025, 14(8), 1591; https://doi.org/10.3390/land14081591 - 4 Aug 2025
Viewed by 164
Abstract
The spatial variation of forest ecosystem services at regional scales remains poorly understood, and few studies have explicitly analyzed how ecosystem services are distributed across different forest management types. This study assessed the spatial overlap between forest management types and ecosystem service hotspots [...] Read more.
The spatial variation of forest ecosystem services at regional scales remains poorly understood, and few studies have explicitly analyzed how ecosystem services are distributed across different forest management types. This study assessed the spatial overlap between forest management types and ecosystem service hotspots in the Southeastern United States (SEUS) and the Pacific Northwest (PNW) forests. We used the InVEST suite of tools and GIS to quantify carbon storage and water yield. Carbon storage was estimated, stratified by forest group and age class, and literature-based biomass pool values were applied. Average annual water yield and its temporal changes (2001–2020) were modeled using the annual water yield model, incorporating precipitation, potential evapotranspiration, vegetation type, and soil characteristics. Ecosystem service outputs were classified to identify hotspot zones (top 20%) and to evaluate the synergies and tradeoffs between these services. Hotspots were then overlaid with forest management maps to examine their distribution across management types. We found that only 2% of the SEUS and 11% of the PNW region were simultaneous hotspots for both services. In the SEUS, ecological and preservation forest management types showed higher efficiency in hotspot allocation, while in PNW, production forestry contributed relatively more to hotspot areas. These findings offer valuable insights for decision-makers and forest managers seeking to preserve the multiple benefits that forests provide at regional scales. Full article
Show Figures

Figure 1

30 pages, 4014 KiB  
Article
Spatial Heterogeneity in Carbon Pools of Young Betula sp. Stands on Former Arable Lands in the South of the Moscow Region
by Gulfina G. Frolova, Pavel V. Frolov, Vladimir N. Shanin and Irina V. Priputina
Plants 2025, 14(15), 2401; https://doi.org/10.3390/plants14152401 - 3 Aug 2025
Viewed by 125
Abstract
This study investigates the spatial heterogeneity of carbon pools in young Betula sp. stands on former arable lands in the southern Moscow region, Russia. The findings could be useful for the current estimates and predictions of the carbon balance in such forest ecosystems. [...] Read more.
This study investigates the spatial heterogeneity of carbon pools in young Betula sp. stands on former arable lands in the southern Moscow region, Russia. The findings could be useful for the current estimates and predictions of the carbon balance in such forest ecosystems. The research focuses on understanding the interactions between plant cover and the environment, i.e., how environmental factors such as stand density, tree diameter and height, light conditions, and soil properties affect ecosystem carbon pools. We also studied how heterogeneity in edaphic conditions affects the formation of plant cover, particularly tree regeneration and the development of ground layer vegetation. Field measurements were conducted on a permanent 50 × 50 m sampling plot divided into 5 × 5 m subplots, in order to capture variability in vegetation and soil characteristics. Key findings reveal significant differences in carbon stocks across subplots with varying stand densities and light conditions. This highlights the role of the spatial heterogeneity of soil properties and vegetation cover in carbon sequestration. The study demonstrates the feasibility of indirect estimation of carbon stocks using stand parameters (density, height, and diameter), with results that closely match direct measurements. The total ecosystem carbon stock was estimated at 80.47 t ha−1, with the soil contribution exceeding that of living biomass and dead organic matter. This research emphasizes the importance of accounting for spatial heterogeneity in carbon assessments of post-agricultural ecosystems, providing a methodological framework for future studies. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

