Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,002)

Search Parameters:
Keywords = variational functional

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3978 KiB  
Article
Cotton-YOLO: A Lightweight Detection Model for Falled Cotton Impurities Based on Yolov8
by Jie Li, Zhoufan Zhong, Youran Han and Xinhou Wang
Symmetry 2025, 17(8), 1185; https://doi.org/10.3390/sym17081185 (registering DOI) - 24 Jul 2025
Abstract
As an important pillar of the global economic system, the cotton industry faces critical challenges from non-fibrous impurities (e.g., leaves and debris) during processing, which severely degrade product quality, inflate costs, and reduce efficiency. Traditional detection methods suffer from insufficient accuracy and low [...] Read more.
As an important pillar of the global economic system, the cotton industry faces critical challenges from non-fibrous impurities (e.g., leaves and debris) during processing, which severely degrade product quality, inflate costs, and reduce efficiency. Traditional detection methods suffer from insufficient accuracy and low efficiency, failing to meet practical production needs. While deep learning models excel in general object detection, their massive parameter counts render them ill-suited for real-time industrial applications. To address these issues, this study proposes Cotton-YOLO, an optimized yolov8 model. By leveraging principles of symmetry in model design and system setup, the study integrates the CBAM attention module—with its inherent dual-path (channel-spatial) symmetry—to enhance feature capture for tiny impurities and mitigate insufficient focus on key areas. The C2f_DSConv module, exploiting functional equivalence via quantization and shift operations, reduces model complexity by 12% (to 2.71 million parameters) without sacrificing accuracy. Considering angle and shape variations in complex scenarios, the loss function is upgraded to Wise-IoU for more accurate boundary box regression. Experimental results show that Cotton-YOLO achieves 86.5% precision, 80.7% recall, 89.6% mAP50, 50.1% mAP50–95, and 50.51 fps detection speed, representing a 3.5% speed increase over the original yolov8. This work demonstrates the effective application of symmetry concepts (in algorithmic structure and performance balance) to create a model that balances lightweight design and high efficiency, providing a practical solution for industrial impurity detection and key technical support for automated cotton sorting systems. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

23 pages, 30904 KiB  
Article
How Do Invasive Species Influence Biotic and Abiotic Factors Drive Vegetation Success in Salt Marsh Ecosystems?
by Yong Zhou, Chunqi Qiu, Hongyu Liu, Yufeng Li, Cheng Wang, Gang Wang, Mengyuan Su and Chen He
Land 2025, 14(8), 1523; https://doi.org/10.3390/land14081523 (registering DOI) - 24 Jul 2025
Abstract
Vegetation succession is a critical indicator of ecosystem structure and function and is often disrupted by the expansion of invasive species. However, ecosystem-scale studies elucidating invasion-driven succession mechanisms remain limited. This research focused on the Yancheng coastal salt marsh and analyzed the distribution [...] Read more.
Vegetation succession is a critical indicator of ecosystem structure and function and is often disrupted by the expansion of invasive species. However, ecosystem-scale studies elucidating invasion-driven succession mechanisms remain limited. This research focused on the Yancheng coastal salt marsh and analyzed the distribution variation of invasive species (Spartina alterniflora) and native species (Suaeda salsa and Phragmites australis) from 1987 to 2022 via the Google Earth Engine and random forest method. Logistic/Gaussian models were used to quantify land–sea distribution changes and vegetation succession trajectories. By integrating data on soil salinity, invasion duration, and fractional vegetation cover, generalized additive models (GAMs) were applied to identify the main factors influencing vegetation succession and to explore how Spartina alterniflora invasion affects the succession of salt marsh vegetation. The results indicated that the areas of Spartina alterniflora and Phragmites australis significantly increased by 3787.49 ha and 3452.60 ha in 35 years, respectively, contrasting with Suaeda salsa’s 82.46% decline. The FVC in the area has significantly increased by 42.10%, especially in the coexisted areas of different vegetation communities, indicating intensified interspecific competition. The overall trend of soil salinity was decreasing, with a decrease in soil salinity in native species areas from 0.72% to 0.37%. From the results of GAMs, soil salinity, tidal action, and invasion duration were significant factors influencing the distribution of native species, but salinity was not a significant factor affecting the Spartina alterniflora distribution. The findings revealed that the expansion of Spartina alterniflora changed the soil salinity and interspecific interactions, thereby altering the original plant community structure and establishing a new vegetation succession. This study enhances the understanding of the impacts of invasive species on ecosystems and offers theoretical support for salt marsh restoration. Full article
Show Figures

