Research on Optimized Design of In Situ Dynamic Variable-Aperture Device for Variable-Spot Ion Beam Figuring
Abstract
1. Introduction
2. Structural Design and Control
2.1. Device and Working Principle
2.2. Key Structural Design
2.3. Design of Control Method
3. Simulation Analysis
3.1. Simulation of Removal Function
3.2. Analysis of Simulation Using FEM
3.3. Control System Simulation and Analysis
4. Experiment Results
4.1. Verification of Spot Size and Shape in Removal Function
4.2. Stability of Removal Function
4.3. Comparative Experiment for Recurrence Accuracy of Removal Function
5. Conclusions
- (1)
- The device enabled continuous aperture adjustment from 1–20 mm, directly corresponding to a removal function full-width at half-maximum (FWHM) range of 0.7–17.2 mm. The device enabled in situ dynamic tuning, overcoming traditional IBF tool limitations and achieving efficient, precise figuring in one cycle.
- (2)
- Using the FOC system, the device completed full-range aperture adjustments (1–20 mm) within 0.45 s and small-range adjustments (≤5 mm) within 0.11 s. This eliminates the hours-long vacuum chamber cycling required by traditional methods, meeting the real-time dynamic response demands of IBF for frequency band error correction.
- (3)
- With optimized double-arc diaphragm sheets, the removal function maintained a rotationally symmetric Gaussian distribution with a correlation coefficient exceeding 96.7%, surpassing the design target of 95%. This high conformity ensures uniform material removal in all directions, which is critical for ultra-high-precision optical fabrication.
- (4)
- Thermal strain analysis using the finite element method (FEM) confirmed that the 0.1 mm-thick molybdenum diaphragm sheets exhibited aperture area variation below 5% under ion beam exposure. Line scanning experiments over 50 min further validated the relative changes in peak and volumetric removal efficiency to be within 4.8%, demonstrating operational stability.
- (5)
- Repeated aperture adjustments yielded relative change rates within 3.2% for the removal function parameters, significantly outperforming traditional ion diaphragms (13.9% and 10.7% changes in peak and volumetric efficiency, respectively). The device’s in situ adjustment capability eliminates ion source shutdowns and vacuum chamber cycling, ensuring consistency in iterative processing and exceeding the 5% recurrence accuracy requirement.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arnold, T.; Pietag, F. Ion beam figuring machine for ultra-precision silicon spheres correction. Precis. Eng. 2015, 41, 119–125. [Google Scholar] [CrossRef]
- Cheung, C.F.; Kong, L.B.; Ho, L.T.; To, S. Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing. Precis. Eng. 2011, 35, 574–590. [Google Scholar] [CrossRef]
- Guo, Z.F.; Jin, T.; Xie, G.Z.; Lu, A.G.; Qu, M.N. Approaches enhancing the process accuracy of fluid jet polishing for making ultra-precision optical components. Precis. Eng. 2019, 56, 20–37. [Google Scholar] [CrossRef]
- Sun, J.; Luo, X.; Ritchie, J.M.; Chang, W.; Wang, W. An investigation of redeposition effect for deterministic fabrication of nanodots by focused ion beam. Precis. Eng. 2012, 36, 31–36. [Google Scholar] [CrossRef]
- Li, W.; Xin, Q.; Fan, B.; Chen, Q.; Deng, Y. A Review of Emerging Technologies in Ultra-Smooth Surface Processing for Optical Components. Micromachines 2024, 15, 178. [Google Scholar] [CrossRef] [PubMed]
- Seok, D.C.; Yoo, S.R.; Lee, K.I.; Choi, Y.S.; Jung, Y.H. Relation between etching profile and voltage-current shape of sintered SiC etching by atmospheric pressure plasma. Plasma Sci. Technol. 2019, 21, 141–148. [Google Scholar] [CrossRef]
- Song, W.; Yang, Z.; Meng, D.; Wang, N.; Choi, S.-B. Magnetorheological Polishing Based on Honing Vertical Mechanism for Inner Surface of Titanium Alloy Pipes. Lubricants 2024, 12, 86. [Google Scholar] [CrossRef]
- Hu, J.; Hu, H.; Peng, X.Q.; Wang, Y.S.; Xue, S.; Liu, Y.; Du, C.Y. Multi-dimensional error figuring model for ion beams in X-ray mirrors. Opt. Express 2024, 32, 29458–29473. [Google Scholar] [CrossRef] [PubMed]
- Du, C.Y.; Dai, Y.F.; Guan, C.L.; Hu, H. High precision fabrication of aluminum optics by optimizing an Ar+ ion beam figuring strategy for polishing the contamination layer. Opt. Express 2021, 29, 28886–28900. [Google Scholar] [CrossRef] [PubMed]
- Du, C.Y.; Dai, Y.F.; Guan, C.L.; Hu, H. High efficiency removal of single point diamond turning marks on aluminum surface by combination of ion beam sputtering and smoothing polishing. Opt. Express 2021, 29, 3738–3753. [Google Scholar] [CrossRef] [PubMed]