19 pages, 3112 KiB  
Article
Study on the Distribution and Quantification Characteristics of Soil Nutrients in the Dryland Albic Soils of the Sanjiang Plain, China
by Jingyang Li, Huanhuan Li, Qiuju Wang, Yiang Wang, Xu Hong and Chunwei Zhou
Agronomy 2025, 15(8), 1857; https://doi.org/10.3390/agronomy15081857 - 31 Jul 2025
Viewed by 224
Abstract
The main soil type in the Sanjiang Plain of Northeast China, dryland albic soil is of great significance for studying nutrient distribution characteristics. This study focuses on 852 Farm in the typical dryland albic soil area of the Sanjiang Plain, using a combination [...] Read more.
The main soil type in the Sanjiang Plain of Northeast China, dryland albic soil is of great significance for studying nutrient distribution characteristics. This study focuses on 852 Farm in the typical dryland albic soil area of the Sanjiang Plain, using a combination of paired t-test, geostatistics, correlation analysis, and principal component analysis to systematically reveal the spatial differentiation of soil nutrients in the black soil layer and white clay layer of dryland albic soil, and to clarify the impact mechanism of plow layer nutrient characteristics on crop productivity. The results show that the nutrient content order in both the black and white clay layers is consistent: total potassium (TK) > organic matter (OM) > total nitrogen (TN) > total phosphorus (TP) > alkali-hydrolyzable nitrogen (HN) > available potassium (AK) > available phosphorus (AP). Both layers exhibit a spatial pattern of overall consistency and local differentiation, with spatial heterogeneity dominated by altitude gradients—nutrient content increases with decreasing altitude. Significant differences exist in nutrient content and distribution between the black and white clay layers, with the comprehensive fertility of the black layer being significantly higher than that of the white clay layer, particularly for TN, TP, TK, HN, and OM contents (effect size > 8). NDVI during the full maize growth period is significantly positively correlated with TP, TN, AK, AP, and HN, and the NDVI dynamics (first increasing. then decreasing) closely align with the peak periods of available nitrogen/phosphorus and crop growth cycles, indicating a strong coupling relationship between vegetation biomass accumulation and nutrient availability. These findings provide important references for guiding rational fertilization, agricultural production layout, and ecological environmental protection, contributing to the sustainable utilization of dryland albic soil resources and sustainable agricultural development. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

24 pages, 1508 KiB  
Article
Genomic Prediction of Adaptation in Common Bean (Phaseolus vulgaris L.) × Tepary Bean (P. acutifolius A. Gray) Hybrids
by Felipe López-Hernández, Diego F. Villanueva-Mejía, Adriana Patricia Tofiño-Rivera and Andrés J. Cortés
Int. J. Mol. Sci. 2025, 26(15), 7370; https://doi.org/10.3390/ijms26157370 - 30 Jul 2025
Viewed by 302
Abstract
Climate change is jeopardizing global food security, with at least 713 million people facing hunger. To face this challenge, legumes as common beans could offer a nature-based solution, sourcing nutrients and dietary fiber, especially for rural communities in Latin America and Africa. However, [...] Read more.
Climate change is jeopardizing global food security, with at least 713 million people facing hunger. To face this challenge, legumes as common beans could offer a nature-based solution, sourcing nutrients and dietary fiber, especially for rural communities in Latin America and Africa. However, since common beans are generally heat and drought susceptible, it is imperative to speed up their molecular introgressive adaptive breeding so that they can be cultivated in regions affected by extreme weather. Therefore, this study aimed to couple an advanced panel of common bean (Phaseolus vulgaris L.) × tolerant Tepary bean (P. acutifolius A. Gray) interspecific lines with Bayesian regression algorithms to forecast adaptation to the humid and dry sub-regions at the Caribbean coast of Colombia, where the common bean typically exhibits maladaptation to extreme heat waves. A total of 87 advanced lines with hybrid ancestries were successfully bred, surpassing the interspecific incompatibilities. This hybrid panel was genotyped by sequencing (GBS), leading to the discovery of 15,645 single-nucleotide polymorphism (SNP) markers. Three yield components (yield per plant, and number of seeds and pods) and two biomass variables (vegetative and seed biomass) were recorded for each genotype and inputted in several Bayesian regression models to identify the top genotypes with the best genetic breeding values across three localities on the Colombian coast. We comparatively analyzed several regression approaches, and the model with the best performance for all traits and localities was BayesC. Also, we compared the utilization of all markers and only those determined as associated by a priori genome-wide association studies (GWAS) models. Better prediction ability with the complete SNP set was indicative of missing heritability as part of GWAS reconstructions. Furthermore, optimal SNP sets per trait and locality were determined as per the top 500 most explicative markers according to their β regression effects. These 500 SNPs, on average, overlapped in 5.24% across localities, which reinforced the locality-dependent nature of polygenic adaptation. Finally, we retrieved the genomic estimated breeding values (GEBVs) and selected the top 10 genotypes for each trait and locality as part of a recommendation scheme targeting narrow adaption in the Caribbean. After validation in field conditions and for screening stability, candidate genotypes and SNPs may be used in further introgressive breeding cycles for adaptation. Full article
(This article belongs to the Special Issue Plant Breeding and Genetics: New Findings and Perspectives)
Show Figures

