Entropy and Stability: Reduced Hamiltonian Formalism of Non-Barotropic Flows and Instability Constraints
Abstract
1. Introduction
2. Fundamental Equations of Non-Stationary Non-Barotropic Fluid Dynamics
Summary
3. Thermodynamics and Vortex Dynamics
Summary
4. The Lagrangian Variational Approach
Summary
5. The Eulerian Variational Principle
Summary
6. Euler’s Equations
Summary
7. Simplified Eulerian Action
Summary
8. The Simplified Hamiltonian Formalism
Summary
9. Stationary Fluid Dynamics
Summary
10. Constants of Motion
Summary
11. A Simpler Variational Principle of Non-Stationary Fluid Dynamics
Summary
12. Example: A Flow Solution in Circular Toroidal Coordinates
12.1. The Toroidal Velocity Field
12.2. Helicity
12.3. Dynamics on the Torus
Summary
13. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Variational Formalism of Point Particles
Appendix B. Variation in the Volume Element
References
- Yahalom, A.; Lynden-Bell, D. Variational Principles for Topological Barotropic Fluid Dynamics [“Simplified Variational Principles for Barotropic Fluid Dynamics” Los-Alamos Archives—physics/0603162]. Geophys. Astrophys. Fluid Dyn. 2014, 108, 11. [Google Scholar] [CrossRef]
- Salmon, R. Hamiltonian fluid mechanics. Annu. Rev. Fluid Mech. 1988, 20, 225–256. [Google Scholar] [CrossRef]
- Holm, D.D.; Marsden, J.E.; Ratiu, T.S. The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories. Adv. Math. 1998, 137, 1–81. [Google Scholar] [CrossRef]
- Morrison, P.J. Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 1998, 70, 467. [Google Scholar] [CrossRef]
- Moffatt, H.K. The degree of knottedness of tangled vortex lines. J. Fluid Mech. 1969, 35, 117. [Google Scholar] [CrossRef]
- Eckart, C. Variation Principles of Hydrodynamics. Phys. Fluids 1960, 3, 421. [Google Scholar] [CrossRef]
- Bretherton, F.P. A note on Hamilton’s principle for perfect fluids. J. Fluid Mech. 1970, 44, 19–31. [Google Scholar] [CrossRef]
- Newcomb, W.A. Lagrangian and Hamiltonian Methods in Magnetohydrodynamics. Nucl. Fusion 1962, 2, 451–463. [Google Scholar]
- Clebsch, A. Uber eine allgemeine transformation der hydro-dynamischen Gleichungen. J. Reine Angew. Math. 1857, 54, 293–312. [Google Scholar]
- Clebsch, A. Uber die Integration der hydrodynamischen Gleichungen. J. Reine Angew. Math. 1859, 56, 1–10. [Google Scholar]
- Davydov, B. Variational principle and canonical equations for an ideal fluid. Dokl. Akad. Nauk 1949, 69, 165–168. (In Russian) [Google Scholar]
- Seliger, R.L.; Whitham, G.B. Variational principles in continuum mechanics. Proc. Roy. Soc. Lond. A 1968, 305, 1. [Google Scholar]
- Yahalom, A. Simplified Variational Principles for non-Barotropic Magnetohydrodynamics. J. Plasma Phys. 2016, 82, 905820204. [Google Scholar] [CrossRef]
- Lamb, H. Hydrodynamics; Dover Publications: Garden City, NY, USA, 1945. [Google Scholar]
- Mobbs, S.D. Some vorticity theorems and conservation laws for non-barotropic fluids. J. Fluid Mech. 1981, 108, 475–483. [Google Scholar] [CrossRef]
- Lynden-Bell, D.; Katz, J. Isocirculational Flows and their Lagrangian and Energy principles. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1981, 378, 179–205. [Google Scholar]
- Tur, A.V.; Yanovsky, V.V. Invariants in dissipationless hydrodynamic media. J. Fluid Mech. 1993, 248, 67–106. [Google Scholar] [CrossRef]
- Sagdeev, R.Z.; Moiseev, S.S.; Tur, A.V.; Yanovsky, V.V. Problems of the theory of strong turbulence and topological solitons. In Nonlinear Phenomena in Plasma Physics and Hydrodynamics; MIR Press: Moscow, Russia, 1986; pp. 137–182. Available online: https://mirtitles.org/2020/05/07/nonlinear-phenomena-in-plasma-physics-and-hydrodynamics-sagdeev-ed/ (accessed on 30 April 2025).