Figure 1

19 pages, 3051 KiB  
Article
Design of a Current-Mode OTA-Based Memristor Emulator for Neuromorphic Medical Application
by Amel Neifar, Imen Barraj, Hassen Mestiri and Mohamed Masmoudi
Micromachines 2025, 16(8), 848; https://doi.org/10.3390/mi16080848 (registering DOI) - 24 Jul 2025
Abstract
This study presents transistor-level simulation results for a novel memristor emulator circuit. The design incorporates an inverter and a current-mode-controlled operational transconductance amplifier to stabilize the output voltage. Transient performance is evaluated across a 20 MHz to 100 MHz frequency range. Simulations using [...] Read more.
This study presents transistor-level simulation results for a novel memristor emulator circuit. The design incorporates an inverter and a current-mode-controlled operational transconductance amplifier to stabilize the output voltage. Transient performance is evaluated across a 20 MHz to 100 MHz frequency range. Simulations using 0.18 μm TSMC technology confirm the circuit’s functionality, demonstrating a power consumption of 0.1 mW at a 1.2 V supply. The memristor model’s reliability is verified through corner simulations, along with Monte Carlo and temperature variation tests. Furthermore, the emulator is applied in a Memristive Integrate-and-Fire neuron circuit, a CMOS-based system that replicates biological neuron behavior for spike generation, enabling ultra-low-power computing and advanced processing in retinal prosthesis applications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

16 pages, 6885 KiB  
Article
Research on Optimized Design of In Situ Dynamic Variable-Aperture Device for Variable-Spot Ion Beam Figuring
by Hongyu Zou, Hao Hu, Xiaoqiang Peng, Meng Liu, Pengxiang Wang and Chaoliang Guan
Micromachines 2025, 16(8), 849; https://doi.org/10.3390/mi16080849 (registering DOI) - 24 Jul 2025
Abstract
Ion beam figuring (IBF) is an ultra-high-precision surface finishing technology characterized by a distinct trade-off between the spot size of the removal function and its corresponding figuring capabilities. A larger spot size for the removal function leads to higher processing efficiency but lower [...] Read more.
Ion beam figuring (IBF) is an ultra-high-precision surface finishing technology characterized by a distinct trade-off between the spot size of the removal function and its corresponding figuring capabilities. A larger spot size for the removal function leads to higher processing efficiency but lower figuring ability. Conversely, a smaller spot size results in higher figuring ability but lower efficiency. Adjusting the spot size of the removal function using tools with an aperture is a possible approach. However, existing variable-aperture tools have certain limitations in IBF processing. To leverage the advantages of both large and small spot sizes for the removal function during IBF processing, an in situ dynamic beam variable-aperture device has been designed. This device optimizes the parameters of diaphragm sheets and employs FOC for dynamic aperture adjustment. Simulations show that 12 numbers of 0.1 mm-thick sheets minimize removal function distortion, with the thermal strain-induced area variation being <5%. FOC enables rapid (≤0.45 s full range) and precise aperture control. Experiments confirm adjustable spot sizes (FWHM 0.7–17.2 mm) with Gaussian distribution (correlation >96.7%), operational parameter stability (relative change rate ≤5%), and high repeatable positioning precision (relative change rate ≤3.2% in repeated adjustments). The design enhances IBF efficiency, flexibility, and accuracy by enabling in situ spot size optimization, overcoming conventional limitations. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