Figure 1

16 pages, 3034 KiB  
Article
Interannual Variability in Precipitation Modulates Grazing-Induced Vertical Translocation of Soil Organic Carbon in a Semi-Arid Steppe
by Siyu Liu, Xiaobing Li, Mengyuan Li, Xiang Li, Dongliang Dang, Kai Wang, Huashun Dou and Xin Lyu
Agronomy 2025, 15(8), 1839; https://doi.org/10.3390/agronomy15081839 - 29 Jul 2025
Viewed by 158
Abstract
Grazing affects soil organic carbon (SOC) through plant removal, livestock trampling, and manure deposition. However, the impact of grazing on SOC is also influenced by multiple factors such as climate, soil properties, and management approaches. Despite extensive research, the mechanisms by which grazing [...] Read more.
Grazing affects soil organic carbon (SOC) through plant removal, livestock trampling, and manure deposition. However, the impact of grazing on SOC is also influenced by multiple factors such as climate, soil properties, and management approaches. Despite extensive research, the mechanisms by which grazing intensity influences SOC density in grasslands remain incompletely understood. This study examines the effects of varying grazing intensities on SOC density (0–30 cm) dynamics in temperate grasslands of northern China using field surveys and experimental analyses in a typical steppe ecosystem of Inner Mongolia. Results show that moderate grazing (3.8 sheep units/ha/yr) led to substantial consumption of aboveground plant biomass. Relative to the ungrazed control (0 sheep units/ha/yr), aboveground plant biomass was reduced by 40.5%, 36.2%, and 50.6% in the years 2016, 2019, and 2020, respectively. Compensatory growth failed to fully offset biomass loss, and there were significant reductions in vegetation carbon storage and cover (p < 0.05). Reduced vegetation cover increased bare soil exposure and accelerated topsoil drying and erosion. This degradation promoted the downward migration of SOC from surface layers. Quantitative analysis revealed that moderate grazing significantly reduced surface soil (0–10 cm) organic carbon density by 13.4% compared to the ungrazed control while significantly increasing SOC density in the subsurface layer (10–30 cm). Increased precipitation could mitigate the SOC transfer and enhance overall SOC accumulation. However, it might negatively affect certain labile SOC fractions. Elucidating the mechanisms of SOC variation under different grazing intensities and precipitation regimes in semi-arid grasslands could improve our understanding of carbon dynamics in response to environmental stressors. These insights will aid in predicting how grazing systems influence grassland carbon cycling under global climate change. Full article
Show Figures