- Katz, J.; Lynden-Bell, D. A Lagrangian for Eulerian fluid mechanics. Proc. R. Soc. Lond. A 1982, 381, 263–274. [Google Scholar] [CrossRef]
- Webb, G.M.; Anco, S.C.; Meleshko, S.V.; Kaptsov, E.I. Noether’s theorems and conservation laws in magnetohydrodynamics and Chew–Goldberger–Low plasmas. Rev. Mod. Plasma Phys. 2024, 8, 33. [Google Scholar] [CrossRef]
- Webb, G.M.; Dasgupta, B.; McKenzie, J.F.; Hu, Q.; Zank, G.P. Local and nonlocal advected invariants and helicities in magnetohydrodynamics and gas dynamics I: Lie dragging approach. J. Phys. A Math. Theoret. 2014, 47, 095501. [Google Scholar] [CrossRef]
- Webb, G.M.; Dasgupta, B.; McKenzie, J.F.; Hu, Q.; Zank, G.P. Local and nonlocal advected invariants and helicities in magnetohydrodynamics and gas dynamics II: Noether’s theorems and Casimirs. J. Phys. A Math. Theoret. 2014, 47, 095502. [Google Scholar] [CrossRef]
- Webb, G.M.; Mace, R.L. Potential vorticity in magnetohydrodynamics. J. Plasma Phys. 2015, 81, 905810115. [Google Scholar] [CrossRef]
- Arnold, V.I. Variational principle for three-dimensional steady-state flows of an ideal fluid. Appl. Math. Mech. 1965, 5, 1002–1008. [Google Scholar] [CrossRef]
- Arnold, V.I. On conditions for non-linear stability of plane stationary curvilinear flows of an ideal fluid. Dokl. Acad. Nauk SSSR 1965, 162, 975–978. [Google Scholar]
- Yahalom, A.; Katz, J.; Inagaki, S. Energy principles for self-gravitating barotropic flows—II. The stability of Maclaurin discs. Mon. Not. R. Astron. Soc. 1994, 268, 506–516. [Google Scholar] [CrossRef]
- Yahalom, A. Stability in the Weak Variational Principle of Barotropic Flows and Implications for Self-Gravitating Discs. Mon. Not. R. Astron. Soc. 2011, 418, 401–426. [Google Scholar] [CrossRef]
- Lundgren, T.S. Hamilton’s Variational Principle for a Perfectly Conducting Plasma. Phys. Fluids 1963, 6, 898–904. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yahalom, A. Entropy and Stability: Reduced Hamiltonian Formalism of Non-Barotropic Flows and Instability Constraints. Entropy 2025, 27, 779. https://doi.org/10.3390/e27080779
Yahalom A. Entropy and Stability: Reduced Hamiltonian Formalism of Non-Barotropic Flows and Instability Constraints. Entropy. 2025; 27(8):779. https://doi.org/10.3390/e27080779
Chicago/Turabian StyleYahalom, Asher. 2025. "Entropy and Stability: Reduced Hamiltonian Formalism of Non-Barotropic Flows and Instability Constraints" Entropy 27, no. 8: 779. https://doi.org/10.3390/e27080779
APA StyleYahalom, A. (2025). Entropy and Stability: Reduced Hamiltonian Formalism of Non-Barotropic Flows and Instability Constraints. Entropy, 27(8), 779. https://doi.org/10.3390/e27080779