9 pages, 932 KiB  
Brief Report
scaRNA1 Expression Levels Affect Alternative Splicing of mRNA
by Madeleine Brown, Brittnei Earl, Michael Filla, Nataliya Kibiryeva, James E. O’Brien and Douglas C. Bittel
Genes 2025, 16(8), 864; https://doi.org/10.3390/genes16080864 (registering DOI) - 24 Jul 2025
Abstract
Our previous research identified 12 small Cajal body-specific RNAs (scaRNAs) with reduced expression in the right ventricle in infant patients with tetralogy of Fallot. Likewise, we showed that there were significant changes in mRNA processing in the RV in these patients. ScaRNAs play [...] Read more.
Our previous research identified 12 small Cajal body-specific RNAs (scaRNAs) with reduced expression in the right ventricle in infant patients with tetralogy of Fallot. Likewise, we showed that there were significant changes in mRNA processing in the RV in these patients. ScaRNAs play a crucial role in the biochemical maturation of spliceosomal RNAs (pseudouridylation and 2′-O-methylation). We showed that variations in scaRNA1 levels resulted in changes in alternative splicing in human cells. To investigate further the role that scaRNAs play in mRNA processing, we examine here the impact of knocking down scaRNA1 in quail myoblast cells (Coturnix japonica, a well-established animal model for studying embryonic development). Following the knockdown of scaRNA1, transcriptome analysis revealed that the genes Tjp1, Map3k7, and Sppl2a were alternatively spliced. Growing evidence indicates that alternative splicing of mRNA plays an important role in regulating cell differentiation and tissue development. Our data presented here provide additional support for research to clarify the specific roles that individual scaRNAs play in regulating spliceosome function and mRNA splicing. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

23 pages, 9118 KiB  
Article
Scattering Characteristics of a Circularly Polarized Bessel Pincer Light-Sheet Beam Interacting with a Chiral Sphere of Arbitrary Size
by Shu Zhang, Shiguo Chen, Qun Wei, Renxian Li, Bing Wei and Ningning Song
Micromachines 2025, 16(8), 845; https://doi.org/10.3390/mi16080845 (registering DOI) - 24 Jul 2025
Abstract
The scattering interaction between a circularly polarized Bessel pincer light-sheet beam and a chiral particle is investigated within the framework of generalized Lorenz–Mie theory (GLMT). The incident electric field distribution is rigorously derived via the vector angular spectrum decomposition method (VASDM), with subsequent [...] Read more.
The scattering interaction between a circularly polarized Bessel pincer light-sheet beam and a chiral particle is investigated within the framework of generalized Lorenz–Mie theory (GLMT). The incident electric field distribution is rigorously derived via the vector angular spectrum decomposition method (VASDM), with subsequent determination of the beam-shape coefficients (BSCs) pmnu and qmnu through multipole expansion in the basis of vector spherical wave functions (VSWFs). The expansion coefficients for the scattered field (AmnsBmns) and interior field (AmnBmn) are derived by imposing boundary conditions. Simulations highlight notable variations in the scattering field, near-surface field distribution, and far-field intensity, strongly influenced by the dimensionless size parameter ka, chirality κ, and beam parameters (beam order l and beam scaling parameter α0). These findings provide insights into the role of chirality in modulating scattering asymmetry and localization effects. The results are particularly relevant for applications in optical manipulation and super-resolution imaging in single-molecule microbiology. Full article
Show Figures

Figure 1

15 pages, 2401 KiB  
Article
Structural Analysis of Regenerated Cellulose Textile Covered with Cellulose Nano Fibers
by Ayaka Yamaji, Yui Okuda, Chikaho Kobayashi, Rikako Kurahashi, Kyoko Kazuma, Kazuki Chiba, Mitsuhiro Hirata, Yuka Ikemoto, Keiichi Osaka, Jiacheng Gao, Harumi Sato and Go Matsuba
Polymers 2025, 17(15), 2015; https://doi.org/10.3390/polym17152015 - 23 Jul 2025
Abstract
Cellulose nanofiber (CNF) treatments can enhance the structure and performance of regenerated cellulose fibers. This study investigates the effects of CNF treatment on the mechanical properties, water absorption behavior, and humidity dependence of regenerated cellulose fibers. Tensile testing demonstrated that CNF-treated fibers exhibit [...] Read more.
Cellulose nanofiber (CNF) treatments can enhance the structure and performance of regenerated cellulose fibers. This study investigates the effects of CNF treatment on the mechanical properties, water absorption behavior, and humidity dependence of regenerated cellulose fibers. Tensile testing demonstrated that CNF-treated fibers exhibit improved elasticity and reduced swelling in aqueous environments. Scanning electron microscopy revealed the adsorption of CNF components onto the fiber surfaces. Microbeam X-ray diffraction indicated structural differences between untreated and CNF-treated fibers, with the latter containing cellulose I crystals. Small-angle X-ray scattering revealed alterations in the internal fibrillar structure due to CNF treatment. FT-IR spectroscopy highlighted humidity-dependent variations in molecular vibrations, with peak intensities increasing under higher humidity conditions. Additionally, CNF treatment inhibited water absorption in high-humidity conditions, contributing to reduced expansion rates and increased elastic modulus during water absorption. Overall, CNF treatment enhanced both the mechanical strength and water resistance of regenerated cellulose fibers, making them suitable for advanced textile applications. This study provides valuable insights into the role of CNF-treated fibers in improving the durability and functional performance of regenerated cellulose-based textile. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Graphical abstract

19 pages, 1710 KiB  
Article
Application of Empirical Mode Decomposition to Land Surface Temperature Projection Under a Changing Climate
by Che-Wei Chang and Wen-Cheng Huang
Water 2025, 17(15), 2204; https://doi.org/10.3390/w17152204 - 23 Jul 2025
Abstract
This study takes the daily temperature series of Taipei City as an example and proposes a data projection method based on Empirical Mode Decomposition (EMD), which effectively resolves the challenge of modeling non-stationary sequences. According to the daily mean temperature records from 1971 [...] Read more.
This study takes the daily temperature series of Taipei City as an example and proposes a data projection method based on Empirical Mode Decomposition (EMD), which effectively resolves the challenge of modeling non-stationary sequences. According to the daily mean temperature records from 1971 to 2023, Taipei has experienced an average warming rate of 0.02 °C per year. After applying EMD, the data were decomposed into 12 intrinsic mode functions (IMFs) and one residual trend. Among them, IMF5, with a period of 352 days (approximately one year), contributes 78% of the total energy, representing the dominant climatic cycle component. In this study, daily temperatures were categorized into five thermal levels: Cold (<12 °C), Cool (12–18 °C), Moderate (18–27 °C), Warm (27–32 °C), and Hot (>32 °C). In addition, using a 5-year moving process based on the annual EMD results, the IMFs and residuals were recombined to generate 390,625 synthetic sequences per year. Results show that the monthly mean temperatures of each year’s simulations closely match the observations, capturing the non-stationary characteristics of temperature variations. The overall classification accuracy of simulated versus observed daily temperature categories ranges from 60% to 71%, with an average of 65.1%. In summary, the EMD combined with the 5-year moving process developed in this study demonstrates a helpful data projection approach with effective reconstruction of periodic structures and stable simulation accuracy. It offers practical value for reconstructing urban climate variability, conducting risk assessments, and analyzing long-term warming trends. Moreover, it serves as a vital tool for modeling non-stationary climate data and supporting future projections. Full article
16 pages, 2518 KiB  
Article
Ligand Differentiation Ability of Insect Odorant Receptors in Heterologously Expressed Cells as Potential Biosensor Elements
by Rui Zhou, Yuji Sukekawa, Sawako Niki, Eri Kuroda, Ryohei Kanzaki, Shigehiro Namiki and Hidefumi Mitsuno
Chemosensors 2025, 13(8), 273; https://doi.org/10.3390/chemosensors13080273 - 23 Jul 2025
Abstract
The extensive diversity of volatile organic compounds, along with their minor structural variations, presents significant challenges in the development of chemosensory-based biosensors. Previously, we generated sensor cells expressing insect odorant receptors (ORs) in Sf21 cells, demonstrating their potential as cell-based odorant sensor elements. [...] Read more.
The extensive diversity of volatile organic compounds, along with their minor structural variations, presents significant challenges in the development of chemosensory-based biosensors. Previously, we generated sensor cells expressing insect odorant receptors (ORs) in Sf21 cells, demonstrating their potential as cell-based odorant sensor elements. However, it remains unclear whether the selectivity of cells expressing ORs in vitro for diverse compounds aligns with the receptor’s in vivo performance, aside from the response to target compounds. To address this, we assessed the ligand responses of sensor cells expressing ORs from Drosophila melanogaster using a high-throughput calcium imaging system. Our results demonstrate that in vitro receptor responses exhibit ligand selectivity comparable to in vivo conditions across different chemical categories. Broadly tuned OR-expressing sensor cells (Or13a, Or47a, and Or98a) displayed differential affinities, whereas the narrowly tuned Or56a-expressing sensor cells selectively responded to geosmin. Moreover, cell responses varied with subtle differences in chemical structure, including carbon chain length and functional group positioning. These findings provide valuable insights into insect OR–ligand interactions in vitro, demonstrating that receptor selectivity in sensor cells closely mirrors in vivo conditions. In addition to this consistency, our results highlight the subtle ligand differentiation capabilities of sensor cells enabling fluorescence-based visualization of receptor–ligand interactions. Full article
Show Figures

Figure 1

17 pages, 2673 KiB  
Article
Genome-Wide Association Analysis and Molecular Marker Development for Resistance to Fusarium equiseti in Soybean
by Yuhe Wang, Xiangkun Meng, Jinfeng Han, Yuming Yang, Hongjin Zhu, Yongguang Li, Yuhang Zhan, Weili Teng, Haiyan Li and Xue Zhao
Agronomy 2025, 15(8), 1769; https://doi.org/10.3390/agronomy15081769 - 23 Jul 2025
Abstract
Fusarium root rot, caused by Fusarium equiseti, poses a significant threat to soybean production. This study aimed to explore the genetic basis of resistance to Fusarium equiseti root rot (FERR) by evaluating the resistance phenotype of 346 soybean germplasms and conducting a genome-wide [...] Read more.
Fusarium root rot, caused by Fusarium equiseti, poses a significant threat to soybean production. This study aimed to explore the genetic basis of resistance to Fusarium equiseti root rot (FERR) by evaluating the resistance phenotype of 346 soybean germplasms and conducting a genome-wide association study (GWAS) using 698,949 SNP markers obtained from soybean germplasm resequencing data. GWAS analysis identified 101 SNPs significantly associated with FERR resistance, distributed across nine chromosomes, with the highest number of SNPs on chromosomes 13 and 20. Further gene-based association and allele variation analyses identified candidate genes whose mutations are closely related to FERR resistance. To accelerate soybean FERR resistance breeding screening, we developed CAPS markers S13_14464319-CAPS1 and S15_9215524-CAPS2, targeting these SNP sites, and KASP markers based on the S15_9205620-G/A, providing an effective tool for marker-assisted selection (MAS). This study offers a valuable theoretical foundation and molecular marker resources for the functional validation of FERR resistance genes and soybean disease resistance breeding. Full article
Show Figures

Figure 1

16 pages, 3898 KiB  
Article
Transcriptome and Metabolome Revealed Impacts of Zn Fertilizer Application on Flavonoid Biosynthesis in Foxtail Millet
by Ke Ma, Xiangyu Li, Xiangyang Chen, Chu Wang, Zecheng Zhang, Xiangyang Yuan, Fu Chen and Xinya Wen
Agronomy 2025, 15(8), 1767; https://doi.org/10.3390/agronomy15081767 - 23 Jul 2025
Abstract
To explore the effects of various zinc (Zn) fertilizer application methods and concentrations on foxtail millet quality and flavonoid biosynthesis, we used Zhangzagu 13 as the experimental material. The transcriptome and metabolome were used to examine variations in flavonoid biosynthesis and metabolism in [...] Read more.
To explore the effects of various zinc (Zn) fertilizer application methods and concentrations on foxtail millet quality and flavonoid biosynthesis, we used Zhangzagu 13 as the experimental material. The transcriptome and metabolome were used to examine variations in flavonoid biosynthesis and metabolism in foxtail millet under different Zn application methods. The results showed that different Zn application methods significantly increased the total polyphenol, carotenoid, total flavonoid, and Zn contents in the grains of foxtail millet. Under the basal soil application (S3) and foliar spray (F2) treatments, the total flavonoid content significantly increased by 45.87% and 64.40%, respectively, compared with that of CK. Basal soil Zn fertilization increased the flavonoid content of foxtail millet by up-regulating genes related to flavonoid metabolism and biosynthesis, including flavanone-3-hydroxylase, chalcone isomerase, and leucoanthocyanidin reductase. Foliar Zn application enhanced flavonoid content by up-regulating genes involved in flavonoid metabolic and biosynthetic processes and chalcone isomerase. In conclusion, using Zn fertilizer can improve the synthesis and metabolism of foxtail millet flavonoids, effectively increase the content of functional substances in grains, and realize the biofortification of foxtail millet grains. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

26 pages, 412 KiB  
Article
Entropy and Stability: Reduced Hamiltonian Formalism of Non-Barotropic Flows and Instability Constraints
by Asher Yahalom
Entropy 2025, 27(8), 779; https://doi.org/10.3390/e27080779 - 23 Jul 2025
Abstract
A reduced representation of a dynamical system helps us to understand what the true degrees of freedom of that system are and thus what the possible instabilities are. Here we extend previous work on barotropic flows to the more general non-barotropic flow case [...] Read more.
A reduced representation of a dynamical system helps us to understand what the true degrees of freedom of that system are and thus what the possible instabilities are. Here we extend previous work on barotropic flows to the more general non-barotropic flow case and study the implications for variational analysis and conserved quantities of topological significance such as circulation and helicity. In particular we introduce a four-function Eulerian variational principle of non-barotropic flows, which has not been described before. Also new conserved quantities of non-barotropic flows related to the topological velocity field, topological circulation and topological helicity, including a local version of topological helicity, are introduced. The variational formalism given in terms of a Lagrangian density allows us to introduce canonical momenta and hence a Hamiltonian formalism. Full article
(This article belongs to the Special Issue Unstable Hamiltonian Systems and Scattering Theory)
Show Figures

Figure 1

31 pages, 3963 KiB  
Review
Neuroglobin and Cytoglobin in Mammalian Nervous Systems: About Distribution, Regulation, Function, and Some Open Questions
by Stefan Reuss
Brain Sci. 2025, 15(8), 784; https://doi.org/10.3390/brainsci15080784 - 23 Jul 2025
Abstract
Globins are a class of globular proteins that function in the transportation or storage of oxygen. They are critical for cellular metabolism. Notable examples include hemoglobin, which is found in red blood cells, and myoglobin, which is present in muscle cells. Approximately two [...] Read more.
Globins are a class of globular proteins that function in the transportation or storage of oxygen. They are critical for cellular metabolism. Notable examples include hemoglobin, which is found in red blood cells, and myoglobin, which is present in muscle cells. Approximately two decades ago, a third globin, designated as neuroglobin, was identified, expressed predominantly in neuronal cells. This was followed two years later by the fourth, cytoglobin, found in cells of the fibroblast lineage, as well as in neuronal cell populations of the central and nervous systems. Both neuroglobin and cytoglobin have been found in the sensory and endocrine systems, albeit inconsistently, and it is thought that they are engaged in functions such as oxygen transport and storage, scavenging of free radicals, NO metabolism, peroxidase activity, and signaling functions. Neuroglobin is also expressed in astrocytes under challenging conditions. Common neuroscience methods were utilized to study the distribution and regulation of globin tissues and of single brain cells. Despite considerable overlap in the findings of various studies, some results deviate significantly from other studies. The potential causes of these discrepancies may include variations in detection methods, animal age and sex, time of day and year, and differing cell culture conditions. This review will explore factors that may influence functional aspects of globins and their detection in the mammalian brain. Full article
(This article belongs to the Section Neuropharmacology and Neuropathology)
Show Figures