Figure 1

29 pages, 6179 KiB  
Article
Assessing the Provision of Ecosystem Services Using Forest Site Classification as a Basis for the Forest Bioeconomy in the Czech Republic
by Kateřina Holušová and Otakar Holuša
Forests 2025, 16(8), 1242; https://doi.org/10.3390/f16081242 - 28 Jul 2025
Viewed by 232
Abstract
The ecosystem services (ESs) of forests are the benefits that people derive from forest ecosystems. Their precise recognition is important for differentiating and determining the optimal principles of multifunctional forest management. The aim of this study is to identify some important ESs based [...] Read more.
The ecosystem services (ESs) of forests are the benefits that people derive from forest ecosystems. Their precise recognition is important for differentiating and determining the optimal principles of multifunctional forest management. The aim of this study is to identify some important ESs based on a site classification system at the lowest level—i.e., forest stands, at the forest owner level—as a tool for differentiated management. ESs were assessed within the Czech Republic and are expressed in units in accordance with the very sophisticated Forest Site Classification System. (1) Biomass production: The vertical differentiation of ecological conditions given by vegetation tiers, which reflect the influence of altitude, exposure, and climate, provides a basic overview of biomass production; the highest value is in the fourth vegetation tier, i.e., the Fageta abietis community. Forest stands are able to reach a stock of up to 900–1200 m3·ha−1. The lowest production is found in the eighth vegetation tier, i.e., the Piceeta community, with a wood volume of 150–280 m3·ha−1. (2) Soil conservation function: Geological bedrock, soil characteristics, and the geomorphological shape of the terrain determine which habitats serve a soil conservation function according to forest type sets. (3) The hydricity of the site, depending on the soil type, determines the hydric-water protection function of forest stands. Currently, protective forests occupy 53,629 ha in the Czech Republic; however, two subcategories of protective forests—exceptionally unfavorable locations and natural alpine spruce communities below the forest line—potentially account for 87,578 ha and 15,277 ha, respectively. Forests with an increased soil protection function—a subcategory of special-purpose forests—occupy 133,699 ha. The potential area of soil protection forests could be up to 188,997 ha. Water resource protection zones of the first degree—another subcategory of special-purpose forests—occupy 8092 ha, and there is potentially 289,973 ha of forests serving a water protection function (specifically, a water management function) in the Czech Republic. A separate subcategory of water protection with a bank protection function accounts for 80,529 ha. A completely new approach is presented for practical use by forest owners: based on the characteristics of the habitat, they can obtain information about the fulfillment of the habitat’s ecosystem services and, thus, have basic information for the determination of forest categories and the principles of differentiated management. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

23 pages, 4324 KiB  
Article
Monitoring Nitrogen Uptake and Grain Quality in Ponded and Aerobic Rice with the Squared Simplified Canopy Chlorophyll Content Index
by Gonzalo Carracelas, John Hornbuckle and Carlos Ballester
Remote Sens. 2025, 17(15), 2598; https://doi.org/10.3390/rs17152598 - 25 Jul 2025
Viewed by 449
Abstract
Remote sensing tools have been proposed to assist with rice crop monitoring but have been developed and validated on ponded rice. This two-year study was conducted on a commercial rice farm with irrigation automation technology aimed to (i) understand how canopy reflectance differs [...] Read more.
Remote sensing tools have been proposed to assist with rice crop monitoring but have been developed and validated on ponded rice. This two-year study was conducted on a commercial rice farm with irrigation automation technology aimed to (i) understand how canopy reflectance differs between high-yielding ponded and aerobic rice, (ii) validate the feasibility of using the squared simplified canopy chlorophyll content index (SCCCI2) for N uptake estimates, and (iii) explore the SCCCI2 and similar chlorophyll-sensitive indices for grain quality monitoring. Multispectral images were collected from an unmanned aerial vehicle during both rice-growing seasons. Above-ground biomass and nitrogen (N) uptake were measured at panicle initiation (PI). The performance of single-vegetation-index models in estimating rice N uptake, as previously published, was assessed. Yield and grain quality were determined at harvest. Results showed that canopy reflectance in the visible and near-infrared regions differed between aerobic and ponded rice early in the growing season. Chlorophyll-sensitive indices showed lower values in aerobic rice than in the ponded rice at PI, despite having similar yields at harvest. The SCCCI2 model (RMSE = 20.52, Bias = −6.21 Kg N ha−1, and MAPE = 11.95%) outperformed other models assessed. The SCCCI2, squared normalized difference red edge index, and chlorophyll green index correlated at PI with the percentage of cracked grain, immature grain, and quality score, suggesting that grain milling quality parameters could be associated with N uptake at PI. This study highlights canopy reflectance differences between high-yielding aerobic (averaging 15 Mg ha−1) and ponded rice at key phenological stages and confirms the validity of a single-vegetation-index model based on the SCCCI2 for N uptake estimates in ponded and non-ponded rice crops. Full article
Show Figures