- Weiser, M. Ion beam figuring for lithography optics. Beam Interact. Mater. At. 2009, 267, 8–9. [Google Scholar] [CrossRef]
- Tang, D.L.; Pu, S.H.; Huang, Q.; Tong, H.H.; Cui, X.R.; Chu, P.K. Broad beam gas ion source with hollow cathode discharge and four-grid accelerator system. Beam Interact. Mater. At. 2008, 257, 801–804. [Google Scholar] [CrossRef]
- Wang, T.Y.; Huang, L.; Vescovi, M.; Kuhne, D.; Zhu, Y.; Negi, V.; Zhang, Z.L.; Wang, C.J.; Ke, X.L.; Choi, H.; et al. Universal dwell time optimization for deterministic optics fabrication. Opt. Express 2021, 29, 38737–38757. [Google Scholar] [CrossRef] [PubMed]
- Jiao, C.J.; Li, S.Y.; Xie, X.H. Algorithm for ion beam figuring of low-gradient mirrors. Appl. Opt. 2009, 48, 4090–4096. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.j.; Li, S.Y.; Xie, X.H.; Zhou, L.; Dai, Y.F. Analysis of removal efficiency of ion beam figuring for optical component. Nanotechnol. Precis. Eng. 2014, 12, 351–357. [Google Scholar]
- Dai, Y.F.; Zhou, L.; Xie, X.H.; Shen, Y.X. Ion beam figuring technology. J. Appl. Opt. 2011, 32, 753–760. [Google Scholar]
- Xie, X.H.; Gu, W.H.; Zhou, L. Study on Machining Small Precision Optical Component Using Thin Ion Beam. J. Natl. Univ. Def. Technol. 2009, 31, 10–14. [Google Scholar]
- Zhao, F.X. Research on Key Technologies of High Precision and Low Defect Processing for Quartz Pendulum. Master’s Thesis, National University of Defense Technology, Changsha, China, 2018. [Google Scholar]
- Ma, Z.L.; Sui, Y.X. Large Optical Surface Error Figuring by Ion Beam. Acta Opt. Sin. 2014, 34, 202–206. [Google Scholar] [CrossRef]
- Wang, Y.N. Study on Removal Characteristics of Variable Aperture Ion Beam Based on Aperture Method. Master’s Thesis, Xi’an Technological University, Xi’an, China, 2020. [Google Scholar]
- Du, C.C. Research on off-axis hyperboloid machining technology based on ion beam. Master’s Thesis, Xi’an Technological University, Xi’an, China, 2022. [Google Scholar]
- Sun, M.M.; Long, J.F.; Guo, W.L.; Liu, C.; Zhao, Y. A study of the influence of different grid structures on plasma characteristics in the discharge chamber of an ion thruster. Plasma Sci. Technol. 2023, 25, 164–173. [Google Scholar] [CrossRef]
- Satov, Y.A.; Shumshurov, A.V.; LosevCA1, A.A.; Balabaev, A.N.; Khrisanov, I.A.; Vasilyev, A.A. The Influence of Metal Grids on the Ion-Beam Characteristics in a Laser-Plasma Source. Instrum. Exp. Tech. 2022, 65, 65–74. [Google Scholar] [CrossRef]
- Gong, J.; Yuan, Z.H.; She, P.C.; He, Q.F.; Li, Y.; Kong, L.T. Design and Optimization of Strip Ion Source Grid. Packag. Test. Equip. 2024, 49, 196–200. [Google Scholar]
- Liao, W.L. Fundamental Research on Ion Beam Figuring for Sub-nanometer Precision Optical Surfaces. Ph.D. Thesis, National University of Defense Technology, Changsha, China, 2015. [Google Scholar]
- Lu, Y.; Xie, X.H.; Zhou, L. Design and performance analysis of an ultraprecision ion beam polishing tool. Appl. Opt. 2016, 55, 1544–1550. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Xie, X.H.; Zhou, L.; Dai, Z.C.; Chen, G.Y. Improve optics fabrication efficiency by using a radio frequency ion beam figuring tool. Appl. Opt. 2017, 56, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.B.; Jiang, S.L.; Zhang, J. Research on Ion beam polishing efficiency with changing different beam diameters. In Proceedings of the Fourth International Conference on Photonics and Optical Engineering, Xi’an, China, 15–16 October 2020. [Google Scholar]
- Hou, L.; Xie, X.H.; Zhou, L.; Ding, J. Research of Focused Ion Optical System Design and Performance Test. Aviat. Precis. Manuf. Technol. 2013, 49, 17–20. [Google Scholar]
- Arnold, T.; Böhm, G.; Fechner, R.; Meister, J.; Nickel, A.; Frost, F.; Hänsel, T.; Schindler, A. Ultra-precision surface finishing by ion beam and plasma jet techniques—Status and outlook. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. 2010, 616, 147–156. [Google Scholar] [CrossRef]
- Haensel, T.; Seidel, P.; Nickel, A.; Schindler, A.; Rauschenbach, B. Deterministic ion beam figuring of surface errors in the sub-millimeter spatial wavelength range. In Proceedings of the International Conference of the European Society for Precision Engineering and Nanotechnology, Vienna, Austria, 28 May–1 June 2006. [Google Scholar]
- Wang, Y.B. Study on the Influence of Ion Beam Figuring Equipment Performance on Sub-Nanometer Precision Manufacturing. Master’s Thesis, National University of Defense Technology, Changsha, China, 2021. [Google Scholar]
- Available online: https://www.buhlergroup.cn/global/en/homepage.html (accessed on 31 December 2024).