Figure 1

16 pages, 2282 KiB  
Article
Comparison of LC-PUFAs Biosynthetic Characteristics in Male and Female Tilapia at Different Ontogenetic Stages
by Fang Chen, Liuling Gao, Junfeng Guan, Chao Xu, Deshou Wang, Yuanyou Li and Dizhi Xie
Life 2025, 15(8), 1167; https://doi.org/10.3390/life15081167 - 23 Jul 2025
Abstract
Tilapia possess the ability to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFA); however, variations in this capacity across different growth stages and between sexes remain poorly understood. This study evaluated the LC-PUFA biosynthetic capacity in male and female tilapia fed two distinct diets—perilla oil [...] Read more.
Tilapia possess the ability to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFA); however, variations in this capacity across different growth stages and between sexes remain poorly understood. This study evaluated the LC-PUFA biosynthetic capacity in male and female tilapia fed two distinct diets—perilla oil (rich in α-linolenic acid, ALA) and peanut oil (rich in linoleic acid, LA)—over 24 weeks, spanning four growth stages (I-IV, from fry to adult). The results revealed that during stages I to III, both diets produced similar final body weights. However, in stage IV, male tilapia fed the peanut oil diet exhibited significantly higher body weight compared to those fed perilla oil, whereas females showed no significant differences between diets. Throughout stages III and IV, males were consistently heavier than females. LC-PUFA levels in the liver and intestine varied across growth stages, with the lowest levels at stage II and the highest at stage III. Notably, male tilapia exhibited higher expression levels of fads2 and elovl5 compared to the females across stages II to IV. The hepatic and intestinal mRNA levels increased by up to 6.40-fold and 3.85-fold, respectively, indicating a greater LC-PUFA biosynthetic capacity in males. This study provides valuable insights into the biosynthesis of LC-PUFA in tilapia, highlighting the influence of growth stage, sex and dietary fatty acid composition on this process, and laying a foundation for further evaluating the functional significance of dietary lipid sources in aquaculture. Full article
(This article belongs to the Special Issue Nutrition–Physiology Interactions in Aquatic Species)
Show Figures

Figure 1

13 pages, 1791 KiB  
Article
Hydrogen Gas Inhalation Improved Intestinal Microbiota in Ulcerative Colitis: A Randomised Double-Blind Placebo-Controlled Trial
by Takafumi Maruyama, Dai Ishikawa, Rina Kurokawa, Hiroaki Masuoka, Kei Nomura, Mayuko Haraikawa, Masayuki Orikasa, Rina Odakura, Masao Koma, Masashi Omori, Hirotaka Ishino, Kentaro Ito, Tomoyoshi Shibuya, Wataru Suda and Akihito Nagahara
Biomedicines 2025, 13(8), 1799; https://doi.org/10.3390/biomedicines13081799 - 23 Jul 2025
Abstract
Background/Objective: Dysbiosis is implicated in the pathogenesis of ulcerative colitis. Hydrogen has been reported to promote intestinal microbiota diversity and suppress ulcerative colitis progression in mice models. In this study, we investigated changes in the intestinal microbiota, therapeutic effects, and safety of [...] Read more.
Background/Objective: Dysbiosis is implicated in the pathogenesis of ulcerative colitis. Hydrogen has been reported to promote intestinal microbiota diversity and suppress ulcerative colitis progression in mice models. In this study, we investigated changes in the intestinal microbiota, therapeutic effects, and safety of hydrogen inhalation in patients with ulcerative colitis. Methods: In this randomised, double-blind, placebo-controlled trial, 10 active patients with ulcerative colitis (aged ≥20 years; Lichtiger’s clinical activity index, 3–10; and Mayo endoscopic subscores ≥1) participated, and they were assigned to either a hydrogen or air inhalation group (hydrogen and placebo groups, respectively). All patients inhaled gas for 4 h every day for 8 weeks. Subsequently, we performed clinical indices and microbiota analyses using the metagenomic sequencing of stool samples before and after inhalation. Results: There was significant difference in the sum of the Mayo endoscopic subscores before and after inhalation in the clinical assessment indices. The hydrogen group showed higher α-diversity (p = 0.19), and the variation in β-diversity was markedly different, compared to the placebo group, in intestinal microbiota analysis (p = 0.02). Functional gene analysis revealed 115 significant genetic changes in the hydrogen group following treatment. No inhalation-related adverse events were observed. Conclusions: Hydrogen inhalation appeared to improve intestinal microbiota diversity; however, no clear therapeutic effect on ulcerative colitis was observed. Further studies are needed, and hydrogen inhalation may possibly lead to a logical solution combined with microbiome therapy, such as faecal microbiota transplantation, with fewer adverse events. Full article
Show Figures

Figure 1

Back to TopTop