Figure 1

12 pages, 1608 KiB  
Brief Report
Combining Grass-Legume Mixtures with Soil Amendments Boost Aboveground Productivity on Engineering Spoil Through Selection and Compensation Effects
by Zhiquan Zhang, Faming Ye, Hanghang Tuo, Yibo Wang, Wei Li, Yongtai Zeng and Hao Li
Diversity 2025, 17(8), 513; https://doi.org/10.3390/d17080513 - 25 Jul 2025
Viewed by 177
Abstract
The arid-hot valleys of Sichuan Province contain extensive engineered gravel deposits, where ecological restoration has become the predominant remediation strategy. Accelerating vegetation recovery and continuously improving productivity are important prerequisites for the protection of regional biodiversity. We employed fertilization and sowing cultivation to [...] Read more.
The arid-hot valleys of Sichuan Province contain extensive engineered gravel deposits, where ecological restoration has become the predominant remediation strategy. Accelerating vegetation recovery and continuously improving productivity are important prerequisites for the protection of regional biodiversity. We employed fertilization and sowing cultivation to facilitate ecological restoration. We have conducted continuous ecological experiments for two years using the following experimental treatments, covering indigenous soil, adding organic fertilizer, and applying compound fertilizer and organic fertilizer, with six types of sowing established under each soil treatment: monoculture and pairwise mixed cropping utilizing Elymus dahuricus (EDA), Dactylis glomerata (DGL), and Medicago sativa (MSA). Through the analysis of variance and the calculation of effect factors, our results indicated that compound fertilizer and organic fertilizer adding significantly improved vegetation cover and increased aboveground biomass, and the highest productivity was observed in the mixed sowing treatment of EDA and MSA. The effect coefficient model analysis further showed that the combination of EDA and MSA resulted in the highest selection and compensation effects on aboveground productivity. Two potential mechanisms drive enhanced productivity in mixed grasslands: the strengthening of the selection effect via increased legume nitrogen fixation, and the enhancement of the compensation effect through niche differentiation among species. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Graphical abstract

21 pages, 7145 KiB  
Article
Derivation and Application of Allometric Equations to Quantify the Net Primary Productivity (NPP) of the Salix pierotii Miq. Community as a Representative Riparian Vegetation Type
by Bong Soon Lim, Jieun Seok, Seung Jin Joo, Jeong Cheol Lim and Chang Seok Lee
Forests 2025, 16(8), 1225; https://doi.org/10.3390/f16081225 - 25 Jul 2025
Viewed by 151
Abstract
International efforts are underway to implement carbon neutrality policies in rapidly changing climate conditions. This situation has strongly demanded the discovery of novel carbon sinks. The Salix genus has attracted attention as a promising carbon sink owing to its rapid growth and efficient [...] Read more.
International efforts are underway to implement carbon neutrality policies in rapidly changing climate conditions. This situation has strongly demanded the discovery of novel carbon sinks. The Salix genus has attracted attention as a promising carbon sink owing to its rapid growth and efficient use as a biofuel in short-rotation cultivation. The present study aims to derive an allometric equation and conduct stem analysis as fundamental tools for estimating net primary productivity (NPP) in Salix pierotii Miq. stand, which is increasingly acknowledged as an important emerging carbon sink. The allometric equations derived showed a high explanatory rate and fitness (R2 ranged from 0.74 to 0.99). The allometric equations between DBH and stem volume and biomass derived in the process of stem analysis also showed a high explanatory rate and fitness (R2 ranged from 0.87 to 0.94). The NPPs calculated based on the allometric equation derived and stem analysis were 11.87 tonC∙ha−1∙yr−1 and 15.70 tonC∙ha−1∙yr−1, respectively. These results show that the S. pierotii community, recognized as the representative riparian vegetation, could play an important role as a carbon sink. In this context, an assessment of the carbon absorption capacity of riparian vegetation such as willow communities could contribute significantly to achieving carbon neutrality goals. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

Back to TopTop