- Mikage, H.; Kitagawa, M.; Wada, M. Development of a magnetic quadrupole lens for low energy heavy ion beam transport. Rev. Sci. Instrum. 2020, 91, 015107. [Google Scholar] [CrossRef] [PubMed]
- Goncharov, A.A.; Dobrovolsky, A.N.; Kotsarenko, A.N.; Protsenko, I.M. High-current plasma lens and focusing of intense ion beams. Rev. Sci. Instrum. 1994, 65, 1428–1430. [Google Scholar] [CrossRef]
- Bernius, M.T.; Man, K.F.; Chutjian, A. An electrostatically and a magnetically confined electron gun lens system. Rev. Sci. Instrum. 1988, 59, 2418–2423. [Google Scholar] [CrossRef]
- Qiao, D.Y.; Wang, B.; Guo, S.P.; Shi, F.; Tian, Y.; Xu, M.J.; Peng, X. Controllable variable beam diameter ion source based on the Einzel lens. Vacuum 2024, 228, 113503. [Google Scholar] [CrossRef]
- Zhou, C.G.; Ke, J.L.; Qiu, R. Development of Focusing Device Used in Pulse Ion Beam. At. Energy Sci. Technol. 2013, 47, 687–690. [Google Scholar]
- Zhang, J.L. Ion Beam Source Emission Energy Filter Design. Master’s Thesis, Xi’an Technological University, Xi’an, China, 2022. [Google Scholar]
- Li, W.Q.; Zhang, J.Y.; Wang, Y.G.; Ma, X.M.; Meng, X.H.; Li, A. Evolution of Full Band Errors in Ion Beam Processing. Spacecr. Recovery Remote Sens. 2020, 41, 47–54. [Google Scholar]
- Wu, D.L. Study on Errors Characteristics of Optical Mirrors in Controllable Deformable Polishing. Ph.D. Thesis, National University of Defense Technology, Changsha, China, 2009. [Google Scholar]
- Zhou, L. Study on Theory and Technology in Ion Beam Figuring for Optical Surfaces. Ph.D. Thesis, National University of Defense Technology, Changsha, China, 2008. [Google Scholar]
- Wu, P.F. Research on the Control and Process of Ion Beam Polishing Stability of Optical Components. Master’s Thesis, Changchun University of Science and Technology, Changchun, China, 2022. [Google Scholar]
- Yuan, Z. Study on the Theory and Technology of Ion Beam Figuring for KDP Crystals. Ph.D. Thesis, National University of Defense Technology, Changsha, China, 2013. [Google Scholar]
Parameters | Performance Goals |
---|---|
Aperture value range [mm] | 1–20 |
Removal function FWHM [mm] | 1–15 |
Adjustment time [s] | 0.5 |
Gaussian correlation | 95% |
Stability (relative change) | 5% |
Recurrence accuracy (relative change) | 5% |
Material Property | Value |
---|---|
Thermal conductivity [W/(m·k)] | 138 |
Coefficient of thermal expansion [K−1] | 5.2 × 10−6 |
Density [kg/m−3] | 10,200 |
Specific heat capacity [J/(kg·k)] | 250 |
Thickness (mm) | 0.06 | 0.08 | 0.1 | 0.12 |
Thermal strain value (mm) | 0.00665 | 0.00657 | 0.00644 | 0.00630 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, H.; Hu, H.; Peng, X.; Liu, M.; Wang, P.; Guan, C. Research on Optimized Design of In Situ Dynamic Variable-Aperture Device for Variable-Spot Ion Beam Figuring. Micromachines 2025, 16, 849. https://doi.org/10.3390/mi16080849
Zou H, Hu H, Peng X, Liu M, Wang P, Guan C. Research on Optimized Design of In Situ Dynamic Variable-Aperture Device for Variable-Spot Ion Beam Figuring. Micromachines. 2025; 16(8):849. https://doi.org/10.3390/mi16080849
Chicago/Turabian StyleZou, Hongyu, Hao Hu, Xiaoqiang Peng, Meng Liu, Pengxiang Wang, and Chaoliang Guan. 2025. "Research on Optimized Design of In Situ Dynamic Variable-Aperture Device for Variable-Spot Ion Beam Figuring" Micromachines 16, no. 8: 849. https://doi.org/10.3390/mi16080849
APA StyleZou, H., Hu, H., Peng, X., Liu, M., Wang, P., & Guan, C. (2025). Research on Optimized Design of In Situ Dynamic Variable-Aperture Device for Variable-Spot Ion Beam Figuring. Micromachines, 16(8), 849. https://doi.org/10.3390/mi